Skip to main content
. 2017 Oct 8;27(1):e1593. doi: 10.1002/mpr.1593

Table 3.

Comparisons of the fits of alternative confirmatory factor analysis models of the correlational structure of 14 dimensions of psychopathology

Model χ2 df CFI TLI RMSEA SRMR BIC rEXT‐INT rEXT‐FRS rEXT‐DIS rFRS‐DIS Δχ2 (df)
Correlated factor models without a general factor
1a. Two correlated factors; mania on externalizing* and internalizing
183 ** 75 .807 .765 .054 .072 21,114 .43 *
1b. Three correlated factors; mania on externalizing onlya
180** 74 .811 .768 .053 .073 21,118 0.36* 0.57** 0.94**
Bifactor models (general factor and specific internalizing and externalizing factors)
2a. Mania loads on general, externalizing, and internalizing
84* 61 .959 .939 .028 .036 20,994 −.03 2a versus 1a: 88.73 (13)**
2b. Mania loads on general and externalizing
84* 62 .961 .942 .027 .036 20,988 −.04 2a versus 2b: 0.14 (1)
2c. Mania loads on general and internalizing
82* 62 .964 .947 .026 .036 20,989 −.07 2a versus 2c: 0.23 (1)
2d. Mania loads on general only
82 63 .966 .951 .024 .036 20,983 −.07 2a versus 2d: 0.37 (1)
2e. Mania loads on general only
81 64 .969 .956 .023 .036 20,978 Fixed to 0 2d versus 2e: 0.26 (1)
Bifactor models (general factor and specific fears, distress, and externalizing factors)
3. Mania on general onlya
82 * 61 .963 .945 .026 .036 20,990 −.08 −.07 0.87 **

Note. CFI = confirmatory fit index; TLI = Tucker‐Lewis index; RMSEA = root mean square error approximation; SRMR = standardized root mean square residual; BIC = Bayesian information criterion; rEXT‐INT = Pearson correlation between the latent specific internalizing and externalizing factors; rEXT‐FRS = Pearson correlation between the latent specific externalizing and fears factors; rEXT‐DIS = Pearson correlation between the latent specific externalizing and distress factors; Δχ2 = Satorra‐Bentler difference chi‐square test; df = degrees of freedom; best‐fitting models of each type are in bold.

a

Mania did not load on either distress or fears in any three‐factor model.

*

p < .05.

**

p < .0001.