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Abstract

Animals that wield toxins face self-intoxication. Poison frogs have a diverse arsenal of defensive 

alkaloids that target the nervous system. Among them is epibatidine, a nicotinic acetylcholine 

receptor (nAChR) agonist that is lethal at microgram doses. Epibatidine shares a highly conserved 

binding site with acetylcholine, making it difficult to evolve resistance yet maintain nAChR 

function. Electrophysiological assays of human and frog nAChR revealed that one amino acid 

replacement, which evolved three times in poison frogs, decreased epibatidine sensitivity but at a 

cost of acetylcholine sensitivity. However, receptor functionality was rescued by additional amino 

acid replacements that differed among poison frog lineages. Our results demonstrate how 

resistance to agonist toxins can evolve and that such genetic changes propel organisms towards an 

adaptive peak of chemical defense.

Acquiring chemicals from the environment and recycling them for anti-predator defense is a 

survival strategy that has evolved in nearly every major branch of life (1). Exposure to toxic 

chemicals may have high physiological costs, but it can also be an opportunity for organisms 

to capitalize on these substances as new resources. Organisms that accumulate these 

chemicals risk self-intoxication unless they can resist their own defenses through 

compartmentalization, metabolic detoxification, or target-site insensitivity, i.e., changes in 

the molecular target of the toxin that affect its ability to bind (2). Many toxins target 

evolutionarily conserved proteins such as ion channels, which govern key nervous system 

functions. Thus, revealing the mechanistic basis of toxin resistance deepens our 

understanding of protein function and provides insights into nervous system evolution (3, 4). 
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Moreover, the physiology of toxin resistance is a crucial aspect of chemical defense and 

characterizing the evolution of resistance might elucidate how and why organisms acquire 

toxic defenses (5).

Neotropical poison frogs (Dendrobatidae) have independently evolved chemical defenses at 

least four times (6). The origins of chemical defense are usually accompanied by shifts 

towards bright coloration, resulting in a complex phenotype or syndrome known as 

aposematism (6). Theoretically, aposematic and non-aposematic poison frogs represent 

alternative peaks on an adaptive landscape that arose as a result of disruptive selection that 

favored more extreme phenotypes over intermediate ones (e.g., conspicuous but not well 

defended, or defended but not aposematic) (7). The multiple origins of aposematism within 

dendrobatids suggest that the switch from non-aposematic to aposematic phenotypes is 

easily attained within this group. Characterizing the evolution of toxin resistance, a key step 

in this phenotypic transition, may reveal pathways between these adaptive peaks in which 

toxin resistance facilitates origins of toxin sequestration.

Chemically defended dendrobatids take up from their diet over 800 types of lipophilic 

alkaloids (8), many of which modulate nervous system function (9). Their effects vary from 

benign to lethal (10), but most are bitter-tasting and thus generally aversive to predators (11). 

Epibatidine, one of the best known of these alkaloids, was first isolated from the phantasmal 

poison frog Epipedobates anthonyi in 1974 (12). Epibatidine has an analgesic effect 200 

times that of morphine, yet it targets a specific subset of nicotinic acetylcholine receptors 

(nAChRs) rather than opioid receptors (13). Because of these qualities, epibatidine has 

inspired pharmacological innovations, although its toxicity has prohibited its successful 

development as a pharmaceutical (14).

Toxic animals, including poison frogs, often evolve resistance to their toxins via amino acid 

(AA) replacements in toxin-binding sites (target-site insensitivity; 15, 16). The location of 

these replacements is constrained by protein function, leading to predictable and convergent 

mechanisms of resistance (17). For example, resistance to tetrodotoxin (TTX), a NaV1 

voltage-gated sodium channel blocker, evolved many times in toxic pufferfish, newts, and 

snakes that feed on newts via various AA replacements at residues in NaV1 proteins that 

interact with TTX (17–19). Similarly, resistance to cardiac glycosides, which inhibit the 

sodium-potassium pump, has evolved at least fourteen times in toxic insects and amphibians 

as well as their predators via AA replacements in the cardiac-glycoside binding site (4, 20).

Evolving epibatidine resistance involves different strategies at the molecular level, as 

epibatidine is an agonist that shares a binding site with ACh, the endogenous ligand of 

nAChRs, while TTX and cardiac glycosides act on receptors that are not ligand-gated (21, 

22). Resistance to epibatidine thus requires decreased sensitivity to epibatidine while 

preserving sensitivity to the endogenous agonist ACh that interacts with many of the same 

AAs, all without disrupting the normal receptor function.
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Phylogenetic identification of AA replacements in the poison frog nAChR

Based on what is known about the toxin and ligand, we hypothesized that epibatidine-

bearing frogs would have nAChRs that resist epibatidine yet display normal ACh sensitivity, 

and that the basis of resistance would involve genetic changes in the ligand-binding site. To 

test this hypothesis, we sequenced genes in poison frogs encoding the primary molecular 

target of epibatidine in the brain, the α4β2 nAChR (chrna4 and chrnb2) (23). Epibatidine 

has been detected in two distinct lineages of dendrobatids, Epipedobates and Ameerega (12), 

so we predicted two origins of resistance. Consequently, we sequenced 9 species of these 

genera as well as 19 other species of poison frogs, including 8 species of Dendrobatinae 

(Dendrobates+Phyllobates), a clade of chemically defended poison frogs lacking 

epibatidine, and 11 non-defended species (table S1, 24).

Four sites in the β2 subunit (F106, S108, A110, and I118, numeration of the mature human 

protein) have unique AA replacements in the alkaloid-sequestering dendrobatids 

Epipedobates, Ameerega, and Dendrobates (subgenus Oophaga sensu 25; Fig. 1A), the last 

of which is not known to have epibatidine defenses. These replacements are near the 

epibatidine-binding site in the α+–β− interface: between loops A and E, and in loop E (Fig. 

1B–E) (21, 22). Each of these replacements involves a single nucleotide change in the first 

or second codon position (table S2, 24), suggesting non-neutral evolution. Five additional 

sites in α4 were found to have AA replacements unique to these poison frogs, but only one 

of these (D176N) was near the epibatidine-binding site (table S3 and fig. S1, 24).

Electrophysiology of AA replacements in the poison frog nAChR

The α4β2 nAChR is a pentameric protein that exhibits two different stoichiometries: a high-

ACh sensitivity conformation (HS), (α4)2(β2)3, and a low-ACh sensitivity conformation 

(LS), (α4)3(β2)2 (26, 27). To determine experimentally whether the identified AA 

replacements provide resistance to epibatidine, we used site-directed mutagenesis to 

introduce poison frog AA replacements into human nAChRs. We then co-expressed the 

wild-type and mutated β2 subunits with human α4 nAChR subunits in Xenopus laevis 
oocytes and measured acetylcholine and epibatidine concentration-response curves (CRCs) 

through two-electrode voltage clamp (parameters, results, and statistical analyses from all 

CRCs are shown in tables S5–S16, 24). For each subunit combination, we injected different 

ratios of α4 and β2 transcripts to favor the formation of either HS or LS conformations (24). 

For brevity, we describe only HS nAChRs in the main text, as we found the same general 

pattern of channel sensitivity to ACh and epibatidine in both stoichiometries. For LS nAChR 

results see fig. S2 and tables S5–S7 (24). We also performed electrophysiology experiments 

to test whether the one replacement in the α4 subunit near the ligand-binding site (D176N) 

affected LS nAChR function, but we found no evidence for an effect (24; fig. S1 and S4, 

table S8).

For clarity, we denote all nAChR genotypes with four letters indicating the AA residue at 

each of the four sites of interest (106, 108, 110, and 118, see Table 1). Bold letters in each 

genotype indicate AA replacements introduced into a transcript via site-directed 

mutagenesis.
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Human-to-frog mutants

The Epipedobates and Ameerega replacement patterns (LCAI and FCVV genotypes) 

produced by mutagenesis showed ACh concentration-response curves (CRCs) identical to 

that of wild-type human FSAI genotype, while the subgenus Oophaga replacement pattern 

(FCAI) showed a decrease in sensitivity to ACh (Fig. 2A). All three nAChRs with poison 

frog AA replacement patterns (LCAI, FCVV, FCAI) were less sensitive to epibatidine than 

the wild-type receptor (Fig. 2B), indicating that these replacement patterns are sufficient to 

produce epibatidine-resistant phenotypes (Tables 1, S5−S7; 24). Interestingly, the ACh CRC 

is biphasic for the Oophaga replacement pattern, suggesting that in the human genetic 

background the S108C replacement may induce assembly of low-sensitivity (LS) nAChRs. 

As the LS stoichiometry possess two kinds of binding sites, application of increasing 

concentration of ACh results in a biphasic curve that reflects activation of the two HS 

binding sites at low ACh concentrations and of the single LS binding site at high ACh 

concentrations (24). Thus, resistance to epibatidine conferred by the S108C replacement 

incurs a cost of ACh sensitivity in the human β2 subunit.

We then characterized the physiological effect of each individual replacement in poison 

frogs by generating human α4β2 nAChR transcripts with single amino acid replacements 

(LSAI, FSVI, and FSAV). As with the S108C replacement, human transcripts with the 

I118V replacement (FSAV, derived in Ameerega) provided moderate resistance to 

epibatidine at a cost of ACh sensitivity, possibly because this AA replacement also induced 

assembly of LS nAChRs (Fig. 2C and D, Table 1). In contrast, human receptors with either 

F106L (Epipedobates) or A110V (Ameerega) displayed no change in ACh and epibatidine 

sensitivity, indicating that these replacements probably do not contribute to epibatidine 

resistance (Fig. 2E to H, Table 1). Instead, these replacements appear to compensate for the 

decrease in ACh sensitivity incurred by the replacements that provided resistance (Table 1), 

as human receptors with the LCAI genotype (Epipedobates) or the FCVV genotype 

(Ameerega) both showed normal ACh response (Fig. 2A and B; Table 1; 24).

Epipedobates-to-human mutants

We synthesized and expressed the wild-type Epipedobates α4β2 nAChR (LCAI genotype) 

and a double mutant replicating the plesiomorphic human genotype (FSAI) in Xenopus 
laevis oocytes, and performed electrophysiology assays. The Epipedobates-to-human mutant 

(FSAI) showed greatly increased sensitivity to epibatidine but no change in sensitivity to 

ACh (Table 1 and S7; Fig. 2G and H) indicating that the replacements in Epipedobates were 

necessary for resistance.

To understand the contributions of each replacement when it occurs in the poison frog 

genetic background, we expressed the single mutant genotypes FCAI and LSAI in the 

Epipedobates β2 subunit. While S108C incurred a drastic cost in ACh sensitivity in the 

human genetic background (Fig. 2A, compare FSAI and FCAI), the Epipedobates-to-human 

FCAI mutant demonstrated only a minor (but significant) decrease in sensitivity to ACh 

(compared to FSAI), suggesting that some other aspects of the poison frog genetic 

background ameliorate the large cost of this replacement in the human FCAI genotype 

(Table 1). This difference may be explained by the observation that the S108C replacement 
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in human receptors appeared to induce formation of LS nAChRs (Fig. 2A), which are less 

sensitive to ACh than HS nAChRs. However, the Epipedobates nAChR never appeared to 

form the LS stoichiometry, even when the injected cRNA subunit ratio favored its formation 

(compare Fig. 2G and H to fig. S2G and H, 24). Little is known about the poison frog α4β2 

nAChR, but the apparent absence of the LS stoichiometry in Epipedobates (evidenced by the 

lack of a biphasic, right-shifted curve) lessens the cost of the S108C replacement, and might 

be related to epibatidine exposure and resistance.

As predicted, the Epipedobates FCAI receptor displayed a decrease in sensitivity to 

epibatidine compared with FSAI (Tables 1 and S7; 24), confirming the role of S108C in 

epibatidine resistance (Fig. 2G and H). As with the human-to-frog LSAI receptor, the 

Epipedobates-to-human LSAI receptor affected neither ACh nor epibatidine sensitivities 

compared to FSAI (Table 1). The LCAI genotype (wild-type in Epipedobates) displayed 

normal responses to ACh and decreased sensitivity to epibatidine (Table 1). Thus, as in the 

human receptor, C108 provides epibatidine resistance and L106 appears to compensate by 

normalizing α4β2 receptor function in Epipedobates poison frogs.

AA replacements in poison frog nAChR are proximal to the epibatidine 

binding site

We found that AA replacements in the poison frog β2 subunit (Fig. 1) alter α4β2 nAChR 

sensitivity to epibatidine (Fig. 2B). We propose that this is in part due to the proximity of the 

AA replacements to the epibatidine binding site. Namely, the β2C108 residue directly 

contacts the side chain of α4W156, one of the main determinants in stabilizing epibatidine 

binding (Fig. 1D and E) (21, 28). The sulfur-containing side chain of C108 is bulkier than 

that of serine, and it could modify the epibatidine-W156 interaction. The I118V replacement 

in Ameerega, which also contributes to epibatidine resistance (Fig. 1D and E), is next to 

F119, a residue that interacts with the epibatidine chloropyridine ring and stabilizes the 

epibatidine chlorine atom through its backbone carboxyl group. Moreover, the A110V 

replacement is next to V111, another AA residue that interacts with epibatidine via van der 

Waals forces (21, 28, 29). These replacements are located in β-sheets that are involved in 

epibatidine binding, but are less involved in ACh binding (21, 28, 30). The β2− side of the 

binding pocket is further from ACh than is the α4+ side, and thus forms looser interactions 

with ACh, such that AA replacements in the β− region that allow changes in epibatidine 

binding may be less likely to affect ACh sensitivity. This structure-function problem was 

apparently solved via an identical genetic change three times within poison frogs and refined 

via different genetic changes at least twice in these lineages.

Evolutionary pathways towards epibatidine resistance

Toxin resistance often evolves in response to recurrent exposure to toxins (2, 4, 31, 32); thus 

patterns of resistance should reflect the evolutionary history of toxin exposure. The 

evolutionary patterns of AA replacements in the poison frog β2 nAChR subunit suggest that 

in each of the Epipedobates, Ameerega, and Dendrobates (Oophaga) clades (Fig. 1A), an 

ancestral species was likely exposed to epibatidine, resulting in selection for and evolution 

of epibatidine resistance approximately 5, 10, and 8MYA, respectively (25). Although no 
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clade of poison frogs that has epibatidine defense lacks AA replacements in the β2 nAChR, 

epibatidine has only been detected in two of three sampled species of Epipedobates, in two 

of twelve sampled species of Ameerega, and in none of nine sampled species of 

Dendrobates (Oophaga) (9, 12). It is possible that some populations with epibatidine defense 

are extinct or have not been detected, or that the dietary source of epibatidine, presumed to 

be an arthropod, is not as available as it was long ago (12). While epibatidine resistance may 

have arisen as a side effect of some other change to the protein, mutations in the ligand-

binding domain are uncommon (Fig. 1A) and presumably evolve under strong selective 

pressures. Regardless of the apparent rarity of epibatidine in poison frogs, the epibatidine-

resistant phenotype (determined by electrophysiology) does not appear to have been lost in 

any resistant lineages (Oophaga, Epipedobates, or Ameerega), suggesting that lack of 

resistance has a high cost, that reversion to a non-resistant phenotype is physiologically 

difficult, or that maintenance of epibatidine resistance is not costly.

The evolutionary patterns underlying origins of epibatidine resistance in poison frogs reflect 

an adaptive landscape with two peaks that maximize fitness of alternative phenotypes: toxin-

resistant and defended or toxin-sensitive and undefended. Given that S108C provides 

significant epibatidine resistance and that it is found in all three resistant clades, we argue 

that it provides a substantial selective advantage. We suggest two possible evolutionary 

pathways for acquisition of toxin resistance. In the first, initial replacements may provide a 

small selective benefit of resistance yet carry some physiological cost in receptor function. 

For example, the S108C replacement arose independently in all three lineages and is 

sufficient to produce an epibatidine-resistance phenotype. However, it also incurs decreased 

sensitivity to ACh in both the human and the Epipedobates backgrounds (Table 1), and the 

fitness cost of this replacement in living organisms is not clear. We speculate that yet 

unidentified mutants in the poison frog nAChR sustained receptor functionality, i.e., by 

inducing nAChR expression changes, until other replacements such as F106L evolved to 

rescue receptor sensitivity to ACh. Disruptive selection on populations with both genotypes 

may have propelled the populations with S108C toward a new adaptive peak.

In the second possible trajectory, certain mutants already present in the gene pool provide a 

genetic background in which resistance arises without cost (e.g., F106). For example, the 

artificial genotype LSAI (F106L) shows no reduction in either ACh or epibatidine sensitivity 

(Table 1). Thus, a frog species with F106L has evolved a novel genotype (LSAI), 

intermediate between FSAI (plesiomorphic) and LCAI in Epipedobates, without incurring a 

cost, which subsequently allows the C108 replacement to also evolve without cost. However, 

the LSAI genotype does not exist in any taxa we sampled. It is not present in Silverstoneia, 

the sister-group of Epipedobates (two of eight species sampled), nor in the closely related 

taxa Ameerega and Colostethus (Fig. 1A). Thus, this second pathway, in which a novel 

genotype evolves without apparent cost, is not found in poison frogs. However, this pathway 

is known in the brown plant-hopper (Nilaparvata lugens) (33), in which two AA 

replacements confer resistance to fipronil, a noncompetitive antagonist of GABA receptors. 

This occurs in an apparently sequential process where the second AA change provides high 

resistance yet has a high fitness cost and never occurs without the first (33). It is unclear how 

common such pre-existing compensatory mutations are, although it appears that mutations 
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providing incremental increases in resistance are quite common. In Danainae butterflies, 

newts, garter snakes, and poison frogs, toxin resistance tends to increase over evolutionary 

time via additional AA replacements that occur in parallel with increased concentrations of 

chemical defenses (15, 16, 34, 35). It is possible that pre-adaptive mutations that allow 

resistance to evolve with little cost are present in these organisms and simply have not been 

identified. The presence of such pre-adaptive mechanisms would imply a shallow, “neutral” 

valley on the adaptive landscape that facilitates the movement from one adaptive peak to 

another.

The Epipedobates, Ameerega, and Dendrobates (Oophaga) clades, which are evolutionarily 

young (6, 36), are an example of rapid and ongoing diversification possibly driven by the 

evolution of resistance to anti-predator toxins (15). We demonstrate that resistance to 

epibatidine involves finely tuning a highly conserved binding site without disrupting 

receptor function, providing insights into evolutionary pathways culminating in chemical 

defenses. Thus, evolution, with millions of years and subjects, can solve complex problems 

in systems biology that may otherwise seem impossible.
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One Sentence Summary

Mutations combine to confer epibatidine resistance without altering acetylcholine 

response in a poison frog nicotinic acetylcholine receptor.
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Fig. 1. AA replacements in β2 associated with alkaloid-defended poison frogs
(A)

Alignment of dendrobatid (black), non-dendrobatid (grey), and outgroup (grey) β2 

sequences (table S4). Yellow branches in the phylogeny (adapted from 36) indicate alkaloid-

defended lineages; asterisks indicate clades in which epibatidine has been detected; the unit 

of the scale bar is number of expected substitutions per site. Focal species names are in bold 

and colored by their AA replacement pattern. The AA replaced only in Epipedobates poison 

frogs is in red (F106L); AAs replaced only in Ameerega are in purple (A110I and I118V); 
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the convergently evolved replacement is in cyan (S108). Genotypes of clades with 

replacements are indicated to the left of the alignment (see Table 1). Structure of the human 

(α4)2(β2)3 nAChR (22) (B) from the side and (C) from extracellular space. α4 subunits are 

in light grey, β2 subunits are in gold, and the ligand-binding sites are indicated by grey 

spheres. AA residues identified with grey and gold arrows are known to be involved in ACh 

and/or epibatidine binding (21, 28, 29). Closer view of the binding site from (D) 

extracellular space and (E) viewpoint indicated by labeled arrow in (C).
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Fig. 2. ACh and epibatidine concentration-response curves in high-sensitivity α4β2 nAChRs
Left panels show responses to ACh and right panels show responses to epibatidine. (A, B) 

Human α4β2 nAChRs: wild-type genotype (FSAI) and receptors containing the AA patterns 

identified in Epipedobates, Ameerega, and Dendrobates (Oophaga) poison frogs (LCAI, 

FCVV, and FCAI genotypes, respectively). (C, D) Human α4β2 nAChRs: wild-type (FSAI) 

and Ameerega genotypes (FCVV, FCAI, FSVI and FSAV). (E, F) Human α4β2 nAChRs: 

wild-type (FSAI) and Epipedobates genotypes (LCAI, LSAI and FCAI). (G, H) 

Epipedobates α4β2 nAChRs: wild-type (LCAI genotype) and human genotypes (FSAI, 
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FCAI and LSAI). Dotted lines (⋯) correspond to human FSAI and LCAI curves from C and 

D panels. Error bars smaller than the symbols are not visible. Data were fitted to either 

mono- (−) or biphasic (–) curves. Inset: schematic of HS α4β2 nAChR stoichiometry; 

ligand-binding sites indicated by arrows.

Tarvin et al. Page 15

Science. Author manuscript; available in PMC 2018 March 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Tarvin et al. Page 16

Ta
b

le
 1

E
ff

ec
ts

 o
f 

A
A

 r
ep

la
ce

m
en

ts
 o

n 
lig

an
d 

re
sp

on
se

s 
in

 h
um

an
 a

nd
 E

pi
pe

do
ba

te
s 

hi
gh

-A
C

h-
se

ns
it

iv
it

y 
(H

S)
 n

A
C

hR
s

R
el

at
iv

e 
fo

ld
 c

ha
ng

e 
in

 s
en

si
tiv

ity
 in

du
ce

d 
by

 A
A

 r
ep

la
ce

m
en

ts
 w

as
 c

al
cu

la
te

d 
as

 [
m

ut
an

t E
C

50
]/

[F
SA

I 
E

C
50

] 
fo

r 
ea

ch
 g

en
et

ic
 b

ac
kg

ro
un

d 
(i

.e
., 

[m
ut

an
t]

/

[r
ef

er
en

ce
];

 s
ee

 ta
bl

es
 S

5−
S7

; 2
4)

. V
al

ue
s 

gr
ea

te
r 

th
an

 1
 in

di
ca

te
 th

at
 r

el
at

iv
el

y 
m

or
e 

lig
an

d 
is

 r
eq

ui
re

d 
to

 e
lic

it 
th

e 
sa

m
e 

re
sp

on
se

; t
hu

s,
 h

ig
he

r 
va

lu
es

 

in
di

ca
te

 lo
w

er
 s

en
si

tiv
ity

. A
C

h 
as

se
ss

m
en

ts
 f

or
 b

ip
ha

si
c 

cu
rv

es
 (

>
1)

 a
re

 q
ua

lit
at

iv
e,

 b
ut

 b
ot

h 
ca

se
s 

re
su

lt 
in

 lo
w

er
ed

 s
en

si
tiv

ity
 (

se
e 

ta
bl

es
 S

5−
S6

).

H
um

an
 g

en
et

ic
 b

ac
kg

ro
un

d
E

pi
pe

do
ba

te
s 

ge
ne

ti
c 

ba
ck

gr
ou

nd

G
en

ot
yp

e
A

A
 r

ep
la

ce
m

en
t(

s)
F

ol
d 

ch
an

ge
 in

 E
C

50
 A

C
h

F
ol

d 
ch

an
ge

 in
 E

C
50

 
ep

ib
at

id
in

e
G

en
ot

yp
e

A
A

 r
ep

la
ce

m
en

t(
s)

F
ol

d 
ch

an
ge

 in
 E

C
50

 A
C

h
F

ol
d 

ch
an

ge
 in

 E
C

50
 

ep
ib

at
id

in
e

FS
A

I
(w

ild
-t

yp
e)

re
fe

re
nc

e
re

fe
re

nc
e

F
SA

I
L

10
6F

C
10

8S
re

fe
re

nc
e

re
fe

re
nc

e

L
C

A
I

F1
06

L
S1

08
C

1
17

**
L

C
A

I
(w

ild
-t

yp
e)

1
44

**

L
SA

I
F1

06
L

1
1

L
SA

I
C

10
8S

1
1

FC
A

I
S1

08
C

>
1

49
**

F
C

A
I

L
10

6F
2*

13
8*

*

FC
V

V
S1

08
C

A
11

0V
I1

18
V

1
6*

*
–

–
–

–

FS
V

I
A

11
0V

1
1

–
–

–
–

FS
A

V
I1

18
V

>
1

75
**

–
–

–
–

* , p
 <

 0
.0

1;

**
, p

 <
 0

.0
01

 (
tw

o-
w

ay
 A

N
O

V
A

, c
or

re
ct

ed
 f

or
 m

ul
tip

le
 c

om
pa

ri
so

ns
 u

si
ng

 T
uk

ey
’s

 te
st

; s
ee

 ta
bl

es
 S

9,
 S

11
, S

13
, a

nd
 S

14
).

Science. Author manuscript; available in PMC 2018 March 22.


	Abstract
	Phylogenetic identification of AA replacements in the poison frog nAChR
	Electrophysiology of AA replacements in the poison frog nAChR
	Human-to-frog mutants
	Epipedobates-to-human mutants

	AA replacements in poison frog nAChR are proximal to the epibatidine binding site
	Evolutionary pathways towards epibatidine resistance
	References
	Fig. 1
	Fig. 2
	Table 1

