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Item-level analyses reveal genetic heterogeneity in
neuroticism
Mats Nagel1, Kyoko Watanabe2, Sven Stringer 2, Danielle Posthuma 1,2 & Sophie van der Sluis1

Genome-wide association studies (GWAS) of psychological traits are generally conducted on

(dichotomized) sums of items or symptoms (e.g., case-control status), and not on the

individual items or symptoms themselves. We conduct large-scale GWAS on 12 neuroticism

items and observe notable and replicable variation in genetic signal between items. Within

samples, genetic correlations among the items range between 0.38 and 0.91 (mean rg= .63),

indicating genetic heterogeneity in the full item set. Meta-analyzing the two samples, we

identify 255 genome-wide significant independent genomic regions, of which 138 are

item-specific. Genetic analyses and genetic correlations with 33 external traits support

genetic differences between the items. Hierarchical clustering analysis identifies two

genetically homogeneous item clusters denoted depressed affect and worry. We conclude

that the items used to measure neuroticism are genetically heterogeneous, and that

biological understanding can be gained by studying them in genetically more homogeneous

clusters.
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GWAS on psychological traits like major depressive dis-
order (h2SNP= 0.06)1, intelligence (h2SNP= 0.20)2 and
neuroticism (h2SNP range: 0.09–0.15)3,4 have uncovered

numerous associated variants. These genome-wide significant
single-nucleotide polymorphisms (SNPs), however, explain only a
small portion of the twin heritability (h2twin= 0.40, 0.54, and
0.47, respectively)5. The small individual SNP effects support the
infinitesimal model, which assumes the involvement of many
genetic variants (i.e., polygenicity), each of (very) small effect,
such that large sample sizes are required to robustly detect them.

Genetic studies on psychological traits often adopt phenotypic
composite scores, such as a sum-score or binary case–control
status, which summarize information contained in multiple items
or symptoms. In psychological research, composite scores have
proven useful, e.g., in directing therapeutic intervention, and in
predicting future school/job performance. However, the items or
symptoms collectively operationalizing one trait can be very
diverse in nature. For instance, in personality inventories for
neuroticism, items vary from ‘feeling miserable’ and ‘experiencing
mood swings’ to ‘feeling guilty’ and ‘worry too long after an
embarrassing experience’. Similarly, diagnostic symptoms for
major depressive disorder (MDD) vary from ‘increase in appetite’,
‘irritable mood’, and ‘fatigue’ to ‘insomnia’, ‘excessive guilt’, and
‘suicidal ideation’6. Previous studies7–9 have shown that items or
symptoms underlying the same composite score can indeed differ
considerably with respect to e.g. their relations to external risk
factors, their impact on impairment, and their underlying biol-
ogy. In the context of gene-finding studies, power to detect
associated variants is potentially lost when the summed items or
symptoms are biologically heterogeneous. Specifically, the use of
composite scores in gene-finding studies directs the focus of
analysis to those variants that affect the majority of aggregated
items, i.e., ‘global variants’. The genetic signal of “local” variants,
affecting only one or a few of the aggregated items, is severely
diluted10. That is, if summed items or symptoms are genetically
heterogeneous, then GWAS analysis of their sum may yield a mix
of diluted signals, which will bear resemblance to the infinitesimal
model.

One can investigate the genetic homogeneity of items or
symptoms underlying a sum-score or a case–control status by
studying the genetics of the individual items. If items prove to be
genetically heterogeneous, identification of more homogeneous
subsets or clusters of items may be expedient to optimize the
statistical power to disentangle genetic determinants. Indeed,
detection of local variants, affecting, e.g., only one cluster of items
but not others, might facilitate biological understanding.

Here, we use data on 12 dichotomous neuroticism items
(Supplementary Table 1; Eysenck Personality Questionnaire—
Revised Short Form11), to investigate whether the items used to
operationalize neuroticism are genetically homogeneous. Given
its high correlation with depression (r= 0.58; genetic correlation
rg= 0.60) and anxiety (r= 0.75; rg= 0.77)12,13, neuroticism is
considered an important phenotype in psychiatric genetic
research14. Indeed, neuroticism items often resemble items used
to measure (anxious) depression (see Supplementary Table 1 for a
substantive overview). For the present study, data was obtained
from two samples of the UK Biobank cohort15 (sample 1: first UK
Biobank release, available since 2015; sample 2: data added in the
second UK Biobank release, available since July 2017; item-
specific N range sample 1: 106,218–109,017; sample 2:
260,083–266,896; see Methods; Supplementary Tables 1, 2). We
use sample 2 to replicate basic findings of sample 1, and then
meta-analyze the results of both samples to compare item-specific
genetic signals to the signal obtained in genetic analysis of the
sum-score. Our study demonstrates that item-level analyses
supplement genetic sum-score analysis, as the 12 neuroticism

items often show only moderate genetic overlap. Furthermore, we
identified two genetically distinct item clusters, which may prove
useful targets of investigation in future genetic analyses.

Results
Phenotypic analyses. Phenotypic analyses of sample 1 showed
that the 12 neuroticism items correlated positively with each
other (.17–.54, Supplementary Fig. 1), and with the weighted
sum-score (‘sum-score’ henceforward; .51–.68, see Methods for
information on how the sum-score was constructed). Associa-
tions of all 12 items and the sum-score with external (demo-
graphic/psychological) variables had largely the same sign, but
occasionally showed considerable differences in magnitude
(Supplementary Tables 3, 4; Supplementary Figs 2, 3).

Genetic correlations between items. We performed 13 GWASs
(12 items+ sum-score) on sample 1 and applied bivariate LD
score regression16,17 on the summary statistics to compute
genetic correlations (rg) between all 13 phenotypes (upper tri-
angle Fig. 1; Supplementary Data 1; see Methods for QC and
technical details). Between items, rg’s ranged from a low 0.38
(IRR/WORR-EMB; s.e.= 0.048) to a high 0.91 (MOOD/FED-UP;
s.e.= 0.030, mean rg= .64), and none of the 95% confidence
intervals included 1. These results indicate genetic heterogeneity
in the full item set. To replicate these findings, we conducted the
same 13 GWASs in sample 2 (lower triangle Fig. 1). The rg’s
between the exact same items measured in both samples were all
close to 1 (diagonal Fig. 1; all 95% confidence intervals included
1) indicating that the genetic signal is highly similar across the
two samples. In addition, the correlation between inter-item rg’s
in samples 1 and 2 was 0.97, confirming a highly similar rg pat-
tern across the two samples.

GWAS meta-analyses. Having replicated the genetic hetero-
geneity in the set of neuroticism items, we moved on, for reasons
of robustness, to conduct meta-analysis on the GWAS results of
the two samples for all 12 items (N range: 366,301–375,913) and
the sum-score (N= 380,060) to allow comparison between item-
level GWAS results and results obtained in GWAS of the sum-
score (Supplementary Table 5).

In the 13 phenotypes, a total of 16,825 SNPs were genome-
wide significant (GWS: P < 5 × 10−8), of which 2,474 were located
in inversions on chromosomes 8 and 17, as reported previously
for the neuroticism sum-score3,18,19. All GWS variants had the
same direction of effect in both meta-analyzed samples. The
16,825 detected variants tagged 493 lead SNPs (see Methods for
definition of lead SNPs), mapping to 255 independent genomic
regions (based on clumping using an r2 threshold of 0.1;
Supplementary Datas 2–17; Supplementary Figs. 4–17; see
Methods; http://fuma.ctglab.nl/20). Of the total 255 regions, 117
were GWS for the sum-score, and 6 to 44 regions (median= 32)
were GWS for individual items. Genetic signal varied consider-
ably between items, with some (e.g., LONE, SUF-NERV) showing
only a few GWS associations, while others (e.g., IRR, MIS,
MOOD, NERV-FEEL, WORRY) showed > 35 GWS genetic
regions. Furthermore, of all 255 regions, 138 were GWS in
item-level analyses only and not for the sum-score (Supplemen-
tary Data 2), and 42 were GWS in the sum-score analysis while
no GWS association was observed for any of the items.

The 493 lead SNPs implicated 908 genes through positional
mapping, eQTL mapping and/or chromatin interactions (see
Methods; Supplementary Data 18–30). Of these 908 genes, 473
were only associated to one or more individual item(s) and not to
the sum-score3,4,21,22 (Supplementary Fig. 18a).
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Liability-scale SNP-based heritability estimates (h2SNP) for the
13 phenotypes, established using LD score regression (LDSC)17,
ranged from 8% (s.e.= 0.0042) to 12% (s.e.= 0.0054) (Supple-
mentary Fig. 19), and all estimates deviated significantly from 0.

In studying overlap in genetic signal between the 13
phenotypes (Methods; Supplementary Note 1), sign concordance
tests showed that effect signs of top SNPs were largely concordant
across the 13 phenotypes (Supplementary Fig. 20; Supplementary
Data 31). However, Fisher’s exact tests revealed that the exact top
SNPs overlapped only moderately between the 13 phenotypes
(Supplementary Fig. 21; Supplementary Data 32), indicating that
the most strongly associated SNPs differed considerably between
individual measures.

Gene-based analysis. By combining the genetic signal of all SNPs
in a gene (while accounting for LD between SNPs), gene-based
analyses can implicate genes that may go unnoticed in SNP-based
analyses. Using the P-values from the GWA meta-analyses (see
Methods), we conducted gene-based analyses in MAGMA23 on all
13 phenotypes. In total, 654 genes reached GWS (P < 2.73 × 10−6),
of which 388 overlapped with genes implicated in SNP-based ana-
lyses (Supplementary Datas 33–46; Supplementary Figs. 18b, 22).

275 of the MAGMA genes were associated to the neuroticism sum-
score, whereas 29 (LONE) to 172 (WORRY) genes (median= 96)
were GWS for individual items. Of the total of 654 genes, 379 were
item-specific, i.e., only reached GWS in one or more individual
items, indicating genetic heterogeneity between the 12 items, and
between the items and their sum (Supplementary Data 33;
Supplementary Fig. 18c).

Overall, the results from the gene-based analyses suggest a role
for both ‘global’ genes (i.e., affecting (almost) all items and the
composite score) and ‘local’ genes, (i.e., affecting only one or a
subset of items). In Table 1, a selection of such global and local
genes is highlighted. Combined, SNP-based and gene-based
analyses on all 13 phenotypes implicated 1,247 genes, of which
651 were not identified in analysis of the sum-score (Supple-
mentary Figs. 18d).

Gene-set analysis. While associations to individual SNPs or genes
may differ between specific items and their summed score, it is
possible that similar gene-sets and pathways are implicated. To
test this, we used the results of the gene-based analyses as input
for MAGMA’s gene-set analysis23. For each of the 13 phenotypes
we tested 7,244 gene-sets, comprising curated and gene ontology
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Fig. 1 Genetic correlations between the 12 neuroticism items. Genetic correlations between the 12 neuroticism items within both samples (sample 1 is
presented in the upper triangle and sample 2 in the bottom triangle). The genetic correlations of the same items measured in both samples are presented
on the diagonal. All reported genetic correlations, computed with bivariate LD score regression, are significantly different from zero after Bonferroni
correction (P < 2.22 × 10−4). For the genetic correlations between the same items (diagonal) all 95% confidence intervals included 1, emphasizing
concordance in genetic signal across samples. For all other, cross-phenotype genetic correlations, none of the 95% confidence intervals included 1,
indicating that all genetic correlations deviated from unity (Supplementary Data 2). See Supplementary Table 1 for a description of the item labels
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(GO) gene-sets derived from MsigDB24, and 53 tissue expression
profiles25. The sum-score was significantly (P < 0.05/7,297=
6.85 × 10−6) associated to 9 GO gene-sets, whereas 8 GO gene
sets were associated to one or more individual items, but not to
the sum-score (Supplementary Data 47; Fig. 2). Noteworthy, 4
out of 9 GO gene-sets that were found to be associated to the
sum-score were also associated to individual items, indicating that
the sum-score and the individual items at least in part implicate
the same biological processes.

The neuroticism sum-score was associated with genes
expressed in 6 brain tissue types, all of which were also associated
to at least one of the individual items. In addition, 2 brain tissue
types, amygdala and caudate basal ganglia, were only identified in
item-level gene-set analyses. Overall, while some gene-sets were
implicated by multiple sources (Fig. 2), the gene-set analyses also
confirmed the presence of genetic heterogeneity between the 12
neuroticism items and the sum-score.

Functional annotation. A comparison of functional con-
sequences, chromatin state, and regulatory functions of all the
SNPs in LD with one of the independent significant SNPs iden-
tified in item-level versus sum-score analysis is provided in
Supplementary Tables 6–8 and Supplementary Fig. 23.

For the sum-score we identified 36 GWS exonic non-
synonymous SNPs (ExNS), of which 29 overlapped with the
134 ExNS SNPs identified in item-level analyses (Supplementary
Data 48). 10 of these overlapping ExNS SNPs are located in a
well-known inversion on chromosome 173. Overall, 105 ExNS
SNPs were specifically associated with one or more of the
individual items and went unnoticed in sum-score analysis,
showing that item-level analyses superadded to the identification
of SNPs that are highly likely to have functional consequences. As

an example, we highlight two ExNS SNPs, not GWS for the
neuroticism sum-score19, that may be viable candidates for
functional follow-up. Of all ExNS SNPs associated to neuroticism
items, rs45510500, located in exon 42 of KIAA1109, had the
highest CADD score (35). rs45510500 is a missense mutation that
leads to an amino acid change of Arginine to Tryptophan. The
second SNP, rs3130618 in exon 3 of GPANK1 with a CADD score
of 34, is a missense mutation resulting in an Arginine to Leucine
change. rs3130618 has a regulome database score of 1f, implying
that it is likely to affect binding and to affect expression of a gene
target.

Genetically homogeneous item clusters. We performed a hier-
archical clustering analysis on the inter-item rg’s of sample 1 to
see whether the items could be grouped into genetically homo-
geneous clusters (Fig. 1). This analysis revealed two clusters (1:
LONE/MIS/MOOD/FED-UP 2: NERV-FEEL/WORRY/TENSE/
SUF-NERV), with mean rg= .84 (range: 0.77–0.91) within clus-
ters, and a much lower mean rg= .59 (range: 0.38–0.77) between
items from different clusters. The identified clusters coincide with
the dimensions depressed affect and worry previously identified
in factor analysis of the full EPQ-R neuroticism scale26.

We then applied the item order that emerged from the cluster
analysis on sample 1 to the genetic correlational results from
sample 2, and observed the same two item clusters (lower triangle
of Fig. 1), with very similar within and between item rg’s (overall
mean rg= 0.62; range rg’s: 0.40–0.89; within clusters mean rg=
0.80, range: 0.73–0.89; outside of clusters mean rg= 0.58, range:
0.40–0.78). The genetically homogenous clusters thus replicated
robustly within the UKB sample. All items had a relatively high rg
with the sum-score (range: 0.73–0.89), but items assigned to
clusters correlated even higher with their respective cluster, while

Table 1 Selection of interesting genes identified in gene-based analyses of the 13 neuroticism phenotypes

Gene CHR Position Implicated by Notes

SPPL2C 17 43,922,256 All 13 phenotypes Only gene GWS associated to all 13 neuroticism phenotypes. Located in
known inversion on chromosome 17. Associated to e.g. red blood cell
count and Parkinson’s disease47,48.

MAPT 17 43,971,702 11 of 13 phenotypes Promotes microtubule assembly and stability. Previously linked to
intelligence49 and neurodegenerative disorders (e.g. Parkinson’s and
Alzheimer’s disease50,51).

DRD2 11 113,280,317 11 of 13 phenotypes Previously associated to neuroticism sum-score3. D2-receptors are
thought to be involved in reward processing.

GRM8 7 126,078,652 8 items+ sum-score Not associated to neuroticism before. Has been associated to the
response to selective serotonin reuptake inhibitors (SSRI) in depressed
individuals52.

SORCS3 10 106,400,859 Items in the depressed
affect cluster and sum-
score, but not items in the
worry cluster

Signal is driven primarily by 3 items (MIS, MOOD, FED-UP), all part of
the depressed affect cluster. SORCS3 has been associated to
depression3, and is involved in neuropeptide receptor activity.

CADM2 3 85,008,133 Items in the worry cluster
and sum-score, but not
items in the depressed
affect cluster

Most strongly associated gene for the worry cluster (P= 2.24 × 10−23),
and GWS for all items in this cluster. Linked to BMI in multiple
studies53,54 (see genetic correlations between both clusters and BMI in
Fig. 3).

Region A 3 49.215–50.226Mb Depressed affect items Genes in this region (e.g., C3orf84, RHOA, MST1, APEH) were previously
linked to e.g. Crohn’s disease55 and blood protein levels56. A subset of
the genes in this region (e.g. IP6K1, CAMKV, SEMA3F) have been
associated with educational attainment57.

Region B 3 50.264–53.080Mb Worry items Genes in this region (e.g. ALAS1, STAB1, GNL3, ITIH4, TMEM110) have
been linked to schizophrenia and autism spectrum disorder in earlier
studies58,59.

All genes that were GWS in gene-based analyses in MAGMA23 on all 13 neuroticism phenotypes are reported in Supplementary Data 33.
CHR: Chromosome on which the gene is located.
Position: Start position of the gene in base pairs (for the regions A and B a start and end position is reported).
Depressed affect and worry refer to two separate sets of 4 items each, i.e., LONE/MIS/MOOD/FED-UP, and NERV-FEEL/WORRY/TENSE/SUF-NERV, respectively.
See Supplementary Table 1 for a description of the item labels.
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rg’s with the opposite cluster were considerably lower (difference
> .20), confirming genetic heterogeneity within the full item set
(Supplementary Fig. 24; Supplementary Data 1). Genetic
analysis of such genetically homogenous clusters may reveal
genetic signals that are important for multiple items in one cluster
but not for items in the second cluster, as we recently showed in
ref. 19.

Genetic correlations with external traits. Neuroticism is linked
to numerous social, behavioral, and psychiatric traits4. We
therefore calculated rg’s of the 12 items, the sum-score, and
the two identified item clusters with 33 external traits
(Supplementary Data 49) using cross-trait LD score regression16.

In line with previous findings for neuroticism sum-scores3,4,21, all
items correlated negatively with subjective well-being (−.67 to
−.45, sum-score: −.65), and positively with major
depressive disorder (.35−.66, sum-score: .65), depressive symp-
toms (.42−.83, sum-score: .79), and anxiety disorders (.51−.78,
sum-score: .76; Fig. 3; Supplementary Data 50). These strong
positive rg’s are presumably at least partly due to the substantial
overlap in content between neuroticism items on the one hand
and depression/anxiety items on the other (see Supplementary
Table 1), which reduces the operational distinctness of these
phenotypes.

In contrast, rg’s of individual items to other external traits were
not all in the same direction (e.g., IQ, BMI). Here, relying merely
on sum-score information would be misleading: sum-score rg’s
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can be small while item-specific rg’s are substantial yet opposite
(rg > |.17|; see e.g., BMI, hip and waist circumference).

The magnitude of rg’s associated with the items assigned to the
clusters depressed affect and worry varied substantially for many
traits (e.g., depressive symptoms, subjective well-being). Some of
the traits showed genetic overlap with items of one of the clusters,
but not with items from the other cluster (e.g., anorexia,
schizophrenia, educational attainment, ADHD), whereas a few
traits even showed GWS genetic correlations with items in both
clusters yet in opposite directions (e.g., BMI, waist and hip
circumference). Smoking related phenotypes (i.e., ever smoker,
smoking cessation) showed significant correlations only to items
of the depressed affect cluster, and not to items of the worry
cluster. These results clearly indicate that biological insight may
be gained by analyzing these genetically homogeneous clusters
separately.

Discussion
In summary, we have shown that items used to measure the
personality trait neuroticism are genetically heterogeneous, with
genetic overlap often being only moderate (i.e., rg < .60), and we
replicated this in a second sample. We then proceeded to conduct
GWAS meta-analyses on all 12 neuroticism items and their sum-
score in ≥366,276 individuals. We identified 138 item-specific loci
implicating 1,247 genes, revealing considerable genetic variation
between items. We identified two genetically distinct item
clusters denoted depressed affect and worry. Within clusters,
items were genetically strongly correlated, and items from
different clusters showed distinct genetic correlational patterns to
external traits.

The current findings motivate investigations into the genetic
heterogeneity of items in other instruments used to gauge com-
plex psychological traits. Neuroticism is only one of many psy-
chological traits for which composite scores are calculated that
are based on the aggregation of item or symptom scores. As a
clinical example, consider the DSM-V diagnosis for major
depressive disorder (MDD). This diagnosis is based on a list of 9
diverse symptoms (at least four of which are “aggregated”
symptoms, reflecting problems on either end of the spectrum, e.g.,
‘insomnia or hypersomnia’, ‘increase or decrease in appetite’, see
Supplementary Note 2 for the full list of symptoms). To qualify
for a depression diagnosis, at least 5 of these symptoms should be
endorsed for at least 2 weeks, a procedure that can result in
people with very different symptom profiles obtaining the same
diagnosis8,27. In subsequently using the diagnostic status as
dependent variable in GWAS, the assumption is that these
symptoms are genetically similar. The phenotypic heterogeneity
of the symptoms does, however, like with neuroticism, raise
questions about their alleged genetic homogeneity. As yet, genetic
heterogeneity between depression symptoms has only been
addressed in the context of twin studies28.

Similarly, many psychological instruments measuring quanti-
tative traits are known to be phenotypically multidimensional.
For instance, the multidimensionality of cognitive ability is evi-
dent in the many subscales characterizing renowned IQ tests like
the Wechsler Adult Intelligence Scale (WAIS29,30). Twin and
family studies show that these multidimensional phenotypes are
also genetically multidimensional, and that dimension-specific
genetic effects can be substantial31–35.

In sum, while all these psychological instruments have proven
useful in therapeutic settings and in, e.g., predicting school/job
performance, the known phenotypic heterogeneity and multi-
dimensionality begs the question whether an overall sum-score
operationalization is expedient in gene finding studies, as there is
generally no a priori reason to assume that the subscales, items, or

symptoms are genetically similar. By studying the genetic archi-
tecture of individual subscales or items or symptoms, we can
determine whether the apparent genetic complexity of psychiatric
traits is (at least partly) introduced by our choice of oper-
ationalization. Item-level or symptom-level analyses need not
become the standard, but they can inform investigation and
construction of genetically homogeneous subsets, as we have
shown in the present study.

Our study highlights the purpose and relevance of item or
symptom-level analyses as a means to inspect genetic homo-
geneity, and to identify subsets of genetically similar items or
symptoms that can confidently be summed and used as input in
future gene-finding enterprises.

Methods
UK Biobank sample. The UK Biobank Study is a major data resource, containing
phenotypic measures from 503,325 participants and genetic data from 489,212
participants (July 2017 release)15. The data was released in two phases (May 2015
and July 2017), and based on this we created two separate samples on which we
performed the GWA analyses.

Sample 1 consists of individuals for whom the data was released in May 2015
(N= 110,328; Supplementary Table 1), whereas sample 2 consists of all individuals
that were added in the 2nd release (July 2017; N= 270,178; Supplementary
Table 2). Written informed consent was obtained from all participants and the UK
Biobank received ethical approval from the National Research Ethics Service
Committee North West–Haydock (ref. 11/NW/0382). The current study was
conducted under UK Biobank application number 16406.

For the analyses in this study, we excluded all individuals of non-Caucasian
ancestry (based on genetic principal components). Therefore, principal
components from the 1000 Genomes reference populations36 were projected onto
the called genotypes available in UK Biobank. Those participants whose projected
principal component score was closest to the average score of the European 1000
Genomes (based on the Mahalanobis distance) were identified as European.
We excluded European subjects with a Mahalanobis distance > 6 s.d. Additionally,
subjects were filtered out based on relatedness, discordant sex, sex aneuploidy,
and withdrawn consent. Finally, individuals were excluded from analyses if
responses to more than 3 (of 12) of the neuroticism items were missing. The
effective sample in our meta-analysis consisted of 380,506 individuals (205,556
females and 174,950 males; see Supplementary Table 5 for item-specific sample
sizes). At the time of test completion, participants’ age ranged between 40 and 73
(M= 56.91; s.d.= 7.93).

For both samples specified above, we used newly imputed data from the 2nd
release, on ~96 million genetic variants. Imputation was performed by the UK
Biobank, using a reference panel that included the UK10K haplotype panel as well
as the Haplotype Reference Consortium reference panel. Based on
recommendations by the UKB we excluded all variants imputed from the UK10K
reference panel, as technical errors may have occurred during the imputation
process. The imputed data was converted to hard-called genotypes using a certainty
threshold of 0.9.

Neuroticism phenotype. Neuroticism was measured using the Eysenck
Personality Questionnaire, Revised Short Form (EPQ-R-S)11, consisting of 12
dichotomous items (‘yes’ or ‘no’). Participants completing <9 items were
excluded from further analysis. We constructed a weighted neuroticism
sum-score by adding up the individual item responses and dividing this sum by the
total number of completed items (see Supplementary Tables 1, 2 and 5 for the
endorsement rates of the individual items in both samples, as well as in the full
sample). Prior to analysis, the sum-score was standardized to have mean 0 and
variance 1.

Cluster scores. Scores for the depressed affect cluster were obtained by summing
the scores on the four items ‘Do you often feel lonely?’, ‘Do you ever feel ‘just
miserable’ for no reason?’, ‘Does your mood often go up and down?’, and ‘Do you
often feel ‘fed-up’?’. Scores on the worry cluster were obtained by summing the
scores on the four items ‘Are you a worrier?’, ‘Do you suffer from nerves?’, ‘Would
you call yourself a nervous person?’, and ‘Would you call yourself tense or highly
strung’. Only participants with complete scores on all 4 items were included in
GWA analyses of the cluster scores, resulting in sample sizes of N= 361,768 for
depressed affect and N= 350,356 for worry.

SNP-based analysis. All genome-wide association (GWA) analyses were con-
ducted separately on sample 1 and sample 2. GWA analyses of the 12 neuroticism
items were conducted using logistic regression as implemented in PLINK 1.937,38,
regressing the dichotomous neuroticism item responses on the imputed hard-called
SNPs. Linear regression was used to analyze the neuroticism sum-score and both
item cluster scores19. Sex, age, and townsend deprivation index (TDI; a measure
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based on postal code indicating material deprivation), were included in the
analyses as covariates. Genotype array was only included as covariate in
the analyses of sample 1 as the same array was used for all subjects in sample 2.
Additionally, we included the first 10 genetic PCs as covariates to control
for potential population stratification. Genetic PCs were computed separately
for both samples using FlashPCA 239 on individuals of European ancestry,
after LD pruning and filtering out SNPs with MAF < 0.01 and genotype
missingness > 0.05.

Final data analysis was restricted to autosomal, bi-allelic SNPs with MAF >
0.0001, high imputation quality (INFO score ≥0.9) and low missingness (<0.05),
resulting in 10,847,151 SNPs. Within each SNP-based GWA analysis, we applied
the standard genome-wide significance threshold in European-descent samples40 of
P < 5 × 10−8. In addition, we indicate whether the genetic signal survived
correction for the 13 phenotypes tested (P < 3.85 × 10−9; Supplementary Data 2;
Supplementary Fig. 4).

Meta-analysis. For all 13 phenotypes (12 items, sum), the SNP-based
genome-wide association analyses were conducted separately on sample 1 and
sample 2. To optimize the robustness of the genetic comparisons between the 13
phenotypes, we combined for all 13 phenotypes the GWA results from sample 1
and 2 using meta-analysis in METAL41. All SNP, gene, and gene-set analyses
(Supplementary Data 2, 5–17, 18–30, 33–47) are thus based on the results from
these meta-analyses.

Excluded loci. Based on visual inspection of the regional plots (LocusZoom) of all
genomic loci identified in SNP-based meta-analyses of the 13 neuroticism phe-
notypes, we decided to further examine the plausibility of 6 of these loci, as they
appeared to be driven by only one or two SNPs (Supplementary Data 3, 4). First,
we compared the allele frequencies of the lead SNPs in these loci that we observed
in the UKB data to the allele frequencies reported by 1000 genomes and TOPMED,
as a large difference might indicate genotyping errors (Supplementary Data 3).
Second, we compared the P values from GWA analyses in both samples to see
whether the signal was driven by a subset of the data. Finally, differential LD across
datasets might be another indicator of genotyping errors. Therefore, we selected all
SNPs in LD (r2 > 0.6) with the lead SNPs in the 1000 Genomes data, and compared
the LD in the 1000 Genomes data with LD (for the same combinations of SNPs) in
the UKB data (Supplementary Data 4). None of these checks suggested genotyping
errors of these SNPs. However, as the evidence for these loci was based on very few
SNPs we decided to exclude them, and count the total number of unique genomic
loci for all 12 items and the sum-score as 261–6= 255.

Gene-based analysis. Gene-based genome-wide association analyses (GWGAS)
were conducted in MAGMA (http://ctg.cncr.nl/software/magma23), using the P
values from the GWA analyses as input. This gene-based analysis tests the joint
signal of all SNPs in a gene with the phenotype, while accounting for LD between
those SNPs, thus uncovering gene-level signal that may go unnoticed in SNP-based
analyses. In total, 18,183 genes were covered by at least one SNP, and used in the
GWGAS. Within each gene-based analysis, we applied a stringent Bonferroni
correction for the number of tested genes, resulting in a genome-wide threshold for
significance of P < 2.75 × 10−6 (0.05/number of genes tested). In addition, we
indicate whether the gene-signal survives correction for the 13 phenotypes tested
(P < 2.12 × 10−7; Supplementary Data 33; Supplementary Fig. 22).

Gene-set analysis. Using MAGMA23, we tested the association between all 13
neuroticism phenotypes and 7,297 gene-sets. Specifically, we tested for
association with 7,244 gene ontology gene-sets (MsigDB version 6.0;
http://software.broadinstitute.org/gsea/msigdb/collections.jsp) and 53 tissue
expression profiles (https://www.gtexportal.org/home/). For all gene-sets
competitive P values were computed, which result from the test whether the
combined effect of genes in a gene-set is significantly larger than the combined
effect of a same number of randomly selected genes (in contrast, self-contained
P values result from testing against the null hypothesis of no effect). We only
report competitive P values, which are more conservative compared to self-
contained P values. Competitive P values were Bonferroni corrected (α= 0.05/
7,297= 6.85 × 10−6).

SNP-based heritability and genetic correlations. LD score regression
(LDSC16,17) analyses were run on summary statistics obtained from GWA analyses
to estimate the proportion of phenotypic variance attributable to all SNPs in the
analyses (SNP-based heritability; h2SNP). Bivariate LD Score regression (https://
github.com/bulik/ldsc) on the GWAS summary statistics was used to estimate the
genetic correlations between all neuroticism phenotypes. Significance of genetic
correlations between all neuroticism phenotypes was determined by applying a
Bonferroni corrected threshold of P= 2.22 × 10−4 (0.05/(15 × 15)= 0.05/225;
Fig. 1 and Supplementary Figure 24 combined).

The genetic correlations between the 15 neuroticism phenotypes and 33
sundry traits for which summary statistics were available, were also calculated
using LD score regression. We corrected for multiple testing through a stringent

Bonferroni correction leading to a P value threshold of P < 1.01 × 10−4

(0.05/(15 × 33)= 0.05/495).

Genetic overlap tests for top associated SNPs. Fisher’s exact tests were used to
examine the overlap in the top associated SNPs across all pairwise combinations of
neuroticism items and the sum-score. Prior to this analysis, we applied LD-based
pruning on the summary statistics from all items to ensure that SNPs were inde-
pendent (a subset of 10,000 UKB participants was used as a reference set; r2= 0.8).
Sign tests were used to establish whether signs of top associated SNPs were in the
same direction across all neuroticism items and the sum-score. Here we used
clumping (r2= 0.1 with window size 500 kb) based on the association P values to
ensure that the most strongly associated variants were not lost. As clumping results
in different SNP sets for different items, sign test results are not symmetrical for
pairs of items. For both tests, we used multiple P value thresholds, including the
conventional GWS threshold (5 × 10−8) and a conservative threshold correcting for
the 13 phenotypes tested (3.85 × 10−9).

We acknowledge that smoother measures than thresholding are available. For
example, the Rank-Rank-Hypergeometric-Overlap (RRHO) test42 displays overlap
in a more nuanced manner. However, as we generally worked with 13 phenotypes,
resulting in 13 × 13–13= 156 combinations (considering that some of the
thresholded tests were not symmetrical), a method like RRHO would yield 156
individual figures from which it would be difficult to discern patterns in the results.

Functional annotation and gene-mapping using FUMA. The FUMA GWAS
platform (http://fuma.ctglab.nl/20) uses GWAS summary statistics to functionally
map, annotate, prioritize, visualize, and interpret GWAS results. We used the
summary statistics from GWA meta-analyses on the 12 individual items and the
neuroticism sum-score as input for FUMA.

FUMA first defined independent significant SNPs which have a genome-wide
significant P value (5 × 10−8) and are independent at r2 < 0.6. Subsequently, lead
SNPs were defined by retaining those independent significant SNPs that were
independent from each other at r2 < 0.1. Next, risk loci were defined by merging
physically overlapping lead SNPs or lead SNPs whose LD blocks were closer than
250 kb apart. A consequence of this definition of risk loci is that the same locus
may be discovered for different phenotypes included in the study, while the lead
SNPs are different.

All SNPs in LD ( > 0.6) with one of the independent significant SNPs were used
in annotation. Functional consequences were obtained by performing ANNOVAR
gene-based annotation using Ensembl genes. In addition, potential regulatory
functions are indicated by the RegulomeDB score43 (with lower scores indicating a
higher probability of having a regulatory function) and by 15-core chromatin states
predicted by ChromHMM44 for 127 tissue/cell types45.

All SNPs in genomic risk loci that were GWS, or in LD ( > 0.6) with one of the
independent GWS SNPs were mapped to genes in FUMA20 using either of three
strategies.

The first strategy we applied, positional mapping, was used to map SNPs to
genes based on the physical distances (i.e., within 10 kb window) from known
protein coding genes in the human reference assembly (GRCh37/hg19).

The second strategy, eQTL mapping, is used to link SNPs to genes with which
these SNPs show a significant eQTL association (i.e., allelic variation at the SNP
affects the expression of that gene). This strategy is based on information from 3
data repositories (GTEx, Blood eQTL browser, and BIOS QTL browser), and uses
cis-eQTLs, which can map SNPs to genes that lie up to 1Mb apart. We applied a
false discovery rate (FDR) of 0.05 to define significant eQTL associations.

Finally, using chromatin interaction, SNPs were mapped to genes based on a
significant chromatin interaction between a genomic region in a risk locus and
promoter regions of genes (250 bp up- and 500 bp downstream of transcription
start site (TSS)). Unlike eQTL mapping, chromatin interaction mapping has no
distance boundary and can involve long-range interactions. Currently, Hi-C data of
14 tissue types are included in FUMA46. Generally, chromatin interactions are
defined in a certain resolution (40 kb in this case) such that interacting regions may
span multiple genes. All SNPs within these regions would be mapped by this
method to genes in the corresponding interaction region. To further prioritize
candidate genes from chromatin interaction mapping, we integrated predicted
enhancers and promoters in 111 tissue/cell types from the Roadmap
Epigenomics Project45; chromatin interactions are selected in which one region
involved in the interaction overlaps with predicted enhancers and the other region
overlaps with predicted promoters in 250 bp upstream and 500 bp downstream of
the TSS site of a gene. A FDR of 1 × 10−5 was applied to define significant
interactions.

Data availability. Our policy is to make genome-wide summary statistics (sum-
stats) publically available. Sumstats from the GWA analyses of all neuroticism
phenotypes are available for download at https://ctg.cncr.nl/.
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