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Abstract

Ultimately, viral evolution is a consequence of mutations that arise within and spread between 

infected hosts. The transmission bottleneck determines how much of the viral diversity generated 

in one host passes to another during transmission. It therefore plays a vital role in linking within-

host processes to larger evolutionary trends. Although many studies suggest that transmission 

severely restricts the amount of genetic diversity that passes between individuals, there are 

important exceptions to this rule. In many cases, the factors that determine the size of the 

transmission bottleneck are only beginning to be understood. Here, we review how transmission 

bottlenecks are measured, how they arise, and their consequences for viral evolution.
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Main Text

Many viral pathogens exist as diverse populations within infected hosts. The diversity 

present in this “mutant swarm” provides the raw material on which selection can act. 

Although populations within a host may reach as high as 1014 virions [1], viruses are 

frequently subject to bottleneck events as they spread within and between hosts [2]. These 

bottlenecks drastically reduce the size of the population and, consequently, its genetic 

diversity. Because the population that develops after a genetic bottleneck is derived from a 

small sample of the ancestral population, this process can dramatically alter the relative 

frequency of mutations in the population.

The stringency of the transmission bottleneck plays an important role in linking within-host 

processes to a pathogen’s larger evolutionary dynamics. Stringent, or tight, transmission 

bottlenecks limit the diversity of the founding population in the recipient and alter the 
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mutational composition of the population in the recipient relative to that in the donor (Figure 

1, top). However, if the transmission bottleneck is loose, transmission does not significantly 

impact variant frequencies and the composition of the founding population in the recipient 

more closely matches that present in the donor at the time of transmission (Figure 1, 

bottom).

Although transmission bottlenecks play an important role in viral evolution, relatively little 

is known about their size and determinants. Many quantitative studies suggest that 

bottlenecks are tight [3,4]; however, there are exceptions and even conflicting reports for 

viruses with similar transmission pathways. Importantly, the factors that determine the 

stringency of the transmission bottleneck are poorly understood. Here, we briefly review 

how transmission bottlenecks are measured, how they arise, and their impact on viral 

evolution across biological scales. For a more comprehensive review of bottlenecks, 

including those found at the within-host and cellular scale, we direct the reader to reference 

[3].

Measuring transmission bottlenecks

Transmission bottlenecks are measured by their effect on viral diversity. In experimental 

systems, within-host diversity can be approximated using a defined population of viruses 

that are tagged with genetic markers. If the markers are selectively neutral, the number of 

distinct markers that pass from donor to recipient reflects the sampling event of the 

bottleneck as opposed to selection within either host (Figure 2A). This technique has been 

used to qualitatively estimate a stringent bottleneck for aphid transmission of cucumber 

mosaic virus (an average of 3 of 12 markers were transmitted) [5] and aerosol transmission 

of influenza in ferrets and guinea pigs (2–5 of 100 sequence tags were transmitted) [6**]. In 

a particularly elegant experiment, Moury and colleagues artificially inoculated aphid vectors 

with mixtures of 2 Potato Y virus mutants prior to feeding the aphids on pepper plants [7*]. 

By modeling the number of plants exposed to only one of the mutants, Moury et al. found 

that aphid transmission imposes a bottleneck of 0.5–3.2 virions on Potato Y virus.

Because natural systems do not offer the opportunity for a barcoding approach, early studies 

characterized the transmission bottleneck qualitatively based on the degree of shared 

diversity found within transmission pairs (Figure 2B). Clonal sequencing of influenza virus 

isolates from swine and equine transmission chains found transmission pairs shared minority 

variants [8–10]. Studies of aphid, mechanical, and vertical transmission of Zucchini Yellow 

Mosaic Virus found similar results [11,12]. These studies suggest that transmission 

bottlenecks are sometimes sufficiently loose to allow for the transmission of low-frequency 

mutations.

More quantitative approaches can also be employed to estimate the transmission bottleneck 

from shared diversity data. In these models, the transmission process is assumed to be a 

random sampling of the donor population and individual variants are assumed to be 

transmitted independently of one another. The probability that a variant is transmitted is 

derived from a binomial distribution and is positively correlated with its frequency in the 

donor and the size of the bottleneck. More complexity can be incorporated into these models 

to tease apart the relative impact of within- and between-host processes (see ref [13**] for a 
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thorough discussion and comparison of common models). One such model has been used to 

estimate a loose bottleneck of roughly 200 genomes in a recent study of human transmission 

of influenza virus [13**,14]. This estimate is much larger than that provided by the barcode 

experiments previously discussed. The large discrepancy in these studies highlights the need 

for a more complete understanding of the viral, host, and environmental factors that 

determine transmission bottleneck sizes.

When only one member of a transmission pair is available, the diversity present in the 

infected host can be used to estimate the number of genotypes in the founding population. 

Coalescent theory works backward in time, tracing the evolutionary history of the current 

population back to common ancestors [15]. Coalescent models based on the current 

diversity, the viral evolutionary rate, and the estimated time of infection can be used to 

determine how many genotypes were present in the founding population (Figure 2C). 

Phylogenetic analysis of HIV evolution suggests that most infections derive from small 

founding populations of only one genotype [16,17]. A similar approach has been used to 

estimate a stringent transmission bottleneck for HCV [18*–21].

Determinants of bottleneck size

Most transmission studies suggest tight bottlenecks and small founding populations (see 

tables in [3] and [4]). However, as mentioned above, these estimates can vary significantly 

depending on the virus, host, route of transmission, and experimental design. Understanding 

the factors that determine the size of the transmission bottleneck is vital to interpreting the 

effect transmission has on viral evolution. Work in Tobacco etch virus (TEV) suggests that 

the size of the bottleneck is dose dependent, with higher exposure doses corresponding to 

larger founding populations [22]. Evidence from mixed infections of influenza virus in a 

guinea pig model is consistent with a dose dependence model [23]. Further support comes 

from experimental infections with tagged influenza clones in ferret and guinea pig models, 

which indicate that the more limiting exposure dose of aerosol transmission imposes a 

significantly more stringent bottleneck than contact transmission [6**]. Additionally, 

coinfection by other pathogens, which can limit innate defenses and modulate the immune 

response, has been correlated with loose bottlenecks in HIV and HCV [24,25,26]. Taken 

together these data suggest that the transmission bottleneck is not constant, but rather a 

complex function of both viral and host factors.

Complicating matters is the observation that segregation of the viral population within the 

donor can also restrict the amount of diversity transmitted to the recipient. Work in animal 

models of influenza virus suggest that populations in the upper respiratory tract seed 

transmission and can be distinct from populations at other sites of infection [6**,27]. The 

stringent bottleneck associated with aphid transmission of cucumber mosaic virus [28] is 

likely the result of extreme viral segregation within the donor. Most plant cells are infected 

by only one genotype, and aphids are unlikely to feed on many donor cells prior to 

transmission [29]. Other vector-transmitted viruses undergo an additional bottlenecking 

event within the vector. Smith et al. used fluorescent Venezuelan equine encephalitis virus 

(VEEV) replicons to show that an average of 28 midgut cells in the mosquito are initially 

infected by the virus [30]. This small population size is consistent with observations of 
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Dengue virus in infected mosquitos [31] and likely contributes to the stringent bottleneck 

observed during mosquito-mediated transmission of VEEV in a mouse model [32*].

To this point we have focused on stochastic bottlenecks that randomly sample the donor host 

population during transmission. In some cases, however, selection within the donor and/or 

recipient hosts can impose selective sweeps that decrease the diversity of founding 

populations. While HIV-infected individuals can harbor highly diverse viral populations, 

phylogenetic approaches indicate that often only one donor genotype contributes to founding 

the recipient population [17,33]. This trend is often observed even when physical barriers to 

infection are bypassed, as is the case among intravenous drug users [34,35]. Comparisons 

between the populations present in the donor genital tract and recipient blood stream suggest 

that minor variants in the genital tract are preferentially transmitted [36**]. This biased 

transmission implies that the bottleneck event is not a random sample of the donor 

population. Larger cohort studies have shown that transmitted viruses are most similar to 

those present early in the donor infection [37] and are better suited to spread between hosts 

[38*]. Transmitted viruses are characterized by CCR5 receptor preference [39–42], lower 

levels of glycosylation on the surface envelope protein [43,44], and lower susceptibility to 

type 1 IFN [45,46*] than the majority of variants present in chronically infected hosts. Taken 

together, these data suggest that selective pressures in naïve hosts impact the stringency of 

the HIV transmission bottleneck. For more detailed reviews of HIV transmission, we direct 

the reader to references [33,47,48].

Evolutionary consequences of transmission bottlenecks

Transmission bottlenecks determine the extent to which within-host diversity contributes to 

evolutionary trends at higher scales. While the relatively high mutation rates and large 

population sizes of many viruses may allow these pathogens to rapidly adapt to their host, 

the rate of adaptation is not unlimited. In particular, the rate depends on the effective 

population size [49*]. The effective population size can be roughly thought of as the number 

of viruses that replicate and contribute genomes to the next generation. It is usually smaller 

than the census population (see [50] for a thorough review and discussion of effective 

population size). In large effective populations, selection is efficient, deleterious mutations 

are purged, and beneficial mutations steadily increase in frequency over time [51]. However, 

alleles in small populations are subject to sampling error known as random genetic drift. 

Drift introduces noise so that selection does not efficiently fix beneficial mutations or purge 

deleterious ones [52]. Stringent transmission bottlenecks reduce the effective population size 

of viral pathogens between hosts, increase genetic drift, and decrease the efficiency of 

selection.

Stringent transmission bottlenecks may therefore pose a significant barrier to adaptive 

evolution. Because most mutations are deleterious, repeated bottleneck events fix deleterious 

mutations and decrease viral fitness over time. This process, known as Muller’s ratchet, 

opposes purifying selection and contributes to the deleterious load often observed at the tips 

of viral phylogenetic trees [53,54]. Although the fixation of deleterious mutations decreases 

fitness along a single transmission chain, it is unlikely to drastically decrease a virus’ overall 

fitness at a global scale. Competition at the interhost level, can serve to maintain viral fitness 
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[55,56*]. Notably, populations with low fitness are not as susceptible to Muller’s ratchet as 

well-adapted populations with high fitness [57,58]. We speculate that the fixation of 

deleterious mutations during transmission is less likely to affect the evolution of recently 

emerged viruses, which might have lower fitness in their new host species. However, 

emerging viruses face an alternative problem as stochastic bottlenecks may purge beneficial 

mutations before they reach fixation.

While transmission bottlenecks are expected to slow adaptive evolution, they may provide 

potential advantages to evolving pathogens. Stringent bottlenecks purge the population of 

defective interfering particles, which limit viral replication [59]. Bottlenecks also increase 

genetic drift and provide a mechanism for virus populations to traverse potential fitness 

valleys and escape local fitness maxima [60].

Concluding thoughts

The available data suggest that transmission frequently imposes a stringent bottleneck that 

dramatically reduces the level of diversity in the founding population. In many cases, 

however, transmission bottlenecks appear to be sufficiently wide to transmit minority 

variants. Defining the host and viral factors that determine the transmission bottleneck is an 

important step in developing strategies to limit viral transmission. A more complete 

understanding of viral transmission bottlenecks is also necessary to link within-host 

population dynamics to larger evolutionary trends.
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Highlights

• Bottlenecks restrict the transmission of genetic diversity between hosts

• A variety of methods can be used to estimate bottleneck size in experimental 

and natural infections

• Some bottlenecks are selective, but most appear to be stochastic in nature

• Bottlenecks link within host processes to larger evolutionary dynamics
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Figure 1. 
The effect of transmission bottlenecks on viral diversity. In a variety of hosts (e.g. humans, 

pigs, plant shown here), stringent bottlenecks (top) limit the size and diversity of a 

population and drastically alter their composition. The large populations that pass through 

loose bottlenecks (bottom) allow for transmission of rare variants. As a result the diversity of 

the population in the recipient approximates that of the donor.
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Figure 2. 
Measuring transmission bottlenecks. (A) The number of donor-derived, neutral markers 

detected in the recipient is an indication of the stringency of the transmission bottleneck. 

Here, 3 of the 6 markers were transmitted suggesting a stringent bottleneck. (B) Shared 

diversity data from natural systems can be used to estimate a bottleneck. In the example, 

only two donor genotypes, denoted with *, were transmitted to the recipient suggesting a 

stringent bottleneck. Other de novo mutations arise on these backgrounds after transmission. 

(C) Coalescent models allow one to work backward from the time of sampling and estimate 

the number of genotypes that could plausibly give rise to the observed diversity. In this case, 

the two lineages are traced back to two genetically distinct variants present at transmission.
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