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Despite the widespread use of silicon in modern technology,
its peculiar thermal expansion is not well understood. Adapt-
ing harmonic phonons to the specific volume at temperature,
the quasiharmonic approximation, has become accepted for sim-
ulating the thermal expansion, but has given ambiguous inter-
pretations for microscopic mechanisms. To test atomistic mech-
anisms, we performed inelastic neutron scattering experiments
from 100 K to 1,500 K on a single crystal of silicon to mea-
sure the changes in phonon frequencies. Our state-of-the-art ab
initio calculations, which fully account for phonon anharmonic-
ity and nuclear quantum effects, reproduced the measured shifts
of individual phonons with temperature, whereas quasiharmonic
shifts were mostly of the wrong sign. Surprisingly, the accepted
quasiharmonic model was found to predict the thermal expan-
sion owing to a large cancellation of contributions from individual
phonons.

thermal expansion | phonon anharmonicity | inelastic neutron scattering |
nuclear quantum effects | silicon

quantized harmonic oscillator was Einstein’s seminal idea

for understanding atom vibrations in solids. Better accuracy
for crystalline solids is achieved when the vibrations are resolved
into normal modes. Each normal mode is quantized, with a zero-
point energy and excitations called phonons. However, harmonic
models are limited to quadratic terms in the interatomic poten-
tial, and it is well known that higher-order terms are necessary
to describe properties of real solids such as thermal conductiv-
ity and thermal expansivity. Despite this knowledge, the neces-
sary and sufficient contributions to nonharmonic effects remain
less clear. A popular approach is the quasiharmonic model (QH),
which assumes harmonic oscillators, but with frequencies renor-
malized to account for the thermal expansion. In a QH, the
energy of the phonon mode ¢ changes with crystal volume, V.
Changes to phonon energies are usually described by a mode
Griineisen parameter, v; = —(V 9¢;)/(e; V'), where &; = hw;
is the phonon energy (and w; /2 is the frequency). A positive
~ gives a reduction in mode energy with thermal expansion,
increasing the vibrational entropy ASyi,. At finite temperature,
the extra elastic energy from thermal expansion, A Eqy, is offset
by the term — T'A S, in the free energy AF = AEq — TAS,in
(1, 2). For positive y, AF' is minimized with a positive ther-
mal expansion; for negative v, a negative thermal expansion is
expected.

The cubic and quartic, and higher-order terms of the inter-
atomic potential, cause the normal modes to interact and
exchange energy. This is pure anharmonicity, where the energy
of a phonon is altered by the presence of other phonons irre-
spective of the volume of the solid. Phonon anharmonicity is
essential for thermal conductivity and other thermophysical
properties. Anharmonic effects increase with larger thermal
atomic displacements. Sometimes this causes a misperception
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that pure anharmonicity is important only at high temperatures,
and quasiharmonic models may be valid at low and moderate
temperatures owing to low phonon populations. However, the
leading-order terms of both quasiharmonicity and anharmonicity
are linear in temperature (4), so, if anharmonicity is important
at high temperatures, it can have the same relative importance
at low temperatures, too. Furthermore, at low temperatures,
the “zero-point” energy gives atom displacements that allow a
nuclear quantum effect to engage the high-energy phonon modes
that are half-occupied.

Finding the relative importances of quasiharmonicity and
anharmonicity should be done by quantitative analysis, but, to
date, the dominance of quasiharmonicity for silicon has been
assumed, in part, because quasiharmonic models predict the
thermal expansion with reasonable accuracy (5-11). The quasi-
harmonic model predicts the anomalous negative thermal expan-
sion of silicon from 10 K to 125 K and predicts the low thermal
expansion up to the melting temperature (12-16). The positive
thermal expansion coefficients observed at moderate and high
temperatures are anomalous in their own right—they are small
compared with diamond and other materials with zincblende
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structures (14). Further validation of the quasiharmonic approx-
imation was provided by measurements of the Raman mode
and a few second-order Raman modes of silicon under pres-
sure, which were accurately predicted by volume-dependent den-
sity functional theory (DFT) calculations at low temperature (17,
18). The negative Griineisen parameters of the low-energy trans-
verse acoustic (TA) modes have received considerable atten-
tion and have been attributed to the “openness” of the dia-
mond cubic structure (16), the stability of angular forces (9), or
entropy in general (8). Nevertheless, the precise role of the TA
modes in thermal expansion remains unclear (7, 9). With increas-
ing temperature, phonons are excited in higher-energy phonon
branches, and their positive Griineisen parameters are expected
to cause the overall thermal expansion to change sign. Today,
this quasiharmonic model is the workhorse for predicting ther-
mal expansion.

“Nontrivial” phonon shifts that were not accounted for by
thermal expansion were reported in an earlier experimental
paper on phonon dispersions in silicon up to 300 K (3). The
importance of pure anharmonicity in temperature-dependent
phonon shifts at moderate and high temperatures was also found
in work based on molecular dynamics, many-body perturbation
theory, and ab initio calculations on silicon (19-27). The uncer-
tainty principle and quantum distributions of nuclear positions
influence the exploration of atomic potential landscapes. The
zero-point motion was shown to be important, but does not by
itself reproduce the correct thermal expansion coefficients (28,
29). Temperature-dependent phonon shifts from pure phonon
anharmonicity with zero-point energy could give a nuclear quan-
tum effect that alters thermophysical properties. A more detailed
study of the temperature dependence of phonons in silicon is
therefore appropriate because very few modes were previously
assessed (3, 23, 24, 30).
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Fig. 1.

100 K, (B) 200 K, (C) 300 K, (D) 900 K, (E) 1,200 K, and (F) 1,500 K. The 4D phonon dynamical structure factors, 5(q,¢), were reduced, multiphonon-subtracted,
and “folded” into one irreducible wedge in the first Brillouin zone. Phonon dispersions are shown along high-symmetry lines and through the zone L-X.
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We report inelastic neutron scattering measurements of
phonon dispersions of silicon above 300 K along with fully anhar-
monic ab initio calculations using the stochastically initialized
temperature-dependent effective potential method (s-TDEP).
This stochastic method samples and fits the phonon potential
landscape the same way a Born—-Oppenheimer molecular dynam-
ics potential energy surface is fitted to a model Hamiltonian (17).
This method can accurately describe highly anharmonic systems
and includes higher-order contributions of the lattice dynamic
Hamiltonian, which intrinsically includes the phonon-phonon
interactions as well as the nuclear quantum effects (17, 31-34).
These measurements are in conflict with the quasiharmonic the-
ory, which predicts the wrong sign for phonon shifts with tem-
perature. We show that the crystal structure, quasiharmonicity,
pure anharmonicity, and nuclear quantum effects all play impor-
tant roles in the thermal expansion of silicon. Methods for both
the measurements and the calculations are described in Materials
and Methods and Supporting Information.

Fig. 1 shows phonon dispersions as bright intensities. The dis-
persions at low temperatures are in excellent agreement with
previous work that used triple-axis spectrometers (3, 30). With
increasing temperature, the majority of phonon modes, including
the low-energy TA modes, soften in proportion to their energy.
This self-similar behavior of phonon softening was reported pre-
viously (25).

Results from calculations by the s-TDEP method (with anhar-
monicity and thermal expansion) and conventional quasihar-
monic ab initio calculations (with no anharmonicity) are shown
in Fig. 2. There are large discrepancies in the signs and mag-
nitudes of phonon energy shifts between the two models. Most
interestingly, Fig. 2 B and C shows that the s-TDEP calcula-
tions predict a reduction in phonon energy, a thermal “soft-
ening,” in the transverse modes (roughly <35 meV), whereas
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Experimental phonon dispersions of silicon. Inelastic neutron scattering data of silicon were measured on the ARCS time-of-flight spectrometer at (A)
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Fig. 2. Comparison between experimental, s-TDEP, and QH ab initio calculations throughout the Brillouin zone. (A-C) Phonon dispersions of silicon from
harmonic, s-TDEP, and QH ab initio DFT calculations. The (0.75, 0.25, 0.25) point is shown as a black circle marker for reference. (B and C) Magnifications
from A show low-energy modes. (D) Density of fractional phonon energy shifts with temperature. The densities from all branches (s-TDEP, teal; QH, red) and
densities from just the low transverse modes are offset and scaled for clarity. (E) The density of shifts from s-TDEP at 700 K. Notice that the more negative
peak consists of a majority of TA modes. (F-/) Temperature-dependent phonon shifts, (¢ — €100 k)/100 k. Of the low-energy transverse modes at the (F) L, (G)
X, (H) K, and (/) (0.75, 0.25, 0.25) reciprocal lattice units (r.l.u.) points. Experimental fits of phonon centroids with standard (1 &) error bars from the present

work are shown alongside calculated shifts and previously reported shifts (3).

the quasiharmonic calculations predict an increase in phonon
energy, “stiffening,” at 1,500 K [with negative Griineisen param-
eters as reported previously (7-9)].

We calculated the fractional shifts of energies, Ae/e (T') for
all phonon modes in the first Brillouin zone. The energies of all
phonons were calculated using a 50 x 50 x 50 grid of g points.
Fig. 2D compares the density of fractional phonon shifts from
quasiharmonic and anharmonic (s-TDEP) calculations. The den-
sity of fractional shifts, p (Ae/e), is shown in Fig. 2E from the s-
TDEP method at 700 K. Compared with the quasiharmonic pre-
dictions for the TA modes (shown at the top of Fig. 2D), the
anharmonic shifts are an order-of-magnitude larger, have oppo-
site signs, and follow opposite thermal trends. Such large discrep-
ancies allow for definitive experimental tests.

Individual phonon energies were obtained from constant g fits
to the measured S(g,¢), as shown in Supporting Information. Fig.

1994 | www.pnas.org/cgi/doi/10.1073/pnas.1707745115

2 F-I shows that the trends from the anharmonic s-TDEP calcu-
lations are in far better agreement with experiment than are the
quasiharmonic trends. Thermal trends for individual phonons at
the L, X, and K points (Fig. 2 F-H) are presented for their impor-
tance in the interpretation of quasiharmonic results (7). Another
example for a phonon mode located away from a high-symmetry
line is shown in Fig. 21.

Additional s-TDEP calculations of densities of thermal shifts
suggest why the quasiharmonic theory has been so apparently suc-
cessful. Calculations were performed for volumes that were 1%
larger and 1% smaller than the 0 K harmonic volume calculated
for Fig. 24, and the results are shown on the left and right sides of
Fig. 3 for the TA modes (Fig. 34—C) and all phonon modes (Fig. 3
D-F). For all three volumes, at low temperatures, there is a wide
spread in the thermal phonon shifts, both stiffening and soften-
ing. At low temperatures, the average thermal shift from anhar-
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Fig. 3. Phonon shifts and entropy differences from constant volume ab initio calculations. (A-F) Density of fractional shifts with temperature at constant
volumes using the s-TDEP method. The color indicates density values and the mean (dashed color line), the median (solid color line), and the 5th and 95th
percentiles (black solid lines) of the density are also shown. Quasiharmonic predictions are the dashed zero lines in A-F. (G-/) Corresponding constant volume
differences between the QH and s-TDEP in free energies from vibrational entropy with temperature. Calculations are shown for (A, D, and G) 99% of 0 K

volume, (B, E, and H) 0K volume, and (C, F, and /) 101% of 0 K volume.

monicity at a fixed volume is, surprisingly, nearly zero. At fixed vol-
ume, the shifts of all quasiharmonic phonons are zero, of course,
so the two methods agree on the average. This is seen in Fig. 3
A-C for the TA modes and in Fig. 3 D—F for all modes. Neverthe-
less, the average phonon energies of TA modes from the s-TDEP
method show an ordinary softening with increased volume and
temperature, inconsistent with the negative Griineisen parame-
ters from quasiharmonic calculations. At high temperatures, Fig.
3 D-F shows that all of the modes tend to soften at similar rates.
Differences in vibrational entropies from the s-TDEP and quasi-
harmonic methods were calculated using equations in Supporting
Information. The difference in entropies AS from the quasihar-
monicand anharmonic calculations was used to obtain the — TAS
shown in Fig. 3 G-I. For all volumes, the differences are negligible
up to 125 K but increase at higher temperatures (Fig. 3).

A quasiharmonic model with negative Griineisen parameters
gives a physically incorrect explanation of thermal expansion,
although some of its predictions of average properties are pre-
served by gross cancellations of errors. As described in Sup-
porting Information, zero-point energy (hw;/2) in Eq. S6 proves
essential for an anharmonic model to predict the negative ther-
mal expansion of silicon (Fig. 4). Nuclear quantum effects give
nonzero anharmonic couplings between all phonons, even modes
of higher energy that are not excited thermally at low tem-
perature. These anharmonic couplings alter the self-energies
of the lower-energy phonons that are excited at low tempera-
tures, altering the volume dependence of the free energy. Cal-
culated coefficients of linear thermal expansion are in excellent
agreement with experiments (Fig. 5). Not only are quantum
effects essential at lower temperatures, but differences persist
up to melting temperatures. Varying the zero-point motion from
changes in nuclear mass allows for an interesting engineering
opportunity, too (29, 35-37).

Measurements of the phonon dispersions of single-crystal sil-
icon from 100 K to 1,500 K showed thermal shifts that con-

Kim et al.

tradict the trends predicted by the widely accepted QH, even
at low temperatures. Pure phonon anharmonicity, i.e., phonon—
phonon interactions, dominate the phonons in silicon from low
to high temperatures, altering the effective interatomic poten-
tial and causing both positive and negative shifts of phonon
energies. At low temperatures, the zero-point quantum occu-
pancies of high-energy vibrational modes alter the energies of
low-energy modes through anharmonic coupling. This nuclear
quantum effect with anharmonicity (and quasiharmonicty) is the
essential cause of the negative thermal expansion of silicon. The
crystal structure, anharmonicity, and nuclear quantum effects of
silicon all play important roles in the thermal expansion of sil-
icon, and could be essential in other technologically important
materials.
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Fig. 4. Volume per atom as a function of temperature for silicon obtained
from classical and quantum mechanical free energies.
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Fig. 5. Calculated and experimental coefficients of linear thermal expan-
sion in silicon. Calculated coefficients are from minimized free energies
using Eq. S1 (s-TDEP, teal solid line; QH, red dashed line). Experimental val-
ues are shown as colored markers (12-15). (Inset) Calculations and experi-
mental values at higher temperatures.

Materials and Methods

For a detailed description of methods, see Supporting Information.
The experiments used a high-purity single crystal of silicon (mass =~
28.5 g) with (110) orientation, machined into a tube for optimal neutron
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