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The study of ecological communities often involves detailed simu-
lations of complex networks. However, our empirical knowledge
of these networks is typically incomplete and the space of sim-
ulation models and parameters is vast, leaving room for uncer-
tainty in theoretical predictions. Here we show that a large frac-
tion of this space of possibilities exhibits generic behaviors that
are robust to modeling choices. We consider a wide array of
model features, including interaction types and community struc-
tures, known to generate different dynamics for a few species.
We combine these features in large simulated communities, and
show that equilibrium diversity, functioning, and stability can be
predicted analytically using a random model parameterized by
a few statistical properties of the community. We give an eco-
logical interpretation of this “disordered” limit where structure
fails to emerge from complexity. We also demonstrate that some
well-studied interaction patterns remain relevant in large ecosys-
tems, but their impact can be encapsulated in a minimal num-
ber of additional parameters. Our approach provides a powerful
framework for predicting the outcomes of ecosystem assembly
and quantifying the added value of more detailed models and
measurements.
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Ecological communities form large and intricate networks
of dynamical interdependencies between their constituent

species and abiotic factors. The richness and variety of natural
systems has long been a source of wonder, but understanding
the mechanisms that shape their diversity, stability, and function-
ing is also a pressing challenge (1–4). Their theoretical investi-
gation often relies on extensive numerical simulations modeled
after, but not fully parameterized by, empirical observations, e.g.,
ref. 5. Although current computational power allows exploration
of levels of complexity that were unapproachable only a few
decades ago, the parameter space in these simulations is fatally
large, with numerous plausible choices for species traits, interac-
tions, and even dynamical equations, that may give different and
even contradictory predictions.

Against this vertiginous perspective, we reveal emergent
genericity allowing complex interaction networks, despite their
superficial differences, to be understood within a common
framework and distinguished by only a few parameters. This is
possible because complex structure does not always entail com-
plex dynamics. In the setting of ecological assembly, we show that
various community models display similar collective behaviors,
which can be captured using four universal parameters. These
parameters have recently been identified in a random Lotka–
Volterra system (6) interpreted here as the “disordered limit” for
a broad class of models. We use this random limit to make null
predictions for community properties, which we compare with
the outcomes of specific models to quantify the added value of
their structure. When models depart from null expectations, we
propose ways to expand the random model to capture relevant
features while retaining maximal genericity.

This corroborates a long-standing intuition in ecology: Simple
laws can emerge from the interaction of many species. Indeed,

ecologists have long posited that networks can be reduced to
selected features (7, 8), or to averaged-out (9) or random inter-
actions (10, 11). On the other hand, recent approaches, starting
from complex models, have attempted to demonstrate this emer-
gent simplicity (12), but their success has been restricted to spe-
cific interaction types (13). We thus bridge the gap between these
seminal works by developing a reductive approach that is appli-
cable to a wide array of complex systems, and that can be used to
identify relevant structures, allowing evaluation of previous sim-
plified theories.

To clearly see the emergence of genericity in ecological inter-
actions, we must first set aside other important drivers of commu-
nity dynamics, such as stochasticity and external perturbations.
Instead, we focus here on the stable and uninvadable equilibria
that result from community assembly, as they are determined by
species traits and interactions only. We consider models of com-
munity assembly within the class of generalized Lotka–Volterra
dynamics,

d

dt
Ni =Ni

(
ri −DiNi − f

(
S∑

j=1

AijNj

))
, [1]

where i runs over a pool of S species, with Ni , ri , and Di as their
abundance, intrinsic growth rate, and self-regulation (density-
dependent mortality), respectively, f as the functional response
(14), and Aij as the per capita interaction coefficients. Models
differ by the structure of their coefficients and by their assembly
process—how and when species from the fixed regional pool may
invade the community (15).

We propose that generic behaviors can be identified by com-
paring these models to their disordered limit, obtained by ran-
domizing the effective “carrying capacities” and interactions,

Ki =
ri
Di

, αij =
Aij

Di
, [2]
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Fig. 1. General outline of our approach. On the left are listed examples of sources from the literature (18–22), from which model features have been
extracted (see full list in SI Appendix, Numerical Experiments). Diverse combinations of these model features and variations of their parameters yield distinct
communities, characterized by the coefficients and functional response in the dynamics Eq. 1. We simulate them until they reach an assembled equilibrium,
whose properties we measure. We then randomize interactions and carrying capacities, preserving the four statistics in Eq. 3. The randomized community’s
equilibrium properties are known analytically from the solution of the reference model (6) and can be compared with simulation outcomes; see Fig. 2.

while preserving some essential statistics,

ζ2 = var(Ki), µ=S mean(αij ),

σ2 =S var(αij ), γ= corr(αij ,αji). [3]

It was shown in ref. 6 that these four quantities—hereafter car-
rying capacity spread ζ, interaction antagonism µ, heterogene-
ity σ, and reciprocity γ—emerge as the only relevant parame-
ters in large random systems.∗ From these parameters, analytical
formulas provide the typical abundance, diversity, and stability
properties of uninvadable equilibria, regardless of the assembly
process (6, 17).

As illustrated in Fig. 1, we draw from the literature (18–22)
a list of important model features, including interaction types
(mutualism, competition, and predation), community structures,
functional responses, and parameter distributions (random or
mechanistically derived). We then combine these features and
vary their parameters to generate many distinct communities.
We simulate their dynamics from random initial conditions until
an uninvadable community is reached, and measure its stabil-
ity, diversity, and functioning (Eq. 6). We finally compare these
models to their disordered limit as defined above, hereafter the
“reference model,” to obtain null predictions for the measured
properties.

∗More precisely, the effects of species interactions become truly generic, and entirely
characterized by µ, σ, and γ, in large communities devoid of very strong pairwise inter-
actions (e.g., competitive exclusion). This emergent genericity of interactions does not
extend to intrinsic species properties (carrying capacities), which can therefore retain
model-specific effects. Their most generic effects are captured by ζ (see SI Appendix,
Reference Model and Community Properties), but some results below require one more
parameter, CKα, the correlation between carrying capacities and interactions, e.g., in
a competition–colonization tradeoff (16) or in resource competition (see SI Appendix,
Numerical Experiments). The random model remains fully solvable for any distribution
of intrinsic species traits.

Where predictions agree with simulation results within 5%
according to the error metric in Eq. 7, we judge that a model’s
behavior is well predicted by its disordered limit, meaning that
the generic parameters in Eq. 3 capture all dynamically relevant
features. In case of a discrepancy, we demonstrate that it is pos-
sible to recover quantitative agreement through a minimal addi-
tion of structure: either extracting more precise statistical infor-
mation such as correlations or dividing the community into a few
modules and computing parameters within and between these
groups (see SI Appendix, Reference Model Extensions). In both
cases, we are still able to reduce a complex model to a limited
number of parameters, which does not grow with network size
or connectance.

Results
In Fig. 2, we showcase some of the predicted community prop-
erties in a particular example: a resource competition model
(see Materials and Methods). We compare simulation results to
analytical predictions in the disordered limit, i.e., the reference
random model parameterized by a few aggregate statistics; see
Eq. 3. Despite lacking any underlying mechanistic structure, this
random model reproduces all patterns quantitatively, demon-
strating that the structure and coefficients of resource compe-
tition are significant only inasmuch as they affect the reference
parameters.

We illustrate, in Fig. 3, how different models visit this com-
mon parameter space as we vary their specific properties. For
instance, models can overlap: We construct an example where
competitive and predator–prey communities exhibit the same
values of all four parameters, giving rise to equilibria with
identical properties—in particular, species abundance distribu-
tions. These very different models thus live in the same space
of generic dynamics. However, they mostly occupy different
regions of this space, and overlap is rare for all four parame-
ters; for instance, resource competition tends to lead to higher
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Fig. 2. Simulation results for the resource competition model (dots) and
analytical predictions in the disordered limit (lines) for various community
properties: (A) total biomass T , (B) fraction of surviving species φ, (C) Simp-
son diversity D, and (D) temporal variability V . We vary the number of
resources R and the heterogeneity of consumption rates σξ (see Materials
and Methods). This then affects the value of the generic parameters in Eq.
3, inserted into the analytical solution of the reference model to obtain null
predictions. The remarkable agreement confirms that the resource compe-
tition model exhibits fully disordered behavior.

antagonism µ but lower heterogeneity σ than predation, entail-
ing lower total biomass but more stability.

While the reference model has significant unifying and explan-
atory power, it only represents a limit in which all system-level
structure is erased. We next investigated which model assump-
tions among those in Fig. 1 caused a deviation from this dis-
ordered limit. We show in Fig. 4 that many choices failed to
yield any deviation.† We plotted the relative error of the ana-
lytical predictions compared with simulations (Eq. 7) as we
added more and more structure to the interactions. Strikingly,
pure mutualistic communities were found to be uniquely dis-
ordered: While their network structure has been extensively
studied (24, 25), we found that it did not contribute to global
community properties, except indirectly by changing the refer-
ence parameters in Eq. 3.‡ By contrast, we found that some
structural properties—cascade, nestedness, and partitions—led
to different dynamical behavior in other interaction types. Struc-
ture strongly mattered in competitive communities, even though
they are the least studied in that respect, except for hierar-
chies (26). In particular, a notable deviation from disorder
occurred in the bipartite case, i.e., competition between two
groups of freely coexisting species (e.g., an idealization of a
contact zone between communities). Even with weak pairwise
interactions, we observed that one entire group could go extinct

†Here and in SI Appendix, Table S2, we systematically explore combinations of one inter-
action type and another model feature: trait distributions or network structures. All
results in Fig. 4 were reproduced with a saturating functional response; see SI Appendix,
Fig. S3. More complex combinations were not tried systematically, but some figure as
individual examples; see SI Appendix, Table S1.
‡First, mutualistic interactions must either be weak or have a saturation threshold, to
prevent population explosion, which drastically limits their heterogeneity. Second, in
the absence of any negative interaction, the community can effectively be reduced to
a single variable (12, 13).

while the other survived, suggesting group-level competitive
exclusion (27).

Thus, various examples including nestedness, partitions, and
functional groups demonstrate how complex models deviate
from fully disordered dynamics. Additional information is then
needed to predict community properties. We illustrate, in Fig.
5, the case of a plant–pollinator community with intergroup
mutualism and intragroup competition. A bipartite mutualis-
tic community exhibits fully disordered behavior (Fig. 4), but
adding intragroup competition caused results to deviate from
the disordered limit. By extending our theory to distinguish mul-
tiple groups and computing interaction parameters within and
between groups, we made accurate predictions, even in the com-
plex situation of intermediate levels of order, where the bound-
aries between groups were blurred. Similarly, we describe, in SI
Appendix, Fig. S4, how other structures such as hierarchies can
be accounted for, and note (SI Appendix, Fig. S3) that a satu-
rating functional response makes these structures less relevant.
These results suggest the value of incorporating simple structure
and disorder simultaneously in a model to tackle more complex
communities.

Discussion
By comparing dynamical ecological models to their disordered
limit, i.e., a randomization preserving only a few statistics of
species traits and interactions, we provide an approach to the
emergence of simple and generic patterns in community assem-
bly. Dynamics in the disordered limit are described in a com-
mon framework, a random Lotka–Volterra reference model,
within which community properties (diversity, stability, and func-
tioning) can be predicted analytically (6) provided that interac-
tions are distributed among many species. As these predictions

Fig. 3. Different models visit the generic parameter space (µ,σ, γ, ζ)
defined in Eq. 3 as we vary their model-specific control parameters (bold
arrows, defined in Materials and Methods). We illustrate, in the (µ,σ) and
(γ, ζ) planes, the regions visited by two models. In orange is predation
with mean intensity β ∈ [0.1, 25] and conversion efficiency ε∈ [0, 1] (in this
model, ζ is a free parameter). In blue is resource competition with resources
number R∈ [102, 104] and consumption heterogeneity σξ ∈ [0.1, 0.6]. (Inset)
An example where a competitive community and a predator–prey commu-
nity display identical species abundance distributions, well predicted by the
theory (solid line), corresponding to the parameter values marked by the
cross. We explain, in Discussion and in SI Appendix, Reference Model and
Community Properties, under which conditions these distributions are pre-
dicted to be narrow (e.g., normal) or fat-tailed (e.g., lognormal); see also
refs. 11 and 23.
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Fig. 4. Network structure and deviation from the disordered limit. For
the three main interaction types—(A) competition, (B) predation, and
(C) mutualism—we show the relative error (y axis, between 0% and 50%)
of the reference model predictions against simulations; see Eq. 7. (Insets)
Same results in log scale. The symbol sets correspond to different network
structural properties: assortativity, partitioning, clustering, nestedness, and
scale-free or cascade structure. Each comes with a specific control parameter
(x axis; see list in SI Appendix, Numerical Experiments), allowing transition
from an Erdos–Renyi random graph to a maximally structured network. For
instance, the probability pd of attaching preferentially to nodes with higher
degree yields a scale-free network when pd = 1. We also vary connectance
in a random graph. We see that only bipartition, cascade structure, and nest-
edness cause deviations from null predictions in competitive and predatory
interactions, and none do so in mutualistic communities (where interaction
strength is limited; see Materials and Methods).

match simulation outcomes for a wide array of complex models,
we conclude that, although superficially different, these models
exhibit the same generic behavior. Some large-scale community
structures, however, including partitions, nestedness, hierarchy
(Fig. 4), and functional groups (Fig. 5), do induce a discrepancy
between simulation models and their disordered limit. Taking
this structure into account via a few additional parameters, we
obtain good agreement from a less generic, but still greatly sim-
plified, analytical model.

Disorder and Genericity. The significance of our findings hinges on
two questions: Why this choice of disordered limit and generic
parameters, and what is their ecological meaning? First, let us
highlight a feature of the random reference model: its many-
species deterministic dynamics can be mapped to, and solved
as, a single stochastic equation (6, 28). In other words, it only
captures the most generic collective dynamics (see SI Appendix,
Fig. S1), because it effectively describes a single stochastic pseu-
dospecies, with an internal distribution of abundances and inter-
actions. This can easily encompass other ecological hetero-
geneities, such as variation between individuals or populations.

Our work thus shows that, unlike a model with a single deter-
ministic species (12) or many identical ones (9), a model with a
single stochastic pseudospecies may, in fact, have the same rich-
ness of behavior as a complex community. Our extension to func-
tional groups suggests that a more complex community can be
represented by a few interacting stochastic pseudospecies, with-
out loss of information. This dynamical richness is captured by
the generic parameters in Eq. 3, especially σ and γ, whose role
is more subtle: As σ increases, species interactions become less
similar, and hence more likely to create shifting conditions favor-
ing some species, reducing both diversity and stability. In turn,
γ represents interaction symmetry, negative for trophic systems
as well as asymmetrical competition or mutualism. This causes a
negative feedback of a species on itself via its partners, leading
to more stable and species-rich equilibria (6).

We find a general criterion for this disordered limit: Het-
erogeneities in species traits and interactions should be well
mixed throughout the community, so that each species and its

neighborhood constitute an unbiased (even if partial) sample of
the whole system. This criterion holds true regardless of many
model details, including interaction type, functional response,
and diverse network metrics (connectance, assortativity, cluster-
ing). As expected from this intuitive criterion, we found that
structures that lead to different outcomes than the reference
model must exhibit large-scale differentiated neighborhoods in
the web of interactions, e.g., functional groups or different posi-
tions within a hierarchy.

Theoretical Consequences. Our results have at least two conse-
quences for the theory of complex ecological communities. On
the one hand, theoretical investigations aiming for generic pat-
terns can start from the reference model as a flexible and sim-
ple platform for exploring various ecological patterns. If a sys-
tem satisfies our conditions for generic behavior, it is enough to
know how its parameters and assumptions translate into the ref-
erence parameters in Eq. 3 to deduce their consequences on the
assembled state.

On the other hand, theorists interested in a more specific and
complex model may benefit from comparing its predictions to
that of the reference model. This is immediate, as there is no fit-
ting involved: The parameters of the reference model are simple

A

B C

Fig. 5. Genericity beyond full disorder. We give an example of struc-
ture: two functional groups with competitive and mutualistic interactions.
(A) Cartoon of the model. In the ordered limit, all intragroup interactions
are competitive and all intergroup interactions are mutualistic. The ordering
parameter is the probability to rewire interactions without respecting group
structure. (B) Fraction of surviving species in the assembled community for
the simulation model (symbols) against analytical predictions in the disor-
dered limit (solid line) which cannot account for ordering. (C) Same data,
but the reference model is extended with more structure, distinguishing
between parameters for intergroup and intragroup interactions. It success-
fully predicts community properties for any degree of ordering, even the
complex intermediate case where group boundaries are blurred.
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statistics of the species pool, and can be inserted into our analyt-
ical solution to readily obtain predictions. Checking when these
results align is a way of testing the “added value” of other struc-
tures and mechanisms. The extra information needed to recon-
cile simulations with the reference model, if any, provides a mea-
sure of a community’s effective complexity; for instance, how
many functional groups must be inferred and parameterized for
an extended theory (as in Fig. 5) to make accurate predictions on
a complex network.

The picture that emerges is that complexity peaks at interme-
diate levels of heterogeneity (see SI Appendix, Fig. S1), a rela-
tionship found across domains (29, 30). A bipartite network dis-
tinguishes clear neighborhoods, but a highly multipartite one,
such as an intricate web of functional groups and fluxes, may
again tend to resemble a disordered set of species. Many addi-
tional details, including network metrics, degree distributions, or
mechanistic parameterization, contribute to species heterogene-
ity but fail to add true complexity.

Empirical Consequences. From an empirical perspective, the
details of species interactions are often difficult to observe and
measure (31). That relevant ecological patterns may only depend
on aggregated properties is a positive message: We could make
predictions that are robust to a lack of detailed information, and
that rely on a minimal number of fitted or inferred parameters
(32). We expect this approach to succeed when each species
interacts with a fair sample of the overall community, e.g., when
interactions are “well-mixed” due to spatial heterogeneity (com-
petitive plant communities) or mediated by a common resource
(microbial public goods).

More generally, multitrophic ecological communities such
as plant–pollinator or plant–herbivore communities could be
understood by a combination of simple structure and disorder.
Much empirical work has focused on evidencing salient inter-
action patterns through the examination of particular model
species and their pairwise functional relationships. We pro-
pose that these insights could be combined with aggregated
data to construct models, such as our bipartite example (Fig.
5), that encapsulate both the essential functional structure and
the diversity and complexity of a realistic community, with few
parameters to estimate. Coherent global structure has indeed
been found in large-scale empirical studies involving thou-
sands of interactions, showing a limited set of distinct interac-
tion patterns (33). Our suggested approach may be seen as a
step toward combining local and global, species and ecosystem
perspectives.

Implications for Future Work. We have shown that, even when we
try to build a detailed picture of an ecological community, its
collective dynamics can often be understood from a few large-
scale properties that do not always follow the intuitive categories
of ecological mechanisms. Our work offers an outlook on what
complexity means in an ecological setting. Predicting the fate of
a certain species at a given locale, e.g., for conservation, may
require knowledge about every important feedback within its
environment, biotic and abiotic. However, one rarely needs all
these details at once to understand the aggregate properties of an
ecosystem, or the fate of most species most of the time. Instead,
the exhaustive study of ecological networks could also pave the
way toward finding new dimensions of simplicity at the collec-
tive level.

The idea of “disorder” does not restrict our approach to mod-
els with random interactions. Purely random systems are in some
sense special: The total absence of order is a peculiar feature in
the infinite space of possible communities. Instead, our results
suggest that predictions from a random model succeed wher-
ever nonrandom motifs interfere due to their number, hetero-
geneity, and mixing. Combining disorder and coherent structure

to understand complex objects has deep mathematical under-
pinnings: Terence Tao speaks of “a fundamental dichotomy
between structure and randomness, which in turn leads (roughly
speaking) to a decomposition of any object into a structured
(low-complexity) component and a random (discorrelated) com-
ponent.” (34).

While we have focused on equilibrium properties, the meth-
ods we used can extend to full dynamics, including stochastic-
ity (28), higher-order interactions (35), and even evolutionary
dynamics (36). In particular, a connection to other theories of
assembly, e.g., ref. 37, could be made by considering open ecosys-
tems or metacommunities with explicit immigration processes,
which could also lead to more-realistic abundance distribu-
tions (23).

Finally, we must address the general biological relevance of
these findings. Many ecologists have taken sides in a famous the-
oretical and empirical debate: whether biodiversity allows for
stable ecosystems (10, 38). Our work suggests a broader claim,
encompassing both sides: Biodiversity allows for stable laws, i.e.,
predictable relationships between various ecosystem properties
such as stability, functioning, and diversity. These relationships
may be idiosyncratic in small systems, but the more species-rich
and heterogeneous a community, the more it tends toward a
generic limit (see SI Appendix, Fig. S1) where many of its prop-
erties covary in a universal parameter space.

Could these generic patterns be precluded or favored by evo-
lution, which may either foster specialized structures or exploit
the universality and robustness of disorder? Understanding these
interactions with adaptive and evolutionary processes should be
at the heart of future developments.

Materials and Methods
Simulation Models. All simulation models are detailed in SI Appendix,
Numerical Experiments, with example models from Figs. 1–5 described in
SI Appendix, Table S1. For resource competition (Figs. 2 and 3), dynamical
coefficients are computed from the abundance ρa of resource a and its con-
sumption rate ξia by species i, both drawn as independent identically dis-
tributed (i.i.d.) random variables with variances σ2

ρ and σ2
ξ , as

ri =
R∑

a=1

ξiaρa, Di =
R∑

a=1

ξ
2
ia, Aij =

R∑
a=1

ξiaξja. [4]

For the predation model (Fig. 3), we randomly select, within each pair of
species (i, j), a prey i and predator j, draw βij as i.i.d. exponential variables
with mean β, and define

Aij = βij , Aji =−εβij , [5]

with ε as the biomass conversion efficiency. No trophic ordering is imposed
in the species pool. Finally, for mutualistic interactions with a linear func-
tional response (Fig. 4), interactions were rescaled so that

∑
j |Aij| ≤ 0.5Di ,

to prevent population explosion.

Community Properties. An R implementation of the algorithm used to
compare simulation results to predictions is maintained at github.com/
mrcbarbier/ecocavity-R, with example files.

Properties of the assembled community were measured in simulations,
and derived analytically in the reference model (see details in SI Appendix,
Reference Model and Community Properties). We focused here on five
properties,

T =
S∑

i=1

Ni , P =
S∑

i=1

riNi , φ=
1

S

S∑
i=1

Θ(Ni),

D−1
=

S∑
i=1

(
Ni

T

)2

, V =
1

S

S∑
i=1

vart(Ni(t)), [6]

with Θ(Ni) = 1 if Ni > 0, and 0 otherwise. Ecosystem functioning is charac-
terized by total biomass T and total productivity from external resources
P. Diversity is represented by two quantities: φ, the fraction of species that
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survive in the assembled state, and D, the inverse of Simpson’s index (39).
Among the many dimensions of ecological stability, we focus on empiri-
cally relevant variability V , the variance in time of species abundance due to
stochastic perturbations (40, 41). Finally, all these quantities were combined
into a single metric of relative error of the analytical predictions,

Error =
1

5

∑
x∈{T ,P,φ,D,V}

(
1

2
+

1

2

∣∣∣∣∣ xsimulated + xpredicted

xsimulated− xpredicted

∣∣∣∣∣
)−1

, [7]

which is symmetrical and has values in [0, 1].

Master Equation for the Stochastic Pseudospecies. In the disordered limit,
Eq. 1 can be transformed into a single implicit integral equation (see SI
Appendix, Reference Model and Community Properties) for the abundance
distribution P(N), given the distribution p(K) of carrying capacities,

P(N) =

∫ ∞
−∞

dz P̂(z)
∫ ∞

f(z)
dK p(K) δ

(
N−

K− f(z)

1− f ′(z)φσ2γv

)
, [8]

P̂(z) =N
(

z;φµ 〈N〉,φσ2
〈

N2
〉)

, [9]

where N (x; m, s2) denotes the normal distribution of x with mean m and
variance s2, and the state variables φ, 〈N〉, 〈N2〉, and v are computed implic-
itly through the moment equations

〈
Nk
〉

=
1

φ

∫ ∞
0

dN P(N) Nk for k = 0, 1, 2 [10]

v =
1

φ

∫ ∞
−∞

dz
P̂(z)

1− f ′(z)φσ2γv

∫ ∞
f(z)

dK p(K), [11]

which can be integrated numerically (see SI Appendix, Appendix: Numerical
Solution of the Reference Model). If f is linear and p(K) =N (K; 1, ζ2), then
P(N) is a truncated Gaussian (6) as seen in Fig. 3.
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