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Abstract

Over the last 50 years, quantitative methodology has made important contributions to our 

understanding of the cellular composition of the human brain. Not all of the concepts that emerged 

from quantitative studies have turned out to be true. Here, I examine the history and current status 

of some of the most influential notions. This includes claims of how many cells compose the 

human brain, and how different cell types contribute and in what ratios. Additional concepts entail 

whether we lose significant numbers of neurons with normal aging, whether chronic alcohol abuse 

contributes to cortical neuron loss, whether there are significant differences in the quantitative 

composition of cerebral cortex between male and female brains, whether superior intelligence in 

humans correlates with larger numbers of brain cells, and whether there are secular (generational) 

changes in neuron number. Do changes in cell number or changes in ratios of cell types 

accompany certain diseases, and should all counting methods, even the theoretically unbiased 

ones, be validated and calibrated? I here examine the origin and the current status of major 

influential concepts, and I review the evidence and arguments that have led to either confirmation 

or refutation of such concepts. I discuss the circumstances, assumptions and mindsets that 

perpetuated erroneous views, and the types of technological advances that have, in some cases, 

challenged longstanding ideas. I will acknowledge the roles of key proponents of influential 

concepts in the sometimes convoluted path towards recognition of the true cellular composition of 

the human brain.
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1. Introduction

Our understanding of the human brain – and of any brain – is based on series of facts and 

findings that are reported in the scientific literature. Some of the original findings were made 
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decades ago, and typically have been scrutinized in subsequent scientific studies using 

increasingly sophisticated methodologies. A major mechanism of scientific progress is the 

replication and acceptance, or refutation and refinement of original findings, with evaluation 

by peers prior to and after incorporation into the scientific literature. This is how scientific 

concepts eventually become common knowledge and lay the foundation and framework for 

further research. The review and acceptance of new facts by peer-review is an indispensable 

tool of scientific advance that validates scientific knowledge and is supposed to be self-

correcting (Committee on the Conduct of Science, 1989; Ioannidis, 2012). It is common that 

technological advances challenge old concepts and occasionally lead to refutation or 

amendments. Accordingly, some concepts remain in flux, to be molded by future 

investigators.

The human brain poses special challenges for quantification of its cellular composition. This 

is due not only to its large size, the large number of cells involved, and the surprisingly large 

variation in cell numbers between individuals, but also to the fact that, for obvious ethical 

reasons, researchers have much less control and access to well-preserved human brains as 

compared to animal brains (Peters et al., 1998; Pannese, 2011). The latter constraint has 

consequences for the quality and morphology of the tissues and their optimal processing for 

quantitative analyses.

Although studies attempted to quantify aspects of the human brain as early as the 1800s 

(reviewed in: Haug, 1986; von Bartheld et al., 2016), the first serious and systematic studies, 

with increasingly powerful methodologies, appeared about 50 years ago. Parts of the human 

brain were quantified using one of four basic types of methodologies, as recently reviewed 

(von Bartheld et al., 2016): 1. Histology of thin sections for counting of stained cell profiles, 

with estimates adjusted by correction factors (Abercrombie, 1946; Clarke and Oppenheim, 

1995); 2. Stereology (design-based methods) using thick sections and systematic random 

sampling (Pakkenberg and Gundersen, 1997; Schmitz and Hof, 2005; Geuna and Herrera-

Rincon, 2015); 3. DNA extraction to calculate total DNA and extrapolation to estimate cell 

numbers (Heller and Elliot, 1954; Dobbing and Sands, 1973); and 4. Collection of nuclei in 

suspension, and calculation of cell numbers based on volume samples (Nurnberger and 

Gordon, 1957; Johnson and Erner, 1972), an approach that was recently optimized with the 

design of the isotropic fractionator (Herculano-Houzel and Lent, 2005; Azevedo et al., 2009; 

Herculano-Houzel et al., 2015).

In this review, I examine the origin, original evidence, replication or challenges, arguments, 

and current status of some of the most influential concepts and questions about the 

quantitation and cellular composition of the human brain. I provide the historical context, 

explain the arguments, evaluate or assess the quality of evidence, and categorize the 

concepts as either refuted, confirmed, questionable or unsure when the evidence is 

conflicting and further research is needed. I refer to the original publications that form the 

basis of my evaluation so that readers can verify statements and can confirm conclusions by 

consulting relevant sources.
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2.1. The concept of a 10:1 glia-neuron ratio (GNR)

The concept of a 10:1 GNR for the entire human brain has dominated the field over the last 

50 years (Fig. 1). It originated with Holger Hyden's assertions in the 1960s (Hyden, 1960, 

1967) (Fig. 2A), probably based on his model system of the vestibular nuclei in the 

brainstem which indeed have a large GNR. The claims of an overabundance of glia over 

neurons were not backed up by experimental evidence, and this may have contributed to the 

fact that the claims evaded customary peer review. Despite having an unvalidated status, the 

concept was incorporated into all major textbooks, including the most prominent books by 

leading neuroscientists such as Stephen Kuffler and Eric Kandel (Fig. 2B, C) (Kuffler and 

Nicholls, 1976; Kandel and Schwartz, 1981, 1985; Kandel et al., 1991, 2000; reviewed in: 

von Bartheld et al., 2016), thereby allowing the erroneous concept of a 10:1 GNR to become 

“common knowledge” for five decades. Instances of conflicting evidence reported by others 

were rare (e.g., Haug, 1986; Andersen et al., 1992), and they were basically overlooked. 

Different components of the brain have different GNRs (for reasons yet to be determined), 

and accordingly the GNR for the entire human brain is a composite of the different GNRs 

for its individual parts. Since GNRs are strongly conserved in evolution, they are thought to 

be physiologically important (Herculano-Houzel, 2014). A common mistake was to examine 

just one part of the brain, and to assume that the rest of the brain is composed in the same 

way, which prompted false conclusions (von Bartheld et al., 2016). For these reasons, the 

myth of a 10:1 GNR persisted until 2009, when a novel technical advance, the isotropic 

fractionator, revealed and effectively communicated that the GNR was less than 1:1 in 

human brains (Azevedo et al., 2009) – a finding that turned out to be also supported by data 

obtained with histological methods, including stereology (von Bartheld et al., 2016). The 

report by Azevedo et al. (2009) challenged and refuted the original concept of an 

overabundance of glial cells, and eventually led to a reversal of the GNR from 10:1 to 0.7:1, 

as first advocated by Herbert Haug (1986) (Fig. 3A). The concept of a lower number of glial 

cells than neurons in human brains is now becoming increasingly accepted in the field 

(Hilgetag and Barbas, 2009; Lent et al., 2012; Yuhas and Jabr, 2012; Zorzetto, 2012; Jarrett, 

2015; von Bartheld et al., 2016) (Fig. 1).

2.2. The concept of 1–50 trillion glial cells in the human brain

Glial cells are smaller than most neurons and therefore are more difficult to identify and 

count in histological sections than neurons. Information about glial cell numbers has always 

been less certain than information about neuron numbers. However, the ratio between glia 

and neurons could be determined with a reasonable degree of certainty in distinct regions of 

the brain. Neuron numbers were estimated within relatively narrow ranges for certain brain 

regions; however, no stereological study has yet attempted to estimate glia numbers for the 

entire human brain. Therefore, prior to the development of the isotropic fractionator 

counting method, glia numbers for the whole brain were largely based on the presumed fact 

of a 10:1 glia-neuron ratio (GNR), which was used for calculations. Accordingly, glia 

numbers were postulated for the whole brain to be at least 10 times the number of neurons 

(which was known to be about 85–100 billion), yielding numbers of 1 trillion or more for 

glial cells. Several prominent textbooks increased that number by an additional factor of 10–

50, notably the Kandel text book editions from 1981 and 1985 (Kandel and Schwartz, 1981, 

1985), where the neuron number was erroneously stated at 1 trillion, so that a total of up to 
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50 trillion glial cells was postulated to exist in the human brain. These numbers conflicted 

with histology-based estimates of maximally 130 billion glial cells (Blinkov and Glezer, 

1968) or 50 billion glial cells (Haug, 1986), but these discrepancies were not discussed in 

the textbooks or reviews. It was not until 2009 that the dogma of abundant glia numbers was 

challenged, in the paper by Azevedo et al. (2009), when the isotropic fractionator technique 

revealed no more than 85 billion non-neuronal cells in the human brain, with only a fraction 

of these – albeit a major fraction – being glial cells. Thus, the new methodology supported 

the estimates of 40–50 billion glial cells, as published by Herbert Haug (1986) (Fig. 3A). 

His estimate has been shown to be plausible based on both histological evidence as well as 

evidence from the isotropic fractionator, which was recently compiled (von Bartheld et al., 

2016). Accordingly, the total glia number in human brains is now thought to be about 40–50 

billion glial cells, which is a small fraction of the 1–50 trillion postulated in major text books 

and reviews just a few years ago.

2.3. The concept of a 5:3:1 ratio for neurons, glia, endothelial cells in the human brain

In the history of cell counting, a consensus about the total number of neurons in the human 

brain developed earlier than for glial cells. The review of Williams and Herrup (1988) 

provided a plausible number of about 85 billion neurons. This number of just under 100 

billion neurons was widely reported in peer-reviewed articles and text books (Soper and 

Rosenthal, 1988; von Bartheld et al., 2016). It was supported by studies using histological/

stereological techniques (Haug, 1986) as well as isotropic fractionator methodology 

(Azevedo et al., 2009; Andrade-Moraes et al., 2013), a technique that was developed in 2005 

(Herculano-Houzel and Lent, 2005) (Fig. 3C). Once a plausible number of glial cells in the 

human brain had been established at about 40–50 billion, the remaining major cell type left 

to be quantified were the endothelial cells. Since the number of endothelial cells is 

essentially the difference between the total non-neuronal cells and the total glial cells, this 

number can be calculated by simple subtraction. Alternatively, it can be determined by 

histological analyses, when percentages of glial cells and endothelial cells are compiled 

separately based on histological appearance (Garcia-Cabezas et al., 2016). Such percentages 

are tissue-specific and range from 30% of all non-neuronal cells in neocortex (= 23.6% of all 
cells in neocortex; Nurnberger, 1958; Blinkov and Glezer, 1968; Brasileiro-Filho et al., 

1989; Bjugn and Gundersen, 1993; Lyck et al., 2009; Garcia-Amado and Prensa, 2012; 

Bahney and von Bartheld, 2014) to 85% of all non-neuronal cells in the cerebellum (a 

relatively high percentage, because of the low glia number) (= 16–19% of all cells in the 

cerebellum, Andersen et al., 1992; Andersen et al., 2012; Azevedo et al., 2009; Andrade-

Moraes et al., 2014). Contrary to the notion that endothelial cell numbers are negligible 

(Bass et al., 1971; Herculano-Houzel, 2011), it is now thought that endothelial cells in the 

whole human brain make up about 25% of all non-neuronal cells, with the rest (75%) of 

non-neuronal cells being glial cells, thus generating a ratio of about 5:3:1 for neurons, glia 

and endothelial cells in the human brain (Bahney and von Bartheld, 2017) (Fig. 4).

2.4. The concept of loss (“fall-out”) of cortical neurons with normal aging

The concept that humans lose a substantial number of cortical neurons during normal aging 

(“neuronal fall-out”) was based on cell counting studies in the 1950s to 1980s (Brody, 1955; 

Brody, 1970; Colon, 1972; Hanley, 1974; Devaney and Johnson, 1980; Henderson et al., 
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1980; Curcio et al., 1982; Anderson et al., 1983). Animal studies had suggested that at least 

some aged animals have significantly reduced numbers of neurons in their brains when 

compared to younger animals (Johnson and Erner, 1972; reviewed by Hanley, 1974), and 

Brody's and other's cell counting studies appeared to confirm this for human neocortex. 

These studies indicated that between 35% and 55% of cortical neurons were lost during 

adulthood, corresponding to a nearly 1% loss per year, and additional studies by Devaney 

and Johnson (1980), Henderson et al. (1980), and Anderson et al. (1983) reported similar 

losses (Fig. 5). Accordingly, this fall-out of about half of all cortical neurons was deemed in 

the 1970s and 1980s to be a normal consequence of aging, and senility was seen as an 

inevitable consequence of cortical neuron loss, which was thought responsible for the 

expected decline in intellectual abilities (Anderton, 1997; Kausler et al., 2007; Pannese, 

2011). This made for a depressing outlook on life for senior citizens. Although correlation 

alone cannot be regarded as evidence for causation, it may not be a coincidence that suicidal 

ideation in the elderly spiked in the 1970s and 1980s, since mental decline is among the 

disabilities most feared in old age (Meehan et al., 1991; McKeown et al., 2006; Schmutte et 

al., 2009; Deary, 2012).

At the time when fall-out of cortical neurons was the prevailing concept, Herbert Haug (Fig. 

3A) examined cell numbers in human brains and discovered that brains from older 

individuals had different patterns of shrinkage during fixation than younger brains (Haug, 

1980; Haug et al., 1984). His re-examination of the studies claiming cell loss with normal 

aging showed that the apparent neuron loss was almost entirely due to a technical artifact: 

age-dependent differences in shrinkage, with a change in neuronal density, but not neuronal 

numbers. Knowledge about shrinkage is essential when neuronal densities rather than 

absolute numbers of neurons are examined. When corrected for actual shrinkage, the older 

brains showed essentially the same numbers of neurons as the younger brains (Haug et al., 

1984). Haug's work corrected a major concept that had misled researchers as well as lay 

people (Fig. 5).

Subsequent studies have confirmed that there is either no loss, or a much smaller loss, of 

cortical neurons during normal aging (Terry et al., 1987; Pakkenberg and Gundersen, 1997; 

Peters et al., 1998; Pannese, 2011). The work of Haug (1987), Leuba and Kraftsik (1994a) 

and Gomez-Isla et al. (1996, 1997) found no loss, while Terry et al. (1987), Pakkenberg and 

Gundersen (1997), and Pelvig et al. (2008) reported a minor decrease of less than 10% 

during normal aging. When one combines the data from all available stereology studies into 

one large meta-analysis dataset (Fig. 6B, for details of the regression analysis, see legend to 

panel B), it becomes obvious that there is only a small decrease (2–4%) of the number of 

cortical neurons with age, in both males and females. The numbers for males are 24.6 ± 4.2 

billion (standard deviation) for ages 20–50 vs. 23.6 ± 3.4 billion for ages 60–86; and the 

numbers for females are 20.6 ± 3.6 billion for ages 20–50 vs. 19.5 ± 3.6 billion for ages 70–

105 (Fig. 6B). Several additional factors may be responsible for the differences between 

results when compared with the earlier studies: (1) large variability between individuals, 

making large cohorts necessary; (2) some cohorts may have included individuals with 

preclinical stages of Alzheimer's disease where neuron loss precedes clinical signs, although 

the recent work of Andrade-Moraes et al. (2013) argues against this possibility; (3) secular 

(generational) changes in neuron numbers may explain some of the differences in neuron 
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number when younger and older brains are compared; (4) abnormal diploid neuron fall-out 

may contribute to a small decline in neuron numbers (Fischer et al., 2012). In the most 

recent studies, very old females (94–105 years old) were found to have surprisingly large 

(and presumably stable) numbers of cortical neurons (Fabricius et al., 2013; Walloe et al., 

2014). These old individuals may be a subpopulation with increased cell numbers at birth 

that correlate with, or may cause, longevity. As detailed by Peters et al. (1998) and Pannese 

(2011), changes in neuron numbers would ideally be determined in a longitudinal study, in 

vivo, but that is not technically possible. Based on the more recent reports and the meta-

analysis presented in Figure 6B, it now appears well-established that cortical neuron 

numbers in humans decline very little during normal aging, and intellectual decline with age 

may rather be due to numerical reductions of relatively small, specific neuronal populations, 

or changes in aging neurons' chemistry or morphology (Morrison and Hof, 1997; Peters et 

al., 1998; Uylings and de Brabander, 2002; Hof and Mobbs, 2009; Pannese, 2011).

2.5. Do female brains have significantly fewer cortical neurons than male brains?

Reports are conflicting whether female human brains have fewer cortical neurons than male 

brains. Haug (1987) presented data indicating that female brains were smaller but had a 

higher density of cortical neurons, resulting in similar numbers of neurons between the 

genders, while Pakkenberg and Gundersen (1997) concluded that male brains have about 

15% more neurons in the cerebral cortex than female brains. It is possible that the 

discrepancy between conclusions is due to differences between techniques: Haug used an 

early version of stereology (volume estimation and sampling of densities), while Pakkenberg 

and Gundersen applied one of the newly developed, now conventional stereological 

methods: the optical disector. Haug presented data for a total of 78 brains (60 male and 18 

female), while Pakkenberg and Gundersen examined a total of 94 brains (62 male and 32 

female). When one combines the 1997 data with those from three additional stereology 

studies – Braendgaard et al., 1990 (five male brains), Pelvig et al., 2008 (13 male brains and 

18 female brains), and Fabricius et al., 2013 (23 female brains) – it becomes apparent in this 

meta-analysis of 80 male brains and 73 female brains that the stereological studies support a 

gender difference of about 16% (23.7 billion cortical neurons in males vs. 19.8 billion 

cortical neurons in females) (Fig. 6B). This difference is maintained when it is taken into 

account that up to seven of these brains were used in more than one study (see legend to Fig. 

6B). The work of Leuba and Kraftsik (1994a) examined the visual cortex of 17 adult brains 

(ages 18–96 years, 10 male, 7 female), and Gomez-Isla et al. (1996) examined the entorhinal 

cortex, with an age range from 60–89 years (4 male, 6 female). In these studies, no 

differences between genders were apparent, but the numbers of subjects were too low to be 

conclusive.

2.5.1. Absolute numbers of cortical neurons—Figure 6 shows that the total number 

of cortical neurons differs significantly between Haug's 1987 study and the subsequent 

stereology studies; Haug's estimates were between 10 and 20 billion, while the stereology 

work estimated between 15 and 30 billion. Interestingly, the third method of cell counting, 

the isotropic fractionator (IF), reports estimates that are comparable to Haug's numbers 

rather than the later stereology data. However, relatively few normal brains have been 

examined with the IF to date (Fig. 6C). One of the two IF studies, in 2009, examined four 
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normal brains, from 50–71 year-old males (Azevedo et al., 2009), while the other study 

examined five normal brains, from 71–84 year-old females (Andrade-Moraes et al., 2013). 

These studies reported 16.3 billion cortical neurons for the group of younger males, and 12.7 

billion neurons for the older female group: a difference of 22%. Based on Pakkenberg and 

Gundersen's (1997) study and the meta-analysis shown in Figure 6B, these differences in 

numbers seem to reflect mostly gender, rather than age differences. The stereology study by 

Pakkenberg and Gundersen (1997) estimated 22 billion cortical neurons for male brains, and 

19 billion for females. This is at the high end of numerical estimates for cortical neurons 

(von Bartheld et al., 2016). The studies of Haug (1987), Herculano-Houzel (Azevedo et al., 

2009) and Lent (Andrade-Moraes et al., 2013) reported lower numbers: Haug estimated 

about 15 billion for males, Herculano-Houzel about 16 billion for males, and Lent about 13 

billion for older females. Although these numbers are consistent with a gender difference, 

the number of subjects examined with the isotropic fractionator (IF) is too small to 

conclusively confirm the results from the histological studies, especially in light of the 

considerable variability between individuals. Wide ranges between individuals were shown 

in the data of Haug (1987), West (1993a) and Pakkenberg and Gundersen (1997), with a 

variability that greatly exceeded the small difference between ages. The gender difference 

appears to be robust, since it is apparent in the later stereology studies and presumably also 

with the IF approach (Fig. 6B, C). Accordingly, it is likely, but has yet to be conclusively 

shown, that female brains have about 15% fewer cortical neurons than male brains.

2.5.2. Brain size, body size, intelligence and gender—After 180 years of research, 

it is now well-established that female human brains are significantly smaller, on average 

about 60–150 g, than male human brains (Tiedemann, 1836; Haug, 1984, 1987; Ankney, 

1992; Rushton and Ankney, 2009; Deary, 2012; Pietschnig et al., 2015), but the degree to 

which this difference persists when adjusted for body height or size is less clear (Ankney, 

1992; Rushton and Ankney, 2009; Pakkenberg and Gundersen, 1997). The question whether 

brain size correlates positively with intelligence (and the direction of causality) has been a 

matter of considerable debate (Tiedemann, 1836; Ankney, 1992; McDaniel, 2005; Rushton 

and Ankney, 2009; Pietschnig et al., 2015; Saini, 2017). Based on the more recent meta-

analyses and reviews that take into account publication and recruitment bias (Deary, 2012; 

Pietschnig et al., 2015), it has been concluded that the major difference in intelligence 

between genders is with variance (more males than females distribute at the extremes), while 

the mean is virtually identical between genders (Jensen, 1980; Ankney, 1992; Deary, 2012; 

Pietschnig et al., 2015). In this context, recent work on the Neanderthal brain is of interest. 

Neanderthal brains are thought to have been about 10% larger than the brains of 

anatomically modern humans (Jerison, 1973; Roth and Dicke, 2005), assuming that brain 

mass estimates based on endocranial volumes are accurate (see Ridgway et al., 2016, for a 

recent challenge), yet the intelligence of the large-bodied and big-brained Neanderthals is 

thought to have been similar, if not inferior to Homo sapiens (Wynn and Coolidge, 2011; 

Villa and Roebroeks, 2014). One interesting solution to this apparent paradox is that the 

Neanderthal brain may have been larger because of certain specializations, such as an 

enlarged visual cortex, that evolved to adapt to low light intensity at high latitudes (Pearce et 

al., 2013), while the smaller modern humans may have had superiority in parts of the brain 

devoted to social cognition (Pearce et al., 2013; Villa and Roebroeks, 2014) and social skills 
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(prosociality, Hare, 2017). However, it is controversial whether sociality or diet drives 

cognitive complexity and larger brain sizes (DeCasien et al., 2017), and how this makes 

species more adaptive to a changing environment and ultimately more successful (Wynn and 

Coolidge, 2011; Villa and Roebroeks, 2014). Likewise, it is thought that some forms of 

cognition (e.g., visuospatial recognition), where males have superiority, require larger brain 

capacity (Ankney, 1992; Rusthon and Ankney, 2009). This may explain why males have 

increased brain sizes over females. Brain size correlates positively with cortical neuron 

numbers according to Haug (1987, r = 0.48) and Pakkenberg and Gundersen (1997, r = 

0.56). Since brain size correlates with cortical neuron number, and brain size correlates with 

body size (Haug, 1984; Rushton and Ankney, 2009), one would expect that cortical neuron 

number correlates with body size. However, the data on this correlation is conflicting 

(compare Pakkenberg and Gundersen, 1997, with Rushton and Ankney, 2009). Haug (1987) 

found that the smaller female brains had a higher density of cortical neurons, resulting in 

similar numbers of cortical neurons as their male counterparts, while Pakkenberg and 

Gundersen (1997) found that female cortical neuron numbers were about 15% lower than 

those in males, so this issue is not yet resolved. It is also possible that instead of neuron 

number, the number of synapses and/or circuits is the crucial parameter for intelligence. As 

recently reviewed by Dicke and Roth (2016), studies in this respect are controversial, and 

reliable studies on numbers of synapses are essentially lacking. Accordingly, proper 

assessment of this interesting aspect has to await further work.

2.6. The concept that excessive alcohol consumption kills cortical neurons

It was widely believed in the 1970s and 1980s that alcoholism caused cortical neuron loss 

and behavioral dysfunction due to that neuron loss (Courville, 1955; Harper, 1983; Harper 

and Kril, 1985; Harper et al., 1985, 1987; Kril and Harper, 1989; Harper and Kril, 1990). 

Such beliefs were reinforced by studies showing significant loss of neurons in brains of 

animals exposed to alcohol (e.g., Walker et al., 1980). However, in humans, 

neuropathological studies reported that white matter of chronic alcoholics seemed more 

reduced than gray matter (Harper et al., 1985) and suggested regional differences in the loss 

of neurons (Kril and Harper, 1989; Kril and Halliday, 1999). Using the newly-developed 

stereological counting methods, the group of Bente Pakkenberg (Fig. 3B) reported that the 

total number of cortical neurons was not significantly reduced with excessive alcohol 

consumption (Jensen and Pakkenberg, 1993). This finding received attention, because it 

challenged the previously established concept of significant cortical neuron loss due to 

chronic alcohol abuse. However, the 1993 study only examined global (cortex-wide) loss, 

and was not designed to detect relatively small losses that may be restricted to distinct 

cortical regions, layers or cell types. Subsequent stereological studies that focused on such 

regional changes revealed that some cortical and subcortical regions were vulnerable to 

alcohol-induced neuronal losses, while other regions, such as motor cortex and hippocampus 

– in contrast to results from previous animal studies (Walker et al., 1980) – were not affected 

(Harding et al., 1997). Accordingly, a more refined concept of alcohol-induced neuronal loss 

now prevails (Kril and Halliday, 1999): While white matter atrophy dominates, gray matter 

is differentially affected, with neuron losses primarily in frontal cortex. Additional losses of 

gray matter are seen in certain conditions as a result of alcohol abuse: Wernicke's 

encephalopathy and Korsakoff syndrome are associated with neuron losses in the 
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hypothalamus, thalamus, and cerebellum (Harper and Matsumoto, 2005). This refined 

concept of regional, restricted losses provides more hope to former and recovering 

alcoholics, because axonal (white matter) and myelination deficits may be potentially 

reversible, while dead neurons in the central nervous system generally cannot be replaced.

2.7. Are there secular (generational) changes in cell numbers in human brains?

Herbert Haug pointed out that some of the reported changes in cell numbers in normal aging 

brains may be due to generational changes in bodies and brains of the population, as body 

height increased from the 20th to the 21st century (Haug, 1984; Haug, 1987; reviewed by 

Peters et al., 1998), possibly due to improved nutrition. Several studies claim that body 

height is positively related to brain weight (reviewed in Rushton and Ankney, 2009), and 

Haug assumed that therefore, body height was also positively related to cortical neuron 

number (Haug, 1987). However, surprisingly, Pakkenberg and Gundersen (1997) concluded 

that cortical neuron number was not significantly related to body height, at least not when 

this was calculated separately for each gender. This has interesting implications, as 

Pakkenberg and Gundersen (1997) observe: “body size … has no relationship to neocortical 

neuron number for individuals of a particular sex: small men may have large neocortical 

neuron numbers, and large men may have small neocortical neuron numbers,” presumably 

because neuron number is determined very early in life, while body height manifests 15 to 

20 years later, and is in part determined by environmental influences. It should be noted that 

these findings disagree with the concept of the encephalization quotient (Jerison, 1973), as 

recently discussed (Herculano-Houzel, 2017). Nevertheless, the apparent lack of correlation 

between body height and cortical neuron number in humans undermines Haug's idea about 

secular changes as a relevant factor to explain some studies' neuron loss with age. Even 

though Haug did not find any significant loss of neurons in older individuals in his own data, 

he cited secular acceleration as a factor that may make it look as if cortical neurons are lost, 

as had been reported by others (Brody, 1955; Brody, 1970; Colon, 1972; Hanley, 1974; 

Devaney and Johnson, 1980; Henderson et al., 1980; Anderson et al., 1983), because 

younger individuals with a higher base level (larger number of neurons) are compared to 

individuals with a lower base level (lower number of neurons) that is not due to loss of 

neurons (Peters et al., 1998). The meta-analysis presented in Figure 6B indicates rather 

small numerical differences (decreases of about 3%) in cortical neurons between cohorts 

with increasing age. Although body height and brain weight are undergoing secular changes 

in most populations, with mean body height increasing by 1 mm per year and brain weight 

by 50–60 g per century, changes which appear to have been occurring only in the last 200 

years (Haug, 1984; Haug, 1987; Miller and Corsellis, 1977), one must take into account that 

it is not clear whether cortical neuron number correlates with body-size and height, given the 

negative results by Pakkenberg and Gundersen (1997). Accordingly, Haug's concern about 

the effect of secular acceleration for “pseudo” neuron loss in normal aging is now mitigated 

for two reasons: (1) there is minimal loss of cortical neurons with normal aging, and (2) 

there may not be a relation between body height and cortical neuron number. Relative 

stability of neuron numbers with age has also been documented for subcortical human 

neuronal populations, such as brainstem catecholaminergic neurons (Mouton et al., 1994; 

Kubis et al., 2000) and the cochlear nucleus (Sharma et al., 2014).
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2.8. Do glia make you smart?

There has been a longstanding notion, based on comparisons between vertebrate species, 

that increased numbers of glial cells in the brain correlate with, and possibly contribute to, 

superior intelligence. As discussed in the section 2.5.2, the relationships between brain size, 

neuron number, and intelligence are still controversial. The GNR in cerebral cortex was 

observed to increase with increasing brain sizes between species, suggesting a correlation 

and possible causation between high GNRs and superior intelligence (Friede, 1954; Jerison, 

1973; Araque et al., 2001; Fields, 2009; Koob, 2009; Verkhratsky and Butt, 2013). The idea 

gained further traction when Albert Einstein's brain was found to contain normal neuron 

numbers, but appeared to have slightly increased glia numbers in some cortical regions 

(Diamond et al., 1985; Witelson et al., 1995), although the methodology of estimating cell 

densities based on profile counts is problematic according to current knowledge. 

Furthermore, animal studies showed that injecting human glia into mouse brains made those 

mice smarter in learning tests (Han et al., 2013; Fields, 2013). However, the notion of an 

increasing GNR with increasing brain mass (supported by Stolzenburg et al., 1989; 

Nedergaard et al., 2003; Marino, 2006; Sherwood et al., 2006; Bahney and von Bartheld, 

2017) has recently been questioned (Herculano-Houzel et al., 2007; Herculano-Houzel, 

2011). An alternative interpretation of the GNR's correlation with intelligence is that the 

correlation is with increasing brain size and not necessarily intelligence. This was supported 

by studies on whale brains, which showed even higher GNRs than human brains (Hawkins 

and Olszewski, 1957; Tower and Young, 1973; Haug, 1987; Eriksen and Pakkenberg, 2007). 

The concept was further clarified by comprehensive scaling studies using the isotropic 

fractionator: such studies indicated that the GNR depends primarily on neuron size (which is 

related to brain size and also neuron density), and is not determined by intelligence per se 

(Herculano-Houzel, 2011, 2015). Furthermore, the spinal cord's GNR increases similarly or 

even more with increasing brain size than cortical GNRs (Bahney and von Bartheld, 2017), 

showing that not only cortical GNRs increase with brain size, but also subcortical and even 

spinal cord GNRs. Thus, the reason for GNR increases with increasing brain size does not 

appear to be directly linked to intelligence.

2.9. Should all cell counting methods be calibrated, even when they are theoretically 
unbiased? How can biases be identified and avoided?

It became apparent in the 1980s that cell counting methods can generate widely diverging 

results (Haug, 1986; Schmalbruch, 1987, Table 1). This gave rise to the idea that these 

methods should be validated by calibration (Schmalbruch, 1987). To address this problem, 

comparison with a serial section reconstruction – the so-called “gold standard” – was 

considered to be the most useful approach. In this context, calibration means that estimates 

obtained by a histological counting method are directly compared with the true number of 

particles in that same tissue obtained by exhaustive counting in a 3D serial section 

reconstruction (Coggeshall et al., 1990; Pover and Coggeshall, 1991). Such a comparison 

would show whether a method is biased, and if so, by how much. Accordingly, any bias of a 

counting method can be assessed and the method thereby validated – although it has to be 

kept in mind that numerous parameters can contribute to bias (as discussed below). For the 

isotropic fractionator (IF), validation is not as straightforward, because the same tissue 

cannot be used for direct comparison as for the histological counting methods. Therefore, 
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the IF can only be compared with other, preferably already validated, counting methods. 

One needs to avoid validation that is “circular”, such that method A is validated with method 

B, and method B is validated by comparison with method A. This is not the case in the 

examples discussed below, because stereology was validated against an exhaustive count 

(3D serial reconstruction), the “gold standard”, and then the IF was compared with the 

(already validated) stereology method, thus preventing circular reasoning.

Coggeshall and his colleagues pioneered the validation approach by first calibrating various 

2D methods (Coggeshall et al., 1990), followed by calibration of the physical disector 

(Pover and Coggeshall, 1991). Coggeshall realized that such a calibration need not to be 

performed on an entire peripheral ganglion or nucleus in the brain, which would be 

prohibitively time-consuming to process and analyze in serial sections, but that a small 

sample of tissue sections could be serially reconstructed as the gold standard to validate 

counting methods (Coggeshall et al., 1990; Pover and Coggeshall, 1991; Coggeshall, 1992; 

Farel, 2002; Delaloye et al., 2009). Such analyses proved effective in revealing practical 

features important in minimizing biases in the counting methods (Pover and Coggeshall, 

1991; Popken and Farel, 1996; Hatton and von Bartheld, 1999; von Bartheld, 2001, 2002). 

When the physical disector was calibrated, it was discovered that estimates generated from 

disectors with adjacent reference and look-up sections require an optimal distance between 

the consecutive disector pairs (Pover and Coggeshall, 1991; Delaloye et al., 2009). Pover 

and Coggeshall emphasized that “we would not have known this was a problem if we did not 

verify our counts.” Likewise, when Farel and colleagues calibrated the physical disector, 

they found that the recommended sampling of 100–200 particles generated an unacceptable 

variability, and that sampling of over 300 particles was necessary (Farel, 2002). When 

Hatton and von Bartheld (1999) calibrated the optical disector, they found that the use of 

recommended guard zones introduced a deficit of over 20% in numerical estimates, 

apparently due to compression of the margins of soft tissue sections – the unsampled guard 

zones (Baryshnikova et al., 2006).

Historically, stereologists have had a mixed reaction to efforts of calibrating the new 

counting methods. Some, such as Mark West (West, 1999), Rob Williams (Williams et al., 

2003) and Jens Nyengaard embraced this approach (Basgen et al., 2006: “We consider the 

Exhaustive Count method to be the gold standard for cell counting, since there is no 

sampling … and every nucleus is counted directly”), while others, such as Cruz-Orive, 

Gundersen, and Howard claimed that the new stereological methods did not need 

calibration, because they were inherently (theoretically) unbiased (Cruz-Orive, 1994; 

Mayhew and Gundersen, 1996; Howard and Reed, 1998). This notion prompted extensive 

discussions and concerns about a “double standard” – why would only 2D methods need 

validation, but not 3D methods (Guillery and Herrup, 1997; Saper, 1999; Benes and Lange, 

2001a; von Bartheld, 2001; von Bartheld, 2012)? Table 2 compiles studies that calibrated 2D 

and 3D methods as well as the IF. As detailed below, these efforts have led to the 

identification of several types and sources of potential bias, some of them generally 

applicable (relevant for all counting methods), while others are specific to certain 

methodology.
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2.9.1 Issues with counting methods – some revealed by calibration analyses

General issues: Particles to be counted require unambiguous identification and clear 

inclusion criteria (Ward et al., 2008; Kaplan et al., 2010), specifically for the distinction 

between glia and small neurons (Flood, 1994; von Bartheld et al., 2016). The region of 

interest needs a clear delineation and/or definition (Thune and Pakkenberg, 2000; Dorph-

Petersen and Lewis, 2011, 2017). This is straightforward for nuclei with well-defined 

borders, but can be challenging for nuclei with diffuse or geometrically bizzare borders, e.g., 

the nucleus subceruleus (von Bartheld and Bothwell, 1992), or the mesencephalic nucleus of 

the trigeminal nerve (von Bartheld and Bothwell, 1993). Operator and inter-observer 

variability and bias, including errors in the implementation of counting procedures and 

generation of estimates, need to be minimized (Guillery, 2002; Mouton, 2002; Kaplan et al., 

2010; Dorph-Petersen and Lewis, 2011).

Stereology-specific (mostly thick-section) issues: Regarding the originally recommended 

sampling scheme in which only 150–200 particles are counted (Braendgaard et al., 1990; 

Coggeshall and Lekan, 1996; Howard and Reed, 1998; West, 1999), it is important to note 

that several investigators believe that larger samples are needed, especially when the tissues 

are heterogeneous (Kordower, 2000; Farel, 2002; Schmitz and Hof, 2000, 2005). 

Measurement of section thickness is not a trivial undertaking (Guillery, 2002; Guillery and 

August, 2002). Dealing with differential tissue section shrinkage, and the appropriate 

placement of guard zones (to prevent sampling in compromised zones of tissue sections) is a 

highly complex issue, because tissue sections can be initially differentially deformed with 

subsequent loss of particles when treated in harsh conditions (Hatton and von Bartheld, 

1999; Gardella et al., 2003; Baryshnikova et al., 2006; Carlo and Stevens, 2011; von 

Bartheld, 2012). The problem that particle distribution may be distorted in the z-axis is a 

potential source of bias that unfortunately is ignored in many reviews (e.g., Mouton, 2002; 

Dorph-Petersen and Lewis, 2011), possibly because not all types of tissues are affected. 

While some investigators outside the von Bartheld lab have reported such distortions (e.g., 

Andersen and Gundersen, 1999; Baryshnikova et al., 2006; Carlo and Stevens, 2011), others 

did not (Pelvig et al., 2003; Hosseini-Sharifabad and Nyengaard, 2007). The behavior of 

tissues in the hands of different investigators is remarkably variable, and it is not yet known 

why some tissue sections do not lose caps, while others show a marked loss – which was the 

reason to implement the now controversial guard zones in the first place (Andersen and 

Gundersen, 1999). For a detailed examination why distortion of tissue sections can be 

difficult to prove, see Baryshnikova et al. (2006).

Some proponents of nonstereological methods have stated that design-based stereology 

requires tissues to be homogenous, with particles distributed in a completely random fashion 

(Benes and Lange, 2001a; Herculano-Houzel and Lent, 2005; Herculano-Houzel et al., 

2015). This is a misconception (Baddeley, 2001). It is true that heterogeneity in tissues will 

increase variance and will enlarge the coefficient of error (Dorph-Petersen and Lewis, 2011), 

making a larger number of samples necessary (Benes and Lange, 2001b). The use of 

relatively few samples and actual neurons counted in 3D methods has prompted questions 

whether stereological analysis of tissues with heterogeneous distribution of particles can be 

accomplished with the generally recommended sampling schemes (Benes and Lange, 
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2001a,b; Guillery, 2002; Guillery and August, 2002; Herculano-Houzel and Lent, 2005). For 

example, there have been concerns that counting only 300–400 particles in a structure as 

heterogeneous as cerebral cortex may not be sufficient to generate estimates of 26 billion 

neurons (Braendgaard et al., 1990; Benes and Lange, 2001b). The recently developed 

Proportionator tool (Gardi et al., 2008a,b) was designed to enhance sampling efficiency and 

to thereby facilitate stereological analysis of tissues with cells that are heterogeneously 

distributed.

IF-specific issues: The concerns with the IF counting method are that nuclear membranes 

may be ruptured, and destroyed nuclei may be discarded as debris, or that the neuron-

specific antibody may not recognize all neuronal nuclei, both of which could lead to an 

undercount of nuclei (Yuhas and Yabr, 2012; Carlo and Stevens, 2013; Charvet et al., 2015). 

Autolytic or necrotic cells, especially in human tissues, may not incorporate fluorescent dyes 

or may not be recognized by antibodies, thus requiring stringent quality control, although the 

fixed cell nuclei appear to be remarkably robust in this respect (von Bartheld et al., 2016). 

Empirical studies show that superior tissue preservation is more important for morphological 

than for biochemical analysis, making the IF the more versatile method when tissue quality 

varies (Bahney and von Bartheld, 2014).

Some profile counting work has resulted in large variations between studies (Table 1), 

although the most egregious examples (outliers) were presumably due to no or inadequate 

use of correction factors (Clarke, 1992; von Bartheld, 2001). It was hoped that stereology 

would reduce that variability, but the results are mixed: A survey of reviews shows that 

numerical estimates can be within reasonably tight ranges (for example in rat dorsal root 

ganglia compiled by Tandrup, 2004, or in rat hippocampus compiled by Schmitz and Hof, 

2005), while others are more divergent (Herculano-Houzel et al., 2015, see examples in 

Table 1). Therefore, it has been argued that stereology is not necessarily preferable to 

properly conducted profile counting (von Bartheld, 2001). How does the width of ranges 

yielded by stereological estimates compare with the new method, the isotropic fractionator 

(IF)? The IF was recently validated (Bahney and von Bartheld, 2014; Miller et al., 2014; 

Herculano-Houzel et al., 2015; Ngwenya et al., 2017), and so far the results are encouraging. 

However, it has to be kept in mind that relatively few groups have applied this new method, 

and variability in results can be expected as more investigators use it. To my knowledge, 

only two substantive challenges have emerged: Charvet et al. (2015) pointed out that IF-

derived neuronal numbers for cerebral cortex, in particular the visual cortex of rhesus 

monkeys, was lower (by 50%) than stereology-derived numbers. However, some of the 

stereology-derived numbers appear to be unusually high, and the authors fail to mention 

corroborating lower numbers from the older literature. The second challenge (Bahney and 

von Bartheld, 2017) is that a series of estimates for neuron numbers in the primate spinal 

cord appear to have been unusually low (Burish et al., 2010), for reasons that are not entirely 

clear.

It may be considered fortunate that the histological and the IF methods have different types 

of limitations. A major problem for stereology is that small neurons are difficult to 

distinguish from glial cells (recently reviewed in: von Bartheld et al., 2016). Several groups 

have attempted to solve this problem by using neuron-specific antibodies such as NeuN that 
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recognize a neuronal antigen present within the nucleus of most neuronal populations (Lyck 

et al., 2009; Giannaris and Rosene, 2012; Zhu et al., 2015; Ngwenya et al., 2017). However, 

there are conflicting reports about the success of identifying neurons in tissue sections by 

using NeuN immunocytochemistry. When Lyck et al. (2009) compared the number of 

immunolabeled cells in human tissue sections with the identification of cells by 

morphological criteria, only 18–57% of otherwise neuronal-appearing cells were labeled by 

the NeuN antibody. On the other hand, Giannaris and Rosene (2012) and Zhu et al. (2015) 

reported that all neurons, and only neurons, were NeuN-labeled in their mammalian 

forebrain studies, and likewise Iwaniuk's group found the same in their chicken brain 

sections (Ngwenya et al., 2017). Apparently, tissue processing, cell types, and neuronal 

physiology may all play a role in how much NeuN is actually present and can be identified 

by immunocytochemistry in tissue sections (Mullen et al., 1992; Tsai et al., 2009; Carlo and 

Stevens, 2013), while the antibody labeling appears to work in a more robust fashion for cell 

nuclei in suspension (when using the IF approach).

Taken together, this survey shows that indeed, all counting methods benefit from calibration 

and validation. More work is needed to identify and to minimize sources of bias. It is 

essential that authors consider all types of potential biases, acknowledge differences in 

results between studies, try to resolve discrepancies by calibration analyses, discuss their 

new data in the context of relevant previous studies, and report all important parameters that 

inform how the sampling and counting was conducted and estimates were obtained (Schmitz 

and Hof, 2005; Dorph-Petersen and Lewis, 2011).

2.10. How does the cellular composition of the brain change in neurological and 
psychiatric disease conditions?

Besides the classical neurodegenerative diseases with clearly defined neuron losses, such as 

in Huntington's and Parkinson's disease (Vonsattel and DiFliglia, 1998; Kordower et al., 

2013), several additional neurological and psychiatric diseases have been implicated with 

abnormal glia numbers, neuron numbers, or GNRs (Rowland and Mettler, 1949; Benes, 

1993, 1997; Ongür et al., 1998; Harrison, 1999; Coyle and Schwarcz, 2000; Vawter et al., 

2000; Todtenkopf et al., 2005; Bernstein et al., 2015; Elsayed and Magistretti, 2015). While 

the degree and localization of abnormalities differ between studies, some changes in glial 

cell number, densities or GNRs have been confirmed in discrete brain regions by recent 

studies employing stereological or IF methods for conditions including autism spectrum 

disorders, mood disorder, depression, schizophrenia, and Alzheimer's disease (Rajkowska, 

2000; Cotter et al., 2001; Hof et al., 2003; Vostrikov et al., 2007; Morgan et al., 2010; 

Karlsen and Pakkenberg, 2011; Andrade-Moraes et al., 2013; Verkhratsky et al., 2014; 

Dorph-Petersen and Lewis, 2017).

The lack of reliability, validity and therefore trust in quantitative data has been a major 

impediment to progress in defining the potential roles of numerical glia or neuron 

abnormalities in neurological and psychiatric diseases (Williams and Rakic, 1988; Stark et 

al., 2005). There have been multiple examples where initial reports of numbers or ratios of 

glial cells and neurons could not be replicated or had to be substantially revised, even within 

the same group of investigators or when using the same type of counting technique (Guillery 
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and Herrup, 1997; von Bartheld, 2001; Herculano-Houzel et al., 2015; Dorph-Petersen and 

Lewis, 2017; Kaur et al., 2018). Meta-analyses have not been able to resolve all 

controversies about glia numbers and ratios in human neurological and psychiatric diseases 

(Harrison, 1999; Rajkowska, 2000, 2002; Hof et al., 2003; Lyness et al., 2003; Palmen et al., 

2004; Todtenkopf et al., 2005; Courchesne et al., 2007; Amaral et al., 2008). It is beyond the 

scope of this contribution to review all reports of numerical glia or neuron abnormalities in 

neurological or psychiatric diseases. I will focus instead on the following two examples that 

are particularly instructive: the question of neuron loss in the thalamus of people with 

schizophrenia, and the question of cortical neuron loss in Alzheimer's disease.

Schizophrenia researchers have examined multiple brain regions for abnormalities of neuron 

and glia numbers as well as ratios between cell types such as the GNR, including various 

cortical regions as well as subcortical structures (Benes, 1993; Harrison, 1999; Todtenkopf 

et al., 2005; Dorph-Petersen et al., 2007; Bernstein et al., 2015). The dorsomedial thalamus 

was implicated in schizophrenia when stereological studies reported a 30–40% decrease in 

neuron numbers (Pakkenberg et al., 1990, 1992, 1993; Popken et al., 2000). However, 

subsequent studies were unable to replicate these findings, including a study by the same 

lead author, Bente Pakkenberg (Nielsen et al., 2008; reviewed in Dorph-Petersen and Lewis, 

2017). On the other hand, the pulvinar seems to have abnormal neuron numbers in 

schizophrenia that are supported by the majority of studies (Dorph-Petersen and Lewis, 

2017). The review by Dorph-Petersen and Lewis comprehensively examined the potential 

reasons for the discrepant results for the dorsomedial thalamus. Since the reviewed studies 

employed stereology, there should not have been – theoretically – any issues due to different 

technical approaches (although this still leaves observer errors and biological variation). The 

authors discuss the heterogeneity of the schizophrenia cases, with the initial cohorts 

consisting of hospitalized patients with somewhat older ages, while the subsequent studies 

obtained brains from younger subjects in (non-hospital) community settings. While there 

was no single conclusive reason for the discrepancies, this example does show how difficult 

it is, with the small cohorts available and possibly a large biological variability, to find 

convincing evidence for relatively subtle abnormalities in neuron or glial cell numbers.

In the 1980s, it seemed fairly well-established that cortical neurons, especially the larger 

neuron types, were significantly reduced in Alzheimer's disease, based on the work of Terry 

and others (Terry et al., 1981; Terry and Davis, 1983; Mountjoy et al., 1983; Price, 1986; 

Braak and Braak, 1986; Terry and Hansen, 1988; West et al., 1993b; Mann, 1996). It was 

assumed that this neuron death contributed to many clinical manifestations of the disease 

(Price, 1986). Therefore, it came as a surprise, if not a shock, when the first major 

stereological study, by Pakkenberg's group (Regeur et al., 1994), reported that there was no 

significant global loss (the observed loss of 6% was not statistically significant) of neurons 

in the cerebral cortex of Alzheimer's patients when compared with a similarly-aged control 

group. This study examined the cerebral cortex of 11 women with severe Alzheimer's, 

compared with 10 cognitively normal women of a similar age (mean of 83–84 years). This 

paper was published in Neurobiology of Aging, and because it prompted reversal of the 

thinking about the pathology of Alzheimer's disease, the editors invited eighteen leading 

Alzheimer's researchers to comment and express their thoughts about the validity and the 

implications of the paper in the same issue of the journal (e.g., Braak and Braak, 1994; 
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Flood, 1994; Hyman and Gomez-Isla, 1994; Mufson and Benzig, 1994), and other experts 

expressed their opinions in additional publications (e.g., Everall et al., 1997; Peters et al., 

1998). While some voiced concerns about the technique, by and large the consensus was to 

accept the findings, because the data were generated by a so-called unbiased method 

(although it had not yet been calibrated at the time – see section 2.9). The main new 

conclusions were that (1) neuronal cortical death was restricted to certain cortical regions, so 

neuron losses were not apparent in a study that examined neuronal losses globally (cortex-

wide); (2) neurons may shrink rather than die, so they would appear in a different size 

category (or even be counted as glial cells in the older studies), and (3) reductions in 

neurotransmitters and synapse numbers, rather than degeneration and death of cell bodies, 

may underlie the clinical deterioration (Peters et al., 1998; Uylings and de Brabander, 2002; 

Pannese, 2011). Remarkably, during the next 20 years, the findings of Regeur et al. (1994) 

were neither challenged nor confirmed. Some studies examined specific regions of cortex or 

specific neuronal populations, and found some losses (Leuba and Kraftsik, 1994b; Gomez-

Isla et al., 1996, 1997). Such results were reconciled, because some investigators still 

believed in the only recently debunked “fallout of cortical neurons with normal aging” (see 

Section 2.4), and assumed that losses in older patients with Alzheimer's disease would be 

relatively small (because many neurons would have already been lost due to normal aging, 

Mann, 1996). Others believed that the specific losses were too small to be apparent as a 

significant global neuron loss (Duyckaerts et al., 2009).

However, in 2013, Roberto Lent's group published a study (Andrade-Moraes et al., 2013) 

where they used the new counting method, the IF, to examine the same question that Regeur 

et al. had addressed 20 years earlier: are there significant changes “globally” in neuron and 

non-neuronal numbers in the entire cerebral cortex of Alzheimer's patients? In this study, the 

brains of four subjects with asymptomatic disease and five subjects with dementia were 

compared with five normal controls. With the IF method, Andrade-Moraes et al. showed that 

there was a statistically significant loss (of 29%) of neurons globally in the entire cortex of 

demented patients, and also in specific lobes of cortex, amounting to a loss of 41% for 

frontal lobe, and 24% loss for the other lobes, consistent with the studies and conclusions 

prior to 1994 (Braak and Braak, 1986; Mann, 1996). Surprisingly, Andrade-Moraes et al., 

did not comment on the earlier study by Regeur et al. and did not mention the extensive 

debate and series of commentaries it had prompted in 1994. In fact, the Regeur study was 

not even cited. Possibly, Andrade-Moraes et al. (2013) were reluctant to point out the 

apparent discrepancy between methods. In 2013, the IF had not yet been validated and had 

never been side-by-side directly compared with stereology. Based on the validation studies 

that appeared just a short while later (Bahney and von Bartheld, 2014; Miller et al., 2014), 

one would have expected that IF and stereology would produce similar results. Since two 

convincing and supposedly methodologically equivalent studies yielded discrepant results on 

this important question, it now appears unclear which group and conclusion is correct. 

Without additional studies, it is impossible to decide whether the IF study, that corroborates 

the older studies and results prior to 1994, is more believable, or the 1994 stereology study. 

The 1994 study was conducted and published prior to the work that revealed a number of 

hidden biases (see above), and maybe would have faced more scrutiny if it had been known 

that the theoretically unbiased methods can have significant biases when applied to real 
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world tissue sections and constraints (von Bartheld, 2012). Obviously, we do not yet know 

the answer to this question, but what appeared to be generally accepted for 20 years about 

the persistence of cortical neurons in Alzheimer's disease now seems less certain and has to 

await further scrutiny and resolution.

3. Conclusions

In summary, this survey of ten influential concepts in quantitative methodology, designed to 

elucidate the cellular composition of the human brain, teaches several lessons. We need to be 

vigilant about assumptions that are taken for granted, as shown by the evidence that “text-

book knowledge” may not be correct, or the hubris that calibration and validation of 

counting methods may not be needed. Methodologies will continue to be developed and 

refined, and it is of utmost importance to relate new findings to previous relevant reports, to 

discuss differences in results, and attempt to identify underlying mechanisms of 

discrepancies. It is important to keep an open mind and to be inquisitive and creative, in 

order to separate truths from myths and to approximate the cellular composition of brains, 

including that of our own species.
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Highlights

• The myth of a 10:1 glia-neuron ratio in human brains has been debunked

• The myth of one trillion glial cells in human brains has been debunked

• The number of cortical neurons does not decline significantly in normal aging

• All counting methods benefit from calibration and validation

• Proof is needed for altered cell numbers in neurological and psychiatric 

disorders
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Fig. 1. 
Reports of the glia neuron ratio (GNR) in human brains from the 1960s to the current time. 

Note the obvious outliers by Kandel's and other's text books with a GNR of 30 (10–50), 

indicated by purple dots, and the pioneering reports of a GNR of 0.7–1 by Haug (1986), and 

by Azevedo et al. (2009) that used the isotropic fractionator, indicated by red squares. Data 

are compiled from the Table 5 published by von Bartheld et al. (2016).
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Fig. 2. 
A-C. Photographs of individuals who had a major influence on concepts regarding the 

cellular composition of the human brain. This composite shows the three main proponents of 

the 10:1 glia-neuron ratio and the notion of one trillion glia cells in the human brain. A. 
Holger Hydén was a professor at the University of Goteborg, Sweden, and the first to claim 

a 10:1 glia-neuron ratio in the 1960s (Hyden, 1960, 1967). Photo: Courtesy of Anders 

Hamberger, photography: Lennart Nilsson. Reproduced with permission. B. Stephen Kuffler, 

professor at Harvard and the “father of modern neuroscience,” was the first to promote the 

“at least 10:1 ratio” in his influential textbook in 1976 (Kuffler and Nicholls, 1976). Photo 

by Bachrach, Boston. Reproduced with permission. C. Eric Kandel, professor at Columbia 

University and Nobel laureate (2000), contributed to the perpetuation of the notion of one 

trillion glial cells by stating that glia outnumber neurons 10–50fold in his many editions of 

“Principles of Neural Science” – the “bible of neuroscience” visible in the bookshelf 

(Kandel and Schwarz, 1981 Kandel and Schwarz, 1985). Photo credit: Columbia University. 

Reproduced with permission.
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Fig. 3. 
A-C. Photographs of individuals who had a major influence on concepts regarding the 

cellular composition of the human brain. This composite shows the three main investigators 

who's work debunked several myths, including the claim of a 10:1 glia-neuron ratio and the 

trillion glia myth. A. Herbert Haug, professor at the University of Lübeck, Germany, 

correctly estimated in 1986 the glia-neuron ratio to be less than 1, based on his own cell 

counts, and he refuted the prevailing myth of neuronal fallout with normal aging. 

Photograph originally published by Wolfgang Kühnel (Annals of Anatomy, 185:293, 2003), 

and reproduced with permission by Elsevier. B. Bente Pakkenberg, professor at Bispebjerg 

University Hospital, Denmark, a pioneer in the use of stereological methods, determined cell 

numbers in numerous human brain structures, including cerebral cortex, cerebellum, and the 

effect of aging, diseases, and alcohol use on neuron numbers in human brains. Photograph 

by Claus Peuckert, claus peuckert photography, reproduced with permission. C. Suzana 

Herculano-Houzel, professor at Vanderbilt University, developed a highly efficient 

alternative counting method, the isotropic fractionator. Historically, this method was the first 

that revealed and effectively communicated the true number of non-neuronal cells and the 

true ratio of non-neuronal to neuronal cells in human brains. Photo credit: Luiza Herculano-

Houzel. Reproduced with permission.
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Fig. 4. 
Cellular composition of the human brain: the concept of a 5:3:1 numerical ratio of neurons 

(blue), glial cells (red), and endothelial cells (green). Data and concept as originally 

designed in Bahney and von Bartheld (2017), and based on current estimates of the numbers 

of neurons, glia and endothelial cells (von Bartheld et al., 2016).
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Fig. 5. 
Reports of neuron death in the human cerebral cortex during normal aging. Note that in the 

1950s through 1980s reports prevailed that claimed substantial neuron death (“neuronal fall-

out”) during normal aging, until the report of Haug et al. (1984) (indicated with a red 

square) convincingly exposed this concept to be a technical artifact. It is now well 

established that there is no significant global cortical neuron loss with normal aging (see also 

Fig. 6).
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Fig. 6. 
A-C. Graphs of the number of cortical neurons in male and female brains with normal aging, 

based on one study using an early form of stereology (A), four studies using conventional 

stereology (B), and two studies using the isotropic fractionator (C). Comparison of the 

results of a total of seven studies: by Haug (1987) (A), (Braendgaard et al., 1990; 

Pakkenberg and Gundersen, 1997; Pelvig et al., 2008; Fabricius et al., 2013) (B), and the 

isotropic fractionator (IF) (Azevedo et al., 2009; Andrade-Moraes et al., 2013) (C). The bars 

in panel C denote ranges with n=4 for males, and n=5 for females; exact individual data 

points could not be shown for these two studies, because the data were reported only in 

aggregate in the original publications. Note that Haug's estimates correspond well in 

numbers with those obtained by the IF methodology, while the subsequent stereology 

estimates are somewhat higher. Note also that numbers do not decline significantly with age 

(panel A: y = 13.25 billion + 0.0099x for males, and y = 15.0 billion - 0.0071x for females), 

while in panel B the regression analyses show a minor decline of 2–4% (y = 24.6 billion - 

0.0211x for males, and y = 21.7 billion - 0.0245x for females). The regression analysis is 

similar when up to seven possible duplicate data points are removed in panel B (because 

some of the same brains were used in multiple studies): y = 25.7 billion - 0.0336x for males, 

and y = 21.8 billion - 0.0266x for females, or when the very old females (ages 94–105) from 

the Fabricius et al. (2013) study are omitted (y = 21.5 billion - 0.0209x). Female numbers 

are significantly lower (by about 15–16%) than male numbers (p<0.0005), based on 

Gundersen and Pakkenberg's (1997) stereology work (panel B).
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Table 1
Variability in numerical estimates between quantitative studies

Nervous System Structure Species Method Numerical Ranges References

Cerebral cortex Human HIS 0.6-16.5 ×109 Haug, 1986

Dorsal root ganglion, Lumbar 4 Rat HIS 5.3-12.5 ×103 Schmalbruch, 1987

Dorsal root ganglion, Lumbar 5 Rat HIS 2.0-14.8 ×103 Schmalbruch, 1987

Dorsal root ganglion, Lumbar 6 Rat HIS 4.1-14.1 ×103 Schmalbruch, 1987

Purkinje cells Rat STE 2.1-6.1 ×105 Guillery & Herrup, 1997

Cerebral cortex Human STE 13.7-22.8 ×109 Peters et al., 1998

Dentate gyrus Mouse strains STE 0.38-0.94 ×106 Abusaad et al., 1999

Pyramidal cell layer Mouse strains STE 0.43-0.93 ×106 Abusaad et al., 1999

Dorsal root ganglion, Lumbar 5 Rat STE 14.1-19.2 ×103 Tandrup et al., 2004

Hippocampus Human STE 22.6-40.4 ×106 Korbo et al., 2004

Granule cells (Dentate gyrus) Rat STE 1.2-1.55 ×106 Schmitz & Hof, 2005

Pyramidal cells (CA1-3) Rat STE 615-930 ×103 Schmitz & Hof, 2005

Cerebral cortex Rhesus monkey STE 1.35-2.95 ×109 Charvet et al., 2015

Cerebral cortex Rhesus monkey IF 0.825 ×109 Charvet et al., 2015

Purkinje cells Rat STE 2.1-6.1 ×105 Herculano-Houzel et al., 2015

Lateral geniculate nucleus Human STE 1.99-3.48 ×106 Herculano-Houzel et al., 2015

Neocortex Human IF 12.7-16.3 ×109 Herculano-Houzel et al., 2015

Cerebellum Human IF 54-65 ×109 Herculano-Houzel et al., 2015

Whole Brain Human IF 67.3-86 ×109 Herculano-Houzel et al., 2015

Purkinje cells Human HIS 0.88-26 ×106 von Bartheld et al., 2016

Purkinje cells Human STE 15.4-30.5 ×106 von Bartheld et al., 2016

Dorsomedial thalamic nucleus (Schizophrenia) Human STE 0-40% loss Dorph-Petersen & Lewis, 2017

Spiral ganglion (Young Adult) Human HIS 23.1-33.7 ×103 Kaur et al., 2018

Spiral ganglion (Young Adult) Human STE 26.7-41.7 ×103 Kaur et al., 2018

HIS, histology (profile counting = 2D Method); IF, isotropic fractionator; STE, stereology (= 3D Method)
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