
ATP synthase from Trypanosoma brucei has
an elaborated canonical F1-domain and
conventional catalytic sites
Martin G. Montgomerya,1, Ond�rej Gahuraa,b,1, Andrew G. W. Lesliec, Alena Zíkováb, and John E. Walkera,2

aThe Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge CB2 0XY, United Kingdom; bInstitute of Parasitology,
Biology Centre, Czech Academy of Sciences, 37005 �Ceské Bud�ejovice, Czech Republic; and cThe Medical Research Council Laboratory of Molecular
Biology, Cambridge CB2 0QH, United Kingdom

Contributed by John E. Walker, December 18, 2017 (sent for review December 1, 2017; reviewed by Thomas M. Duncan and Wayne D. Frasch)

The structures and functions of the components of ATP synthases,
especially those subunits involved directly in the catalytic forma-
tion of ATP, are widely conserved in metazoans, fungi, eubacteria,
and plant chloroplasts. On the basis of a map at 32.5-Å resolution
determined in situ in the mitochondria of Trypanosoma brucei by
electron cryotomography, it has been proposed that the ATP syn-
thase in this species has a noncanonical structure and different
catalytic sites in which the catalytically essential arginine finger
is provided not by the α-subunit adjacent to the catalytic
nucleotide-binding site as in all species investigated to date, but
rather by a protein, p18, found only in the euglenozoa. A crystal
structure at 3.2-Å resolution of the catalytic domain of the same
enzyme demonstrates that this proposal is incorrect. In many re-
spects, the structure is similar to the structures of F1-ATPases de-
termined previously. The α3β3-spherical portion of the catalytic
domain in which the three catalytic sites are found, plus the cen-
tral stalk, are highly conserved, and the arginine finger is provided
conventionally by the α-subunits adjacent to each of the three
catalytic sites found in the β-subunits. Thus, the enzyme has a
conventional catalytic mechanism. The structure differs from pre-
vious described structures by the presence of a p18 subunit, iden-
tified only in the euglenozoa, associated with the external surface
of each of the three α-subunits, thereby elaborating the
F1-domain. Subunit p18 is a pentatricopeptide repeat (PPR) protein
with three PPRs and appears to have no function in the catalytic
mechanism of the enzyme.
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The ATP synthases, also known as F-ATPases or F1Fo-
ATPases, are multisubunit enzyme complexes found in

energy-transducing membranes in eubacteria, chloroplasts, and
mitochondria (1, 2). They make ATP from ADP and phosphate
under aerobic conditions using a proton-motive force (pmf),
generated by respiration or photosynthesis, as a source of energy.
To date, studies of the subunit compositions, structures, and
mechanism of the ATP synthases have been confined mainly to
the vertebrates, especially humans and bovines, and to various
fungi, eubacteria, and chloroplasts of green plants. These studies
have established the conservation of the central features of these
rotary machines. They are all membrane-bound assemblies of
multiple subunits organized into membrane-intrinsic and
membrane-extrinsic sectors.
The membrane-extrinsic sector, known as F1-ATPase, is the

catalytic part in which ATP is formed from ADP and inorganic
phosphate. It can be detached experimentally from the mem-
brane domain in an intact state, and retains the ability to hy-
drolyze, but not synthesize, ATP. The membrane intrinsic sector,
sometimes called Fo, contains a rotary motor driven by pmf and
is connected to the extrinsic domain by a central stalk and a
peripheral stalk. The enzyme’s rotor constitutes the central stalk
and an associated ring of c-subunits in the membrane domain.
The central stalk lies along an axis of sixfold pseudosymmetry

and penetrates into the α3β3-domain, where the catalytic sites of
the enzyme are found at three of the interfaces of α- and
β-subunits. The penetrant region of the central stalk is an
asymmetric α-helical coiled coil, and its rotation inside the α3β3-
domain takes each catalytic site through a series of conforma-
tional changes that lead to the binding of substrates and the
formation and release of ATP.
During ATP hydrolysis in the experimentally detached F1-

domain, the direction of rotation, now driven by energy released
from the hydrolysis of ATP, is opposite to the synthetic sense.
Extensive structural analyses, mostly by X-ray crystallography at
atomic resolution, have shown that the F1-domains of the en-
zymes from bovine (3–23) and yeast (24–30) mitochondria,
chloroplasts (31, 32), and eubacteria (33–39) are highly con-
served. Not only is there conservation of the subunit composi-
tions of the α3β3-domain and the central stalk (γ1e1 in eubacteria
and chloroplasts, and γ1δ1 plus an additional unique subunit,
confusingly called e, attached to the δ-subunit in mitochondria
orthologs), but also the sequences of subunits are either highly
conserved or absolutely conserved in many key residues. This
extensive conservation includes residues in catalytic interfaces
and in the catalytic sites themselves. In the β-subunits, they
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include a hydrophobic pocket where the adenine ring of ADP (or
ATP) is bound; a P-loop sequence that interacts with the α-, β-,
and γ-phosphates of ATP and provides residues involved either
directly or indirectly via water molecules in the binding of a hexa-
coordinate magnesium ion; and, in the adjacent α-subunit, an
“arginine finger” residue, which senses whether ADP or ATP is
bound to the catalytic site. Indeed, these catalytic features are
common to a wide range of NTPases (40, 41), and together with
conserved structural features are characteristic of the canonical
ATP synthase.
Based on a structural model at 32.5-Å resolution derived by

electron cryotomography (ECT), it has been suggested recently
that the structure of the F1-catalytic domain and its catalytic
mechanism in the ATP synthase from Trypanosoma brucei have
diverged extensively from the canonical complex in an un-
precedented manner (42). It has been proposed that the struc-
ture of this F1-domain is much more open than those described
in other species, and that the “arginine finger” is provided not by
the α-subunit, but rather by an additional p18-subunit found only
in the euglenozoa (43–49). Here we examine this proposal in
the context of a structure of the F1-domain of the T. brucei
ATP synthase determined by X-ray crystallography at 3.2-
Å resolution.

Results and Discussion
Structure Determination. The crystals of the T. brucei F1-ATPase
have the unit cell parameters a = 124.2 Å, b = 206.4 Å, and c =
130.2 Å, with α = γ = 90.0° and β = 104.9°, and they belong to
space group P21, with one F1-ATPase in the asymmetric unit.
Data processing and refinement statistics are presented in Table
S1. The final model of the complex contains the following resi-
dues: αE, 20–125, 137–416, and 423–560; αTP, 22–127, 137–414,
and 421–560; αDP, 22–125, 137–416, and 424–560; βE, 6–492; βTP,
7–494; βDP, 8–488; γ, 2–58 and 66–285; δ, 5–16 and 32–165; e, 1–
66; and three copies of p18, residues 6–169, 6–167, and 6–170,
attached to the αTP-, αDP-, and αE-subunits, respectively (see
below). An ADP molecule and a magnesium ion are bound to
each of the three α-subunits and to the βTP- and βDP-subunits,
whereas the βE-subunit has a bound ADP molecule without a
magnesium ion. A similar nucleotide occupancy of catalytic and
noncatalytic sites has been reported in the bovine F1-ATPase

crystallized in the presence of phosphonate (20) and in the
F1-ATPase from Caldalkalibacillus thermarum (38). These struc-
tures are interpreted as representing a posthydrolysis state in
which the ADP molecule has not been released from the
enzyme.
An unusual feature of the T. brucei F1-ATPase is that the

diphosphate catalytic interface is more open than the tri-
phosphate catalytic interface, similar to the F1-ATPase from
Saccharomyces cerevisiae (24), whereas the converse is observed
in all other structures (Table S2). As usual, the empty interface is
the most open of the three catalytic interfaces (Table S2). The
rotational position of the γ-subunit (determined by superposition
of crown regions of structures) is +23.1° relative to the bovine
phosphate release dwell, which is at or close to the catalytic dwell
at +30° in the rotary catalytic cycle (6).

Structure of the F1-ATPase from T. brucei. The structure consists of
an α3β3-complex with α- and β-subunits arranged in alternation
around an antiparallel α-helical coiled coil in the γ-subunit (Fig.
1). The rest of the γ-subunit sits beneath the α3β3-complex and is
associated with the δ- and e-subunits. Together, these three
subunits form the central stalk. Thus, the overall structure of this
catalytic domain of the ATP synthase complex is very close to
structures of canonical F1-ATPases determined in the mito-
chondria of other species, and in eubacteria and chloroplasts.
For example, in a comparison of backbone atoms with the bovine
F1-ATPase crystallized in the presence of phosphonate (20), the
rmsd is 3.24 Å. As in these other canonical structures, each of the
α- and β-subunits in the T. brucei F1-ATPase has three domains.
The N-terminal domain (residues 1–103 and 1–88 in α- and
β-subunits, respectively) consists of a six-stranded β-barrel in
both α- and β-subunits, and these six β-domains are associated in
a stable annulus known as the “crown”. The central domain
(residues 104–389 and 89–365 in α- and β-subunits, respectively)
provides the nucleotide-binding sites (Fig. S1). The C-terminal
domain consists of a bundle of seven and four α-helices in α- and
β-subunits, respectively. The crown stabilizes the entire F1-domain,
and, during rotary catalysis, the rest of the α- and β-subunits
swing from this crown in response to the rotation of the
asymmetrical α-helical coiled-coil region of the γ-subunit.
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Fig. 1. Structure of the F1-ATPase from T. brucei.
The α-, β-, γ-, δ-, e-, and p18-subunits are shown in
red, yellow, blue, green, magenta, and cyan, re-
spectively. (A and B) Side (A) and top (B) views in
cartoon representation. (C–E) Side views in surface
representation rotated 180° relative to A. (C) The
bovine enzyme (12). (D and E) The T. brucei enzyme.
In D, p18 has been omitted, and only additional re-
gions not found in the bovine enzyme are colored;
the rest of the structure is gray. The two additional
sections in the α-subunit (red) interact with the p18-
subunit. (E) p18 is present and is shown interacting
with the α-subunit.
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The six bound ADP molecules occupy nucleotide-binding sites
that are very similar in structure to those in other ATP synthases.
They retain the conventional features of a hydrophobic pocket to
bind the adenine ring, and a characteristic P-loop sequence
(GDRQTGKT in the α-subunit, residues 182–189; GGAGVGKT
in the β-subunit, residues 162–169) interacting with the α- and
β-phosphates of ADP or ATP (Fig. 2). The five magnesium ions
are hexacoordinated by a threonine residue (residues 189 and
169 in α- and β-subunits, respectively) and four water molecules in
each case. In the canonical enzymes, the nucleotides bound to the
β-subunits participate in catalysis and exchange during a catalytic
cycle, whereas those bound to the α-subunits are permanently
bound to the enzyme and do not participate in catalysis. The
close similarity of the structures of the T. brucei and bovine
F1-ATPases suggests strongly that the α- and β-subunits in the
T. brucei enzyme have the same, or very similar, roles to those
in the bovine enzyme. Thus, the nucleotide-binding sites in the
β-subunits are part of the catalytic sites of the enzyme, the other
important catalytic feature being αArg-386, the arginine finger
residue, which is positioned in the catalytic site in the βDP-
subunit from T. brucei, for example, in exactly the same position
occupied by the equivalent residue, αArg-373, in the bovine
enzyme (Fig. 2).
Despite the general conservation of the structure and mech-

anism of the T. brucei F1-ATPase, the euglenozoan enzyme is
elaborated relative to the bovine enzyme, for example. First,
the α-subunit in T. brucei is cleaved in vivo by proteolysis at two
adjacent sites, removing residues 128–135 (Fig. S2) (50). The
cleavage of α-subunits has been noted in other euglenozoan
ATP synthases as well (48, 51–53), although the sites of cleavage
have not been characterized precisely. In the bovine enzyme, the
equivalent region (residues 117–123) forms an external loop
(Fig. S2). These cleavages have no evident impact on the stability
of either the α-subunit or the F1-ATPase complex itself. Second,
the α-, β-, δ-, and e-subunits of the T. brucei enzyme have ad-
ditional surface features that are not found in the known struc-
tures of other F1-ATPases (Fig. 1). The most extensive are
residues 483–498 and 536–560 in the C-terminal region of the
α-subunit, and their significance is discussed below. The addi-
tional surface features in the β-, δ-, and e-subunits are residues
485–499, 1–17, and 39–50, respectively. Those in the β- and
e-subunits have no obvious functions. The resolved residues of
the additional sequence in the δ-subunit increases its area of
interaction with the γ-subunit from 1,000 Å2 to 1,700 Å2. The
C-terminal region of the γ-subunit from residues 286–304, al-
though not resolved in the structure, is 19 residues longer than in
the bovine enzyme, for example, and in the intact ATP synthase

it could extend beyond the crown region, possibly making con-
tacts, permanently or transiently, during rotary catalysis with the
oligomycin sensitivity conferral protein (OSCP), a component of
the peripheral stalk. In other species, the OSCP is bound to the
F1-domain by the N-terminal regions of the three α-subunits (19,
29, 37, 54).
Third, and most significantly from a structural standpoint, the

T. brucei F1-ATPase has an additional p18-subunit bound to each
of its three α-subunits (50). The buried surface areas of in-
teraction of the p18-subunits with their partner αE-, αTP-, and
αDP-subunits are 2,500, 2,600, and 2,500 Å2, respectively. All
three p18-subunits are folded into seven α-helices, H1–H7, with
an unstructured C-terminal region from residues 151–170. The
subunit is bound via H2 and H4 to the surface of the nucleotide-
binding domain of an α-subunit and via H5 and H6 to the surface
of its C-terminal domain. H7 is not in contact with the α-subunit
(Fig. S2) but is bound to H6. The unstructured C-terminal tail
interacts with the C-terminal domain of the α-subunit, traveling
toward, but not entering, the noncatalytic interface with the
adjacent β-subunit (Figs. 1 and 3 and Fig. S3). In this region, the
extended C-terminal element of the p18-subunit interacts with
the two additional segments of sequence (residues 483–498 and
536–560) found in the T. brucei α-subunit (Fig. S3). The first
additional segment is largely extended, starting with one α-heli-
cal turn (residues 483–485). The second additional segment
starts with one α-helical turn (residues 536–539), is followed by
an extended region (residues 540–544), and terminates with an
α-helix (residues 546–558) that doubles back into the non-
catalytic interface and interacts with the extreme C-terminal end
of the p18-subunit.

Role of the p18-Subunit. As noted previously, the sequence of the
p18-subunit is related to the pentatricopeptide repeat (PPR)
proteins (55), which are found in association with RNA mole-
cules primarily in mitochondria and chloroplasts, as well as in
some bacterial species. These proteins are characterized by a 35-
aa degenerate sequence motif related to, but distinct from, the
motif in the tetratricopeptide repeat (TPR) proteins (56). The
PPR repeat is folded into a helix-turn-helix motif, and PPR
proteins usually contain several tandem repeats associated into
a superhelix, with a concave groove on one face that serves
as a binding surface for RNA ligands. The p18-subunit of the
F1-ATPase from T. brucei is predicted to be a PPR protein with
three PPRs, whereas it was previously thought to have two PPRs
(50, 55). Although the probability score (49%) is rather low, as
reflected in the weak correspondence of the sequences of the
three predicted PPRs to the PPR consensus (Fig. S4), the

F429 (F424)

V170 (V164)

R386 (R373)

T169 (T163)

K168 (K162)

Y350 (Y345)

K441 (Q432)

V190 (V177)

Q185 (Q172)

T189 (T176)

K188 (K175)

R375 (R362)

BA

Fig. 2. Conservation of the noncatalytic and cata-
lytic nucleotide-binding sites in the F1-ATPase from T.
brucei. (A) The noncatalytic site in the αDP-subunit
superposed onto the equivalent site in the bovine
enzyme (12). (B) The catalytic site in the βDP-subunit
superposed onto the equivalent site in the bovine
enzyme. Residue αR386 is the catalytically essential
arginine finger (equivalent to αR373 in the bovine
protein). Residues contributed by α- and β-subunits
are shown in red and yellow, respectively (with the
bovine residues in muted colors), and the bound ADP
molecules are in black in the T. brucei enzymes and in
gray in the bovine enzymes. The green and red
spheres represent magnesium ions and water mole-
cules, respectively (in T. brucei only). The residue
numbers in parentheses denote the equivalent bo-
vine residues.
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topography of p18 closely follows the topographies of other well-
predicted and well-established PPR proteins, such as the RNA-
binding PPR protein PPR10 from Zea mays (57) (Fig. S4).
This structural comparison (rmsd 2.3 Å) illustrates that, as

predicted, the p18-subunit has three PPRs, consisting of H1 plus
H2, H3 plus H4, and H5 plus H6. H7 could be a relic of the first
element of a fourth PPR, in which H8 has evolved into the ex-
tended C-terminal tail region of the p18-subunit (Fig. 3B).
However, p18 does not have a site equivalent to the RNA-
binding site in PPR10, and other residues required for RNA
binding in α-helix-7 of PPR10 have been substituted in H7 of
p18. Therefore, there is no evidence suggesting that p18 has any
role in binding an RNA molecule, and its role in the T. brucei
F1-ATPase remains obscure, although its presence is essential
for assembly of the enzyme (50). The sequences of p18-subunits,
including the PPR repeats, are highly conserved across the
euglenozoa, suggesting that the structure and the mode of inter-
action of the various p18-proteins with their cognate F1-ATPases
are conserved as well (Fig. S5).

Structure of the T. brucei F1-ATPase and the ECT Map. The structure
of the F1-ATPase from T. brucei described above at 3.2-Å res-
olution was docked into the map of the ATP synthase complex
from the same organism at 32.5-Å resolution derived by ECT of
mitochondrial membranes (Fig. 4). The structure of the catalytic
domain described herein closely fits the region of the map with
the mushroom shape, characteristic of the catalytic F1-domain of
other ATP synthases. Thus, this correspondence is also consis-
tent with the T. brucei ATP synthase having a canonical catalytic
domain elaborated by the attachment of the three p18-subunits.
It does not support the proposal in Fig. 4 C and D)), where the
map has been interpreted as having a catalytic domain in which
the nucleotide-binding and C-terminal domains of the α-subunits
are displaced outward away from the central stalk, and the role
of the p18-subunit, bound in an unspecified position, is to pro-
vide the catalytically essential arginine finger residue (42).
Two other features in the ECT map can also be interpreted in

terms of the characterized structures of canonical ATP syn-
thases. First, the uninterpreted region of density above the
F1-domain in Fig. 4 corresponds to the upper part of the peripheral
stalk in other ATP synthases. This region is occupied by the
OSCP in the eukarya, and by the orthologous δ-subunit in
eubacterial and chloroplast enzymes. As the ATP synthase in T.
brucei and other euglenozoa that have been examined contain
orthologs of the OSCP (49, 58, 59), it is highly probable that the
T. bruceiOSCP provides this feature in the ECT map and that, as

in the well- characterized ATP synthases, it is attached to the F1-
domain via interactions with the N-terminal regions of the three
α-subunits, which extend from the “top” of the crown domain.
The role of the peripheral stalk in ATP synthases is to provide
the stator of the enzyme with integrity by connecting the α3β3-
domain to the essential ATP6 (subunit a in eubacteria, subunit
IV in chloroplasts) in the membrane domain. ATP6 and ortho-
logs, together with the c-ring in the rotor, provide the trans-
membrane pathway for protons (2). To maintain the integrity of
this pathway, and to keep ATP synthesis coupled to proton
motive force, the static ATP6 and the rotating c-ring must be
kept in contact by the action of the peripheral stalk.
The peripheral stalk is the most divergent of the essential fea-

tures of ATP synthases (2). Apart from the OSCP and orthologous
δ-subunits, the subunit compositions, sequences, and structures of
the related and structurally simpler eubacterial and chloroplast
peripheral stalks differ greatly from the more complex structurally
characterized peripheral stalks in mitochondrial enzymes, al-
though they are all dominated by approximately parallel, anti-
parallel, and apparently rigid long α-helical structures connecting
the OSCP to the ATP6 subunit (and orthologs) running
alongside the catalytic domains. The peripheral stalks of ATP
synthases in the mitochondria of euglenozoa (59) and in the
green alga, Polytomella (60), appear to be even more divergent
than those in characterized mitochondrial enzymes. Their
subunit compositions are more complex, and as is evident in the
map feature to the left of the F1-domain in Fig. 4 and in other
published images, they are thicker and apparently more robust
than structurally characterized peripheral stalks. More details
are likely to emerge in the near future, most likely from the
application of cryo-EM imaging of individual particles of these
enzymes. These endeavors are driven by the imperative to use
knowledge of the structure of the ATP synthase from T. brucei
(61, 62) to aid the development of new drugs to treat patients with
sleeping sickness by finding selective inhibitors of its activity.

Materials and Methods
Crystallization of F1-ATPase from T. brucei. The F1-ATPase purified from T.
brucei (50) was crystallized at 4 °C by the microbatch method under paraffin
oil. The enzyme was dissolved at a protein concentration of 9.0 mg/mL in
buffer consisting of 20 mM Tris·HCl pH 7.5, 100 mM NaCl, 10 mMMgSO4 and
1 mM ADP. This protein solution was mixed in wells in microbatch plates
with an equal volume of 7.7% (wt/vol) PEG 10,000 dissolved in a buffer
containing 100 mM 2-(N-morpholino)-ethanesulfonic acid pH 6.0 under a
layer of paraffin oil. The plates were kept at 4 °C. Crystals appeared after
48 h, and were harvested 8 d later. They were cryoprotected by the addition
of 15 μL of a solution containing 10 mM Tris·HCl pH 8.0, 10 mM NaCl, 5 mM
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A B Fig. 3. Structure of the p18-subunit of the F1-
ATPase from T. brucei, and its relation to a PPR
protein. (A) A p18 subunit (cyan) in cartoon repre-
sentation, folded into α-helices H1–H7, with an ex-
tended C-terminal region from residues 151–170,
bound to the αDP-subunit in solid representation
(red). The N-terminal, nucleotide-binding, and C-
terminal domains of the α-subunit are indicated by
Crown, NBD, and C-ter, respectively; the bound ADP
molecule is in black. (B) Comparison of the p18-sub-
unit with an example PPR protein, the PPR10 protein
from Z. mays (yellow) (57). PPR10 has 18 PPRs; the
structures of PPRs 11–14 are shown (Fig. S3). The
orange region represents the backbone of an eight-
residue ribonucleotide bound to PPR10. The three
PPRs in the p18-subunit correspond to H1 plus H2
(residues 20–28 and 33–45), H3 plus H4 (residues 52–
64 and 78–93), and H5 plus H6 (residues 99–
112 and 115–126). PPR10 has an additional α-helix,
labeled 8, which together with α-helix 7 constitutes a
fourth PPR.
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MgSO4, 0.5 mM ADP, 50 mM 2-(N-morpholino)-ethanesulfonic acid pH 6.0,
5% (wt/vol) PEG 12,000, and 30% (vol/vol) glycerol to each well. After 5 min,
the crystals were harvested with a MicroLoop (MiTeGen), flash-frozen, and
stored in liquid nitrogen.

Data Collection and Structure Determination. X-ray diffraction data were
collected at 100 K from cryoprotected crystals with a PILATUS3 2M detector
(Dectris) at a wavelength of 0.966 Å at the European Synchrotron Radiation
Facility, Grenoble, France, using the MXPressE automated screening protocol
(63, 64). Diffraction images were integrated with iMOSFLM (65), and the
data were reduced with AIMLESS (66). Anisotropic correction was applied
using STARANISO (staraniso.globalphasing.org). Molecular replacement us-
ing the α3β3-domain from the structure of the ground state structure of
bovine F1-ATPase [Protein Data Bank (PDB) ID code 2JDI] was carried out
with PHASER (67). Nucleotides, magnesium ions, and water molecules were
removed from the model. Rigid body refinement and restrained refinement
were performed with REFMAC5 (68). Manual rebuilding was performed with
Coot (69), alternating with refinement performed with REFMAC5. For cal-
culations of Rfree, 5% of the diffraction data were excluded from the re-
finement. Additional electron density features, adjacent to the α-subunits,
were attributed to p18. Initially, poly-Ala α-helices were fitted into this ad-
ditional density with Coot (69), and the assignment of the direction of the
α-helices was guided by secondary structure predictions performed with PSIPRED

(70). This prediction also detected structural homology of p18 with PPR10 from Z.
mays (PDB ID code 4M59). Stereochemistry was assessed with MolProbity (71),
and images of structures and electron density maps were prepared with PyMOL
(72). Structural comparisons of T. brucei F1-ATPase with bovine F1-ATPase
inhibited with dicyclohexylcarbodiimide (PDB ID code 1E79) (12), bovine
F1-ATPase crystallized in the presence of phosphonate (PDB ID code 4ASU) (20),
bovine F1-ATPase inhibited with ADP-AlF4 (PDB ID code 1H8E) (16), and the
ground state structure of yeast F1-ATPase (PDB ID code 2HLD) (24) and of the
p18-subunit from T. brucei with PPR10 from Z. mays (PDB ID code 4M59) (57)
were done with Coot (69) and PyMOL (72). The p18-subunit was assessed for the
presence of PPR and TPR sequences with TPRpred (73), and α-helices were
assigned according to PyMOL.
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