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“Functional connectivity” techniques are commonplace tools for
studying brain organization. A critical element of these analyses is
to distinguish variance due to neurobiological signals from variance
due to nonneurobiological signals. Multiecho fMRI techniques are a
promising means for making such distinctions based on signal decay
properties. Here, we report that multiecho fMRI techniques enable
excellent removal of certain kinds of artifactual variance, namely,
spatially focal artifacts due to motion. By removing these artifacts,
multiecho techniques reveal frequent, large-amplitude blood oxygen
level-dependent (BOLD) signal changes present across all gray matter
that are also linked to motion. These whole-brain BOLD signals could
reflect widespread neural processes or other processes, such as alter-
ations in blood partial pressure of carbon dioxide (pCO2) due to ven-
tilation changes. By acquiring multiecho data while monitoring
breathing, we demonstrate that whole-brain BOLD signals in the
resting state are often caused by changes in breathing that co-occur
with headmotion. These widespread respiratory fMRI signals cannot
be isolated from neurobiological signals by multiecho techniques
because they occur via the same BOLD mechanism. Respiratory sig-
nals must therefore be removed by some other technique to isolate
neurobiological covariance in fMRI time series. Several methods for
removing global artifacts are demonstrated and compared, and
were found to yield fMRI time series essentially free of motion-
related influences. These results identify two kinds of motion-
associated fMRI variance, with different physical mechanisms and
spatial profiles, each of which strongly and differentially influences
functional connectivity patterns. Distance-dependent patterns in co-
variance are nearly entirely attributable to non-BOLD artifacts.
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Resting state functional magnetic resonance imaging (fMRI)
has become a major technique for investigating human and

nonhuman brain organization. In a typical experiment, a subject
lies quietly in the scanner for 5 min or longer while spontaneous
fMRI signals are recorded. The feature of interest in the data is
usually covariance between time series in different parts of the
brain. A large body of work indicates that covariance in spon-
taneous fMRI signals can serve as an index of functional re-
latedness between brain regions (reviewed in refs. 1, 2).
In addition to reflecting neural activity, fMRI signals reflect a

variety of nonneurobiological processes, including thermal noise
and multiple sources of structured noise. Examples of structured
noise sources include head motion, pulsation of brain tissue during
cardiac cycles, scanner hardware artifacts, and artifacts caused by
lung expansion during respiration (other sources exist; reviewed in
ref. 3). Multiple studies of human fMRI signals indicate that
neurobiological signals are a relatively small proportion of signal
variance, on the order of 5–20% of the recorded signal (4, 5).
A critical element of any functional connectivity analysis is thus

to distinguish between neurobiological and nonneurobiological
signals in the fMRI time series. Failure to make these distinctions

can lead to false conclusions because sources of structured noise,
and thus structured covariance, often scale with factors of interest.
For example, children move more than young adults, and it is now
recognized that many functional connectivity properties initially
reported to be related to development were actually properties of
motion artifacts that were more prevalent in younger subjects (6, 7).
One way to separate neurobiological signals from many non-

neurobiological signals is to characterize fMRI signal decay prop-
erties. fMRI signal at a voxel can be approximated as a
monoexponential decay following the formula SðtÞ= S0e

−t=T2p,
where S0 is the initial signal intensity upon radiofrequency excitation
at t = 0 and T2* is the time constant of signal decay (signal decay
rate can also be expressed as R2* = 1/T2*). Most fMRI datasets are
single-echo datasets in which signal is acquired once at a delay [echo
time (TE)] of ∼30–35 ms following excitation. In single-echo data, if
signal changes at a voxel from volume to volume, it cannot be de-
termined whether the change is due to a changed decay rate or a
changed starting intensity. Multiecho sequences acquire signals
multiple times per excitation, allowing investigators to disambiguate
S0 from R2* effects (SI Appendix, Fig. S1).
Separation of S0 from R2* effects can be helpful in fMRI data

because neural activity principally changes R2* but not S0,
whereas many sources of structured noise (e.g., head motion)
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signals have distinct physical and spatial bases, and each can
strongly and differentially influence signal patterns in fMRI data.
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principally alter S0 but not R2*. fMRI signals sensitive to
changes in R2* are commonly called blood oxygen level-
dependent (BOLD) signals, because a major influence on R2*
is the amount of deoxygenated hemoglobin in a voxel. This
amount is affected by vascular responses to recent neural activity
(a signal of interest) and by the overall oxygen and carbon di-
oxide content of incoming arterial blood (contingent on lung
ventilation, not a signal of interest).
The multiecho analyses in this paper were motivated by the

fact that it has been difficult to remove the influence of motion
artifact from single-echo fMRI data (reviewed in ref. 8). The
importance of identifying and removing motion artifact has been
amply demonstrated in the developmental, clinical, and aging
literature in recent years (e.g., refs. 9, 10), but this issue is vital
beyond these domains. Recent analyses of neurotypical adults in
the NIH-sponsored Human Connectome Project have indicated
that numerous behavioral (e.g., working memory) and physio-
logical (e.g., obesity) variables correlate with head motion and
with distance-dependent patterns of covariance in fMRI data
that are caused by head motion (11, 12). In addition, patterns of
dynamics in fMRI signals are now reported to be largely
explained by head motion (13). The existence of possible genetic
predispositions to motion (14), and therefore combined neural
and artifactual correlates of motion, creates an additional,
challenging set of influences to untangle during data analysis.
Progress in functional connectivity studies of all kinds is there-
fore contingent on convincing separation of motion artifact from
neurobiological signals.
Several studies have provided evidence that denoising tech-

niques based on multiecho decay can reduce motion artifact
(e.g., refs. 15–17), but the extent of motion artifact removal is in-
completely known (reviewed in ref. 18). We thus set out to de-
termine whether multiecho- independent component analysis
(ME-ICA) eliminated motion artifacts in fMRI data. Surpris-
ingly, we found that functional connectivity properties became
more strongly tied to motion after multiecho denoising, despite
the fact that motion artifact was clearly being removed from the
data. This result led to the realization that global BOLD signals
commonly accompany motion in fMRI data, and that many of
these global BOLD signals are due to changes in respiration
(rather than motion, per se). We present and compare several
data-driven methods to remove such signals, yielding time series
essentially free of the influence of motion.

Results
Separation of S0 from R2* Effects Reveals Prominent, Brain-Wide
BOLD Signals. ME-ICA denoising was applied to 89 four-echo
datasets [these datasets were first published by Kundu et al. (16)
and will be referred to as ME datasets]. ME-ICA first identifies
spatially structured signals in the datasets via ICA and categorizes
the signals according to how strongly they reflect S0 versus R2*
modulation over time. ME-ICA then discards (most) S0-dependent
signals and retains (most) R2*-dependent signals following auto-
mated criteria (i.e., without training or user intervention). We are
interested in the variance before denoising and the variance
retained and discarded by ME-ICA. Data before denoising are il-
lustrated via the “optimally combined” image, which is a weighted
(by T2*) average of the multiple images, following the nomencla-
ture of Kundu et al. (16). Data from two subjects are presented in
Fig. 1 to illustrate how signals are separated by ME-ICA (these
scans are representative; such plots for each ME subject are shown
in Online Movie 1 (movies can be seen or downloaded at www.
jonathanpower.net/paper-multiecho.html).
Two aspects of signal separation, visually evident in Fig. 1, will

be explored in this report. First, in the discarded S0-dependent
(non–BOLD-like) components, signals are often related to head
motion, or to sustained shifts in head position. These signals are
usually not similar across the brain (vertically, there are few

uniform bands of black or white; instead, a “salt and pepper”
appearance is typical). The characteristics of this variance will be
explored later in this report. Second, in the retained R2*-de-
pendent (BOLD-like) components, vertical black and white
bands representing signal increases and decreases across all gray
matter are conspicuous. We will use the word “global” to refer to
signals present across most or all of gray matter, and we will use
the mean signal across cortical voxels as a global signal [across
ME subjects, this mean cortical signal correlates at r = 0.99 ±
0.01 with the signal of all gray matter (cortex, cerebellum, and
subcortical nuclei) and at r = 0.99 ± 0.01 with the mean signal of
the whole brain (all gray matter, white matter, and ventricles)].
The separation of nonglobal versus global variance into non–
BOLD-like versus BOLD-like components is typical of every
subject of the ME cohort (Online Movie 1 and SI Appendix,
Table S1; the global signals in optimally combined and ME-ICA
denoised images correlate at r = 0.95 ± 0.08 across subjects).
ICA signal separation techniques, which optimize spatial in-

dependence among signals, do not separate spatially widespread
signals from spatially specific signals in these data [SI Appendix,
Supplemental Results (for elaboration) and SI Appendix, Fig. S2].
A corollary is that multiple BOLD-like ICA components (and
virtually no non–BOLD-like components) include the global
signal and, further, that there is no way to sort components to
separate global from focal BOLD-like signals (SI Appendix,
Supplemental Results). Given these considerations, to ensure
that the global BOLD signals identified by ME-ICA were truly
R2* signals, we also fit the multiecho data to the equation
SðtÞ= S0e

−t=T2pto yield S0 and R2* estimates at each voxel and
time point. This procedure, which we term “FIT,” produced
similar signal separation as ME-ICA and clearly indicated that
global signals were BOLD signals (SI Appendix, Fig. S3 and
Table S1; the global signals in ME-ICA denoised and FIT R2*
images correlate at r = 0.96 ± 0.06 across subjects).

Prominent, Brain-Wide BOLD Signals Are Related to Breathing
Patterns. Brain-wide BOLD signals may represent widespread
neural processes (19–23). On the other hand, brain-wide BOLD
modulation can also occur via “nonneural” mechanisms in-
volving changes in arterial partial pressure of carbon dioxide
(pCO2) or partial pressure of oxygen (24–27). For example,
hypoventilation maneuvers like breath-holding cause transient
hypercapnia, which increases cerebral blood flow, which in-
creases BOLD signal throughout the brain. In contrast, hyper-
ventilation maneuvers reduce pCO2 and cause an opposite set of
effects on BOLD signals. Spontaneous changes in respiratory
rates in quietly resting subjects could therefore also cause global
modulations of BOLD signals.
To help disambiguate whether neural versus respiratory pro-

cesses cause global signal modulations, we obtained three-echo
resting state fMRI data from 12 subjects (two runs per subject)
while monitoring breathing patterns with a respiratory belt and heart
rate with a pulse oximeter. These data are a subset of scans from a
larger task fMRI study on object naming (we call these NA scans).
Data from these NA subjects underwent ME-ICA and FIT proce-
dures. The multiecho fits to NA data are noisier than the ME data
because fewer echoes were acquired (three vs. four) and because the
NA voxels are smaller (27 vs. 62 mm3) (there is therefore a smaller
ratio of “signal” to thermal noise in the NA data). Nineteen of the 24
NA scans completed ME-ICA and FIT (ME-ICA failed in several
scans; SI Appendix, Supplemental Methods).
The breathing patterns in NA subjects differed across subjects,

as can be seen in the blue respiratory belt traces of Fig. 2. In
subjects with variable respiratory patterns, such as deep breaths
or periods of relatively shallow breathing, prominent, widespread
changes in BOLD signals are seen under both ME-ICA and FIT
procedures (Fig. 2A). In contrast, in subjects with relatively
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constant respiratory rhythms (Fig. 2A, Bottom Left), global
modulations of signals are much less pronounced. Plots similar
to those in Fig. 2A (but also including the ME-ICA time series)
can be seen for each NA subject in Online Movie 2.
Statistically, there is a strong relationship across subjects be-

tween variability in respiratory patterns and fluctuations in global
fMRI signals (Fig. 2B). To capture the variability of the re-
spiratory patterns, the respiratory belt waveforms (which are in
arbitrary units) were z-scored, the envelope of the resulting
waveform was calculated, and the SD of this envelope was then
calculated. Those measures correlated with the SD of the global
fMRI signal at r = 0.69, r = 0.64, and r = 0.59 in TE2, FIT R2*,
and ME-ICA denoised data, respectively, which are all signifi-
cant correlations (P < 0.001, P < 0.003, and P < 0.008, respec-
tively). In contrast, there is no significant correlation between
variability in heart rate and fluctuations in global fMRI signals:
r = 0.07, r = 0.03, and r = −0.16 are the respective correlations in
TE2, FIT R2*, and ME-ICA denoised data.
To further link fMRI signal changes to respiratory patterns, we

examined the temporal relationship between breathing and
global fMRI signals. We modeled the mean gray matter signal
after single deep breaths in NA subjects and compared these
signal modulations with those seen in the literature after
instructed deep breaths or after spontaneous breaths. The timing
and duration of signal modulation in the NA data (e.g., NA11)
match those found in other reports (SI Appendix, Fig. S4): a
signal peak around 5–7 s after the breath, followed by a long
trough with a nadir between 15 and 20 s postbreath.

These results indicate that respiration-induced changes in
pCO2 are responsible for a major portion of global BOLD
fluctuations in the NA data. The characteristics of respiratory
signals in the NA data are that they are slow, large-amplitude
changes in gray matter signals that attenuate with depth in the
white matter (by depth, we mean distance from gray matter, not
the cranium). Many global signals in the ME datasets share these
characteristics. For example, in the NA data, several black bands
in Fig. 2 are preceded by head motion and large inspirations.
Such patterns (minus the respiratory trace) are also seen in the
ME data in Fig. 1. These patterns are consistent with deep
breaths that (i) move the head and (ii) transiently alter blood
gases to produce prolonged, brain-wide decreases in BOLD
signal. We will show below that both respiratory variability (in
NA data) and global covariance (in NA and ME data) are
strongly linked to head motion, findings that are consistent with
respiration causing a substantial portion of head motion.

Two Methods to Remove Brain-Wide Signals. Multiecho techniques
can separate many artifacts from BOLD signals in resting state
fMRI data, but multiecho techniques cannot distinguish between
respiratory signals and neurobiological signals because they arise
from the same BOLD mechanism. On first principles, global
respiratory signals of the kind demonstrated here will (i) spuri-
ously increase covariance in time series and (ii) mimic dynamics
in time series. It is thus essential to remove (or control for) such
respiratory effects to draw valid neurobiological conclusions
from BOLD data.

Fig. 1. ME-ICA denoising separates non–BOLD-like signals from BOLD-like signals. (Top) ME-ICA results for two ME subjects are shown. (Bottom) Colored
masks denote FreeSurfer-derived brain compartments used to organize the voxels in heat maps (colored bars). CSF, cerebrospinal fluid; WM, white matter.
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It has recently been reported that global respiratory signals
persist through several common denoising approaches, including
models that attempt to approximate respiratory variance from
respiratory belt traces, models that utilize nuisance compartment
signals, and ICA (28). The NA data corroborate this report:
Brain-wide signals time-locked to respiratory changes persist
after ME-ICA or FIT (Fig. 2), after regression of multiple
models of respiratory variance (SI Appendix, Fig. S5), and after
regression of motion estimates and nuisance compartment sig-
nals (SI Appendix, Figs. S6 and S7; see Online Movie 3 for the
same model applied to each ME subject). The correlation be-
tween respiratory signal variability and global signal variability
remains strong and significant after these processing streams (SI

Appendix, Fig. S8). The NA data thus show that global re-
spiratory variance is both present and inadequately removed by
all of the above denoising strategies. In a dataset such as the ME
dataset, there is, at present, no way to determine which subset of
global fluctuations is respiratory (this is also the situation for
most fMRI datasets); thus, the only way to remove respiratory
global fluctuations is to remove all global fluctuations.
Two methods capable of removing global fluctuations in ME-

ICA denoised data are illustrated in Fig. 3 (others are discussed
below and in SI Appendix). Go Decomposition (GODEC) is a
recently developed multivariate technique that can separate
spatially widespread (low-rank) signals from spatially focal
(sparse) signals in an fMRI dataset (29). A univariate approach

Fig. 2. Global BOLD signal changes often reflect respiratory patterns. (A) Motion and physiological traces are shown for four NA subjects, as are FIT R2* time
series, following conventions of earlier figures. The blue trace is the raw respiratory belt trace, and the green trace is the heart rate derived from peaks in the
pulse oximeter trace. Resp., Respiratory. (B) Correlation between variance in respiratory traces and variance in global fMRI signals, shown for the raw fMRI
data at TE2, for FIT R2* time series, for ME-ICA denoised time series, and for ME-ICA + GODEC time series. Each point is a scan. Respiratory variance (x axis) is
defined as the SD of the envelope of the normalized respiratory belt waveform.
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to removing global fluctuations in fMRI data is to regress the
global signal from all time series (here, we use the mean cortical
signal as the global signal, which, as mentioned above, is essen-
tially identical to the whole-brain signal that is often used for such
regression purposes). The principal difference between these ap-
proaches is that the mean gray matter time series includes both the
“true” global signal as well as a mixture of more focal signals
present only in particular brain regions. In contrast, GODEC is
intended to capture only the true global signal without incorpo-
rating the more focal signals. It is visually apparent that both
GODEC and mean cortical signal regression identify and remove
similar global fluctuations in BOLD signals (Fig. 3 and SI Ap-
pendix, Fig. S9; Online Movie 4 shows both techniques in each ME
subject, and Online Movie 5 shows all versions of variance sepa-
ration in time on cortical surfaces for each subject). Across ME
subjects, the variance removed by GODEC and mean signal re-
gression correlates at 0.87 ± 0.16. GODEC sometimes does not
fully remove global fluctuations (e.g., ME13, ME20; visible in
Online Movie 4). Both mean signal regression and GODEC
abolish the relationship between respiratory pattern variability and
global signal variability (Fig. 2B).

Motion Indexes Both Focal S0 and Global R2* Signals. One of the
best-established findings in functional connectivity MRI studies
is that motion tends to elevate short-distance signal covariance
more than long-distance covariance (6, 7, 10, 30). A major goal
of this study is to determine the extent to which multiecho
methods remove motion artifact in functional connectivity data.
Accordingly, we present three analyses designed to identify the
presence of motion artifact: QC:RSFC (quality control:resting
state functional connectivity) plots, high–low-motion differences,
and scrubbing plots (analyses reviewed in ref. 8).
We describe the logic of the analyses in Fig. 4 before exam-

ining the results. In Fig. 4, Top, QC:RSFC plots show how subject
motion correlates, across subjects, with functional connectivity

measures. In each subject’s data, we calculate some 35,000 pairwise
correlations between signals at a set of 264 regions of interest (ROIs)
that span the brain. Then, the RSFC measures are correlated, across
subjects, with the mean motion [mean framewise displacement (FD)]
displayed by each subject. Positive QC:RSFC correlations indicate
that RSFC values are higher in higher motion subjects. The resulting
QC:RSFC correlations are plotted as a function of the distance
separating the ROIs that generate the correlations. The red points
show each of the QC:RSFC values obtained, and a white smoothing
curve summarizes the behavior of the data. Ten thousand permuta-
tions of subject motion (mean FD) generate random expectations for
QC:RSFC correlations, and black smoothing curves from 50 of these
permutations are shown for visual comparison. The white smoothing
curve in Fig. 4, Left, is an inverted sigmoid, higher at the left (short
distances) and less high at the right (long distances), indicating that
subjects with higher motion tend to have higher functional connec-
tivity correlations, especially among nearby regions of the brain. The
entire smoothing curve is also above zero, indicating that all corre-
lations tend to be increased in higher motion subjects. The high–low-
motion plot in Fig. 4, Center, follows a similar presentation format,
except that the computations are a median split of the cohort by
motion (mean FD), followed by subtracting mean low-motion values
from mean high-motion values at all correlations. Ten thousand
permutations of mean FD yield random expectations. The smoothing
curve is, again, an inverted sigmoid and is also elevated above zero,
yielding the same kinds of conclusions as the QC:RSFC analyses.
Motion-associated variance can be thought of as a superpo-

sition of focal (different signals in different parts of the brain)
and global (similar signals throughout the brain) effects associ-
ated with motion (8). Global effects associated with motion will
tend to elevate the dependence on motion of correlations at all
distances. However, focal effects associated with motion will
cause differential effects across distance, namely, to increase
dependence on motion of correlations at short distances (where
focal effects are shared) but to decrease such dependence at

Fig. 3. Low-rank signals are similar to global signals. For an ME scan shown in Fig. 1, ME-ICA denoised data are shown undergoing GODEC and global signal
regression.
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longer distances (where different focal effects occur). In terms of
the white smoothing curves, global effects elevate the curve at
all distances, whereas focal effects should elevate the curve at
short distances and drive it toward zero or negative values at long
distances, causing it to be sloped in some way. We measure two
properties of the smoothing curves to capture these phenomena:
the value at 35 mm (short distance) captures both focal and
global effects, and the difference between values at 100 mm and
35 mm captures the differential across distance caused by focal
effects. We measure these properties for all permutation curves,
and report the rank of the observed curve among the permutation
curves. To return to the examples studied above, the QC:RSFC
smoothing curve of the first column (Fig. 4, Top Left) is elevated
relative to random expectations [rank 9,870 of 10,000 at 35 mm
(i.e., P < 0.026), indexing focal and global effects] and also shows
more differential over distance than would be randomly expected
[rank 9,997 of 10,000 (i.e., P < 0.0006), indexing focal effects]. The
ranks of the high–low-split curve are significant in a similar way
(P < 0.0054 and P < 0.0001, respectively). We may thus surmise
the existence of both global- and focal motion-associated effects in
the optimally combined data.

The final kind of motion-related analysis is a scrubbing anal-
ysis, shown in Fig. 4, Bottom. Whereas the QC:RSFC analyses
and high–low analyses show across-subject or across-scan dif-
ferences contingent on motion, the scrubbing analysis is a within-
scan analysis. It shows the properties of particular volumes of
scans, which, in this case, are the properties of volumes dis-
playing detectable motion (FD > 0.2 mm). We calculate in each
subject the same ∼35,000 correlations as above, first including all
volumes (as in the above analyses) and then censoring (scrub-
bing) the suspicious high-motion volumes. For each subject, we
subtract the original from the scrubbed correlation values, and
then plot the mean values seen across subjects. In this way, the
properties of the exact volumes being censored are demon-
strated. In Fig. 4, Left, the properties of this plot are inverted
from the QC:RSFC and high–low plots: When high-motion
volumes are withheld, correlations are reduced at short dis-
tances and are elevated at longer distances, and the white line is
approximately zero-centered. The rank of the 35- to 100-mm
difference is 0/10,000, indicating that the distance-dependent
effects are highly significant (i.e., P < 0.0001). The direct inter-
pretation is that the exact volumes censored (here, those acquired

Fig. 4. Spatial interpretation of denoising steps in ME data. Distance-dependent motion-related artifact is assayed with three kinds of analyses at several
stages of denoising (columns): QC:RSFC analyses (Top), differences in correlations between high- and low-motion subjects (Middle), and scrubbing analyses
(Bottom). The red points and the white smoothing curve display actual data, and the black smoothing curves depict 50 of the 10,000 conducted permutations
of mean FD (Top and Middle) or censored volumes (Bottom). The inset numbers are the percentiles of observed data among permutations, in terms of
smoothing curves at 35 mm (to index all motion-related signals) and the difference between smoothing curves at 35 and 100 mm (to index distance de-
pendence). Purple permutation ranks are drawn from SI Appendix, Fig. S10 and reflect smoothing curve values after censoring volumes with FD > 0.2 mm.
Nuisance regression in the plot at the far right contains a single regressor: the mean cortical signal. (Top) RMS values of the plots (from left to right) are 0.16,
0.13, 0.25, 0.13, and 0.13. (Middle) RMS values of the plots (from left to right) are 0.08, 0.09, 0.13, 0.05, and 0.04. (Top) Mean values are 0.09, 0.05, 0.21, −0.03,
and 0.00. (Middle) Mean values are 0.05, 0.02, 0.11, −0.01, and 0.00. Slopes of linear fits to the QC:RSFC curves in optimally combined and ME-ICA denoised
data are −0.009 and −0.002, and corresponding fits to the high–low data are −0.005 and −0.001. Δr, change in correlation.
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during times of motion) contain distance-dependent covariance
(i.e., focal motion-associated effects).
In Fig. 4, the QC:RSFC and high–low analyses are performed

on all volumes, with scrubbing effects reported (Fig. 4, Bottom)
to illustrate the properties of volumes acquired during motion. In
SI Appendix, Fig. S10, the QC:RSFC and high–low analyses are
repeated while withholding scrubbed volumes, and the distant-
dependent rankings of those analyses are shown in purple in Fig.
4 to illustrate additional improvements made possible by cen-
soring high-motion volumes.
We are now positioned to examine these analyses across stages

of processing. QC:RSFC plots demonstrate strong distance de-
pendence in optimally combined data (Fig. 4, Left) and in S0 data
[Fig. 4, Center (column 2)], but attenuated distance dependence
in BOLD-like data, whether ME-ICA denoised data [Fig. 4,
Center (column 3)] or data after removal of global signals by
either GODEC or mean signal regression [Fig. 4, Right (columns
4 and 5)] are considered. Distance dependence is reduced to
insignificant levels in the BOLD-like data, especially when
motion-exhibiting volumes are withheld (Fig. 4, purple values).
Importantly, ME-ICA unmasks a strong global motion-associated
influence in R2* data [Fig. 4,Center (column 3)]: Average QC:RSFC
values rise from 0.08 in optimally combined data to 0.21 in ME-ICA
denoised data. A straightforward interpretation is that ME-ICA
removes many focal S0 artifacts whose influence had initially ob-
scured the influence of global signals at all distances. The QC:RSFC
smoothing curves become approximately zero-centered after
removing global signals by either method. The high–low
plots corroborate the QC:RSFC patterns. The scrubbing plots
indicate that motion-exhibiting volumes contain distance-
dependent covariance at all stages of processing, effects that
are highly significant [e.g., P < 0.0001 or P < 0.0002 for both
curve measurements (35 mm and 35–100 mm) in all BOLD-
like images].
The critical points of these analyses are: (i) variance in both

non–BOLD-like and BOLD-like signals scales with motion; (ii)
motion-related variance in S0 signals is mostly focal, and thus
distance-dependent; (iii) motion-related variance in R2* signals
is mostly global, and thus distance-independent; and (iv) some

focal artifact (and thus distance-dependent covariance) is pre-
sent in motion-exhibiting volumes at all stages of denoising.
It is instructive to revisit the NA data in light of these analyses.

Fig. 5, Top shows QC:RSFC plots using mean FD as the QC
vector, as in Fig. 4, whereas Fig. 5, Bottom uses respiratory
pattern variability as the QC vector. The rows show similar
patterns because mean FD and respiratory pattern variability
correlate at r = 0.73 (P = 0.004). These NA results mirror those
of the ME data and confirm the existence of two distinct types of
motion-associated variance with different spatial profiles, one
composed of S0 signals and the other of R2* signals.

Discussion
Signal denoising is a central concern in human neuroimaging,
and multiecho fMRI sequences are attractive because they
contain information, not present in typical single-echo se-
quences, that can be used for denoising purposes. This in-
formation is especially valuable in resting state fMRI datasets, in
which there is no task timing to help isolate signal from “noise.”
In this study, we examined how motion-related variance man-
ifested and could be removed from multiecho data. Our principal
findings are: (i) there are two major and separable kinds of
motion-associated fMRI signals, respiratory T2* signals and ar-
tifactual S0 signals, (ii) motion-associated respiratory T2* signals
are essentially whole-brain signals, (iii) motion-associated S0
signals are mostly spatially focal, (iv) motion-dependent co-
variance patterns in fMRI data are superpositions of these two
kinds of motion-associated signals, (v) ME-ICA techniques
remove the spatially focal S0 signals but not the spatially wide-
spread T2* signals, and (vi) multiple techniques can identify and
remove spatially widespread signals in fMRI data to yield times
series nearly free of motion-dependent characteristics.

Elaborations on a Spatial Framework for Motion-Related Variance.
The results of this study fit well into a spatial framework for
motion-related variance outlined by Power et al. (8). The
framework derives from the fact that in all large datasets ex-
amined for motion artifact (to the authors’ knowledge), before
denoising, signal correlations are increased in higher motion
subjects, with the largest increases occurring at short distances

Fig. 5. Replication in NA data of two kinds of motion-associated signals with different spatial profiles and distinct physical bases. QC:RSFC plots are formed
for NA data as they were for the ME data in Fig. 4. Both S0 and R2* variance is contingent on subject motion but with different spatial patterns. Two kinds of
QC:RSFC plot are shown for the NA subjects: using mean FD as the QC measure (Top; as in Fig. 4) and variability in the standardized respiratory (resp) belt
envelope as the QC measure (Bottom; the same measure used in Fig. 2B). The plots show similar phenomena because, as the plot at the far right shows, mean
motion and respiratory pattern variability are highly correlated. Purple values reflect permutation ranks after motion censoring as in Fig. 4.
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(e.g., refs 6, 7, 10, 30–32). The same pattern is observed in the ME
and NA data. This pattern may be viewed as a superposition of
focal and nonfocal effects, both indexed by motion: Focal signal
changes ought to enhance nearby correlations and cause distant
correlations to approach zero or negative values, whereas nonfocal
signal changes ought to increase correlations at all distances.
By splitting fMRI signals into S0 and R2* components, mul-

tiecho denoising techniques demonstrate that different physical
mechanisms tend to cause the focal versus nonfocal element of
motion-associated variance. The focal element is mostly caused
by S0 modulation, and the nonfocal element is mostly caused by
R2* modulation. These two kinds of motion-associated signal
(focal and global) can compete and partially mask one another’s
presence in motion-related analyses. For example, Fig. 4, Center
(column 3) (ME-ICA denoised data) shows that motion increases
all correlations at all distances, but the strong influence seen at a
distance is really only appreciated once it is “unmasked” by the
removal of focal artifact during the denoising process (Fig. 4,
Center (column 2)].
Most S0 signal changes are focal, but there are exceptions. For

example, the pan-brain signal decrease occurring during a large
motion at the end of scan ME076 (Fig. 1) is identified as S0
artifact by both ME-ICA and FIT procedures (SI Appendix, Fig.
S3). Immediate transient pan-brain signal decreases have been
reported previously at times of motion (33). Such pan-brain
changes are characteristic of some large motions, but most
smaller motions tend to cause a variety of focal signal changes
that manifest as the more typical salt and pepper appearance of
S0 signals in Fig. 1 and Online Movie 1.
It is thus a useful heuristic to think of motion-related changes

as focal S0 changes, so long as it is remembered that S0 changes
can also be global. Similarly, it is a useful heuristic to think of
motion-associated R2* changes as global, so long as it is re-
membered that there is spatial weighting to this global BOLD
signal: Studies of ventilation-induced BOLD changes demonstrate
that although changes are present throughout all gray matter,
signal changes are most prominent in a “sensorimotor” pattern
emphasizing occipital and peri-Rolandic cortex (28, 34–36).

Global fMRI Signals Are Largely Respiratory-Related BOLD R2*
Signals. In the NA cohort, variability in respiratory patterns is
strongly linked to variability in the global signal (Fig. 2); in many
instances, there are obvious temporal links between deep breaths
and global decreases (Fig. 2, vertical black bands) in BOLD
signals (SI Appendix, Fig. S4). Recent reports show that other
breathing patterns, such as hypopnea or hyperpnea, coincide
with prolonged increases and decreases in fMRI signals, re-
spectively (28). Although such findings do not exclude a neuro-
biological component to global signals, they do indicate that a
large portion of the variance in the global signal is modulated
along with respiratory patterns, which have a well-established
mechanism of globally modulating BOLD signal through venti-
latory effects on pCO2.
The global BOLD signals observed on deep inspiration are not

consistent with a typical “evoked” neural signal due to motor
activity. Typical BOLD motor responses (i) are (multi)focal and
(ii) exhibit maximal signal change ∼6 s after the motor activity,
with resolution of signal changes by ∼15–20 s. In contrast, the
global BOLD modulations seen here span all of gray matter and
reach their maximal change ∼15–20 s after an inspiration, with
resolution in ∼30–40 s (SI Appendix, Fig. S4). These character-
istics are in accord with prior reports on the time course of
pCO2-related changes in BOLD signal, such as those seen with
instructed breaths (35, 37, 38).
There are strong correlations between breathing pattern var-

iability, subject motion, and global signal variability. A likely
explanation for many transient, prominent global signal changes
(Fig. 2, black bands) is that subjects move their heads as they

breathe deeply and pCO2 alteration then causes the global signal
changes seen over the next 40 s. Not all respiratory variance will
follow this single-deep-breath pattern, and other patterns, such as
more rapid or slower breathing, would also produce global BOLD
signal changes, although with other temporal features (e.g., more
sustained global signal changes, different signs in change accord-
ing to hyperventilation vs. hypoventilation). Other respiratory
changes can and do occur with inspiration (immediate motion
artifact as well as B0 shifts from lung expansion), but these will
transpire over a shorter time scale and by different mechanisms.
At present, it is difficult to measure respiration and effectively

model respiratory fMRI signals. This study and others (e.g., ref.
28) have shown that existing respiratory models using measures
derived from respiratory belts often fall short of adequately
modeling respiratory signals. The measure we used, the vari-
ability of the respiratory belt envelope, was highly predictive of
global signal variability and may have some utility in future
modeling efforts.

Multiple Approaches to Removing Global Artifacts. If respiratory
signals constitute much of the global signal variance but are ei-
ther unidentifiable (if no respiratory records are present) and/or
difficult to remove (since neither ICA nor common nuisance
regressions adequately remove them), then, at present, the only
way to remove those signals from individual fMRI scans is to
remove all global signals. Multiple approaches can be used to
remove global signals, and we next review the approaches we
used and others that could achieve comparable results.
One simple and reliable way to remove global signals is to

calculate and remove the mean signal of an image or, nearly
identically, the mean gray matter or cortical signal. These signals
are all similar because (i) gray matter has large signal amplitude
relative to white matter and (ii) gray matter, especially the cor-
tex, constitutes large portions of the brain. However, regression
of mean signals has been criticized on multiple grounds (39, 40).
The central objection is that nonglobal signals will enter the
mean signal calculation, and thus regression of the mean signal
will change the covariance structure between nonglobal signals
beyond just removing an additive global signal. The effect size
of this argument can range from undetectable to marked,
depending on the dimensionality of the data, and the relevant
dimensionality of fMRI data is not well understood (36). A limi-
tation of using a single global signal for this regression is that the
vascular response to arterial pCO2 may vary depending on the
location of a neurovascular unit in the vascular tree (e.g., proximal
vs. distal branching from the arterial supply), and a single re-
gressor cannot fully capture such lags.
Another approach to removing global fMRI signals is multi-

variate signal partitioning of gray matter signals, which may avoid
the above criticisms by decomposing the data into (typically in-
dependent) global and nonglobal elements. Signal partitioning al-
gorithms have undergone much development in the past decade in
response to demand for automated separation of background
(global, low-rank) from sparse elements in visual images. The most
common version of signal partitioning is robust principal compo-
nent analysis (PCA), which is related to GODEC and can yield
similar signal separation as GODEC (SI Appendix, Supplemental
Methods and Supplemental Results). We focused on GODEC be-
cause it is computationally efficient in comparison to robust PCA.
For illustrative purposes, SI Appendix, Fig. S12 shows robust PCA
and GODEC producing similar signal partitioning in a single
dataset (Online Movie 6 shows such plots for all ME subjects).
Quantitatively, group correlation matrices after GODEC and ro-
bust PCA are highly similar (SI Appendix, Fig. S13).
Although GODEC and robust PCA work well in most scans

to fully identify global signals, global signals do visibly persist
occasionally in the sparse partition (Fig. 3 and Online Movie
6). Some user oversight is thus needed for these techniques.
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Additionally, these approaches are tunable and can incorporate
variable numbers of signals as part of the low-rank solution.
When too few signals are included, global signals may persist in
the sparse space as noted just above, but when too many signals
are included, “resting state network” signals that span substantial
portions of the brain can be included in the background. In our
data, we saw this effect when approximately five or more signals
entered the background (SI Appendix, Fig. S14). We thus chose
tunings that typically identified one to four signals per subject as
the background space. The desired dimensionality of partitioning
is likely to vary with scan characteristics (i.e., likely higher with
higher spatial and/or temporal resolution).
A related approach to multivariate partitioning of gray matter

signals is to define nuisance regressors via PCA performed
on nuisance compartment (i.e., not gray matter) signals, an ap-
proach called CompCor in fMRI studies (41). The global fMRI
signal can readily be identified by this approach without explicitly
saying so, since PCA performed on voxels in white matter yields
nuisance signals correlated at nearly r = 1 with the global fMRI
signal. Such high correlations can be obtained even when the
nuisance voxels are located considerably away from the gray
matter (SI Appendix, Fig. S11). Further, voxels outside the brain
proper (e.g., in sinuses) contain the global signal (28). If such
voxels are included in the “nuisance” signals that undergo PCA,
the global signal or something very like it will be identified and
removed. SI Appendix, Fig. S12 shows CompCor operating on a
single dataset. Corresponding group correlation matrices are
shown in SI Appendix, Fig. S13.
The correlation matrices we obtained from GODEC and robust

PCA are very similar (SI Appendix, Fig. S13), and both matrices
are also similar to matrices produced by mean signal regres-
sion. The principal difference between these techniques is that
GODEC and robust PCA yielded slightly higher values at negative
correlations and slightly lower values at high correlations. These
differences may be attributable to some combination of incom-
plete removal of global artifacts in some subjects by robust PCA
and GODEC, the tendency of mean signal regression to cause or
enhance negative correlations, and the possibility that real signals
of interest entered the background partition in robust PCA and
GODEC. The correlation values obtained by CompCor are
broadly similar but slightly higher than those obtained by the
other methods, a result that can be attributed to the fact that
global signals are often visibly remaining (although attenuated)
in the data. All of these methods remove global signals to an
extent that zero-centers QC:RSFC curves, thus removing group-
level dependence of global covariance on motion (SI Appendix,
Fig. S13).
The central point we wish to emphasize is that multiple

methods can (i) visibly remove global signals in gray plots (Fig.
3), (ii) eliminate motion-dependent patterns in data (Figs. 4 and
5), and (iii) eliminate the association of respiratory pattern
variability with global variance (Figs. 2B and 5). Further work,
likely involving simulations, will be needed to determine the
precise differences between GODEC, mean signal regression,
and other methods of global signal removal.

Steps Needed to Eliminate the Influence of Motion from fMRI Time
Series. Our original purpose in this study was to investigate the
success of ME-ICA for removing motion artifact. Our results in-
dicate that ME-ICA does an excellent job of identifying and re-
moving focal S0-related artifacts, many of which are motion-related
(Figs. 1, 4, and 5). In two respects, however, the data are not
completely denoised. First, the analyses reported in this paper in-
dicate that much of the remaining R2*-related variance is linked to
motion and is likely related to respiration. In this sense, ME-ICA
has not finished denoising the data, and techniques that remove
global signals (e.g., GODEC, mean signal regression, others) are
needed to eliminate most of the remaining motion dependence. In

theory, if multiple sources of global signals exist, techniques that
selectively removed the motion-associated signals (e.g., respira-
tion) would suffice to remove motion dependence from the data.
Second, the scrubbing analyses indicate that at no stage of
denoising was focal artifact completely removed from the data:
Censoring volumes with FD > 0.2 mm produces decreases in
short-distance correlations more than long-distance correlations
(Fig. 4) at all stages of denoising, including after ME-ICA +
GODEC. This result stems from the fact that nonfocal signal-
removing techniques (e.g., GODEC) will do little for focal arti-
facts, and it is already evident from prior reports that ME-ICA
alone does not fully restore signals acquired during motion to
normalcy (e.g., figure 1 and figure S5 of ref. 16). The failure to
completely remove focal (and/or global) artifacts during motion
is shared across a wide variety of examined denoising techniques
(reviewed in ref. 8). Thus, something needs to be done to address
the volumes irreparably corrupted by subject motion. In this
study, censoring those volumes reduced the remaining small in-
fluence of motion to negligible levels.
Two findings of this study need to be emphasized. First, full

removal of the influence of motion on fMRI time series requires
at least two, and likely three, elements: (i) removal of focal ar-
tifacts that are immediately produced by motion, (ii) removal of
global signals due to ventilation that scale with head motion, and
(iii) excision (or downweighing or replacement) of the time
points that are beyond repair in i. The combination of these
three elements can eliminate the unwanted influences of motion
within an fMRI dataset.
The second finding deserving emphasis is that distant-

dependent changes in signal covariance indexed by motion are
mainly attributable to non-BOLD artifact. In Figs. 4 and 5, dis-
carded S0 signals exhibit strong distance dependence, whereas
the retained R2* signals are nearly distance-independent with
respect to motion. If we consider that ME-ICA has likely not
perfectly separated S0 and R2* effects (seen by the occasional
splitting of global BOLD signals into both retained and dis-
carded components) and also that signals during motion remain
somewhat corrupted (as shown in the scrubbing analyses of Fig.
4), it seems likely that some S0 signals are still in the retained
R2* components, which may account for the slight distance de-
pendence that remains in the retained data (before censoring).
Future refinements of multiecho procedures may improve such
signal separation. Regardless, it is clear that motion-related
distance dependence is mostly, if not entirely, a product of
non-BOLD artifacts in fMRI time series.

Materials and Methods
Full descriptions of the data and methods are provided in SI Appendix.

In brief, 89 multiecho datasets previously published in a study by Kundu
et al. (16) are examined; these fMRI data are from adults from whom in-
formed consent was obtained in a study approved by the Local Research
Ethical Committee at the University of Cambridge (LREC 11/EE/0198). These
datasets are four-echo datasets (TE = 12 ms, 28 ms, 44 ms, and 60 ms) and are
called the ME cohort; each subject contributed a single 9.8-min scan. An
additional set of multiecho scans was obtained from 12 subjects at the NIH
with simultaneous monitoring of respiration and heart rhythms via re-
spiratory belt and pulse oximeter. These subjects gave written consent and
were part of a larger study approved by the National Institute of Mental
Health Institutional Review Board (Protocol 10-M-0027). These are three-
echo datasets (TE = 12 ms, 24.5 ms, and 37 ms) and are called the NA co-
hort; each subject contributed two 6.25-min scans. Details of the sequences
and datasets are listed in SI Appendix, Supplemental Methods and Table S2.

All scans underwent standard preprocessing, including motion estimation,
slice time correction, and transformation to a target atlas. All scans un-
derwent multiecho denoising designed to isolate S0 from R2* influences in
the data. To create a single image for a scan, signals from all echoes were
optimally combined using weighting by estimated T2* of each voxel as in
the study by Kundu et al. (16). ME-ICA denoising was performed as in the
study by Kundu et al. (16), and we examine undenoised images (optimally
combined), denoised images (BOLD-like, R2*-modulating components), and
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the discarded signals (non–BOLD-like, S0-modulating components). All mul-
tiecho scans also underwent a procedure we term FIT, in which S0 and R2*
were fit to a monoexponential decay at each voxel and time point by least
squares, and we examine denoised images (R2* estimates) and discarded
signals (S0 estimates).

The plots in Figs. 1–3 are described by Power et al. (42). Briefly, a T1-
weighted image in register with an echoplanar imaging (EPI) image was
used to derive brain compartments via FreeSurfer; the mean and linear
trend terms of the EPI image were removed at each voxel; and the time
series of all voxels in the image are shown as a grayscale heat map, ordered
by tissue compartment. Several kinds of traces are shown above these heat
maps. Head position estimates are from realignment algorithms. The red FD
trace is based on the sum of the differentiated position estimates, and thus
indexes head motion. Mean FD was the average value of the FD trace. Blue
respiratory belt traces are raw data, and green heart rate traces are derived
from the intervals between peaks in the pulse oximeter trace. All physio-
logical traces and derived measures were visually checked in their entirety.
Respiratory pattern variability was defined as the SD of the envelope of the
z-scored respiratory belt waveform. Compartment signals, such as the mean
gray matter signal, are derived from appropriate FreeSurfer compartments.
When various denoising models are used subsequent to ME-ICA (e.g., ME-
ICA and then mean cortical signal regression), the models are applied to the
ME-ICA denoised image. GODEC is a multivariate technique that can sepa-
rate nonfocal signals from focal signals in a dataset via techniques related to
robust PCA decomposition.

The plots shown in Figs. 4 and 5 reflect standard analyses developed in the
field to assay fMRI data for motion artifact, as reviewed by Power et al. (8).

Briefly, signals were extracted in each subject from 264 10-mm-diameter
spherical ROIs, as reported by Power et al. (43), that span much of the
brain. Pairwise correlations were calculated in each subject’s data and were
Fisher z-transformed. In QC:RSFC analyses, mean FD was correlated across
subjects with each pairwise correlation to yield a 264 × 264 matrix, which
was then plotted as a function of the distance separating ROIs. In high–low-
motion differences, a median split of subjects by mean FD was performed,
the mean of each subgroup was calculated, and the difference between
subgroups was plotted as a function of distance. In scrubbing analyses, signal
correlations were calculated using all time points and then again without
high-motion (FD > 0.2 mm) time points, the difference in resulting correla-
tions was calculated, and the mean of this difference across subjects was
plotted as a function of distance. The red points and the white smoothing
curves display actual data, and the black smoothing curves depict 50 of the
10,000 conducted permutations of mean FD (QC:RSFC and high–low analy-
ses) or of censored volumes (scrubbing analyses). Smoothing curves were
generated via sliding boxcars of 1,000 points. The inset numbers are the
percentiles of observed data among permutations, in terms of smoothing
curve values at 35 mm (to index all motion-related signals, focal and non-
focal) and the difference between smoothing curve values at 35 and 100 mm
(to index distance dependence, mainly due to focal signals).
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