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Abstract

Despite inter-individual differences in cortical structure, cross-sectional and longitudinal studies 

have demonstrated a large degree of population-level consistency in age-related differences in 

brain morphology. The present study assessed how accurately an individual’s age could be 

predicted by estimates of cortical morphology, comparing a variety of structural measures, 

including thickness, gyrification, and fractal dimensionality. Structural measures were calculated 

across up to seven different parcellation approaches, ranging from 1 region to 1000 regions. The 

age-prediction framework was trained using morphological measures obtained from T1-weighted 

MRI volumes collected from multiple sites, yielding a training dataset of 1056 healthy adults, aged 

18–97. Age predictions were calculated using a machine-learning approach that incorporated non-

linear differences over the lifespan. In two independent, held-out test samples, age predictions had 

a median error of 6–7 years. Age predictions were best when using a combination of cortical 

metrics, both thickness and fractal dimensionality. Overall, the results reveal that age-related 

differences in brain structure are systematic enough to enable reliable age prediction based on 

metrics of cortical morphology.

Graphical abstract

Several measures of cortical structure differ in relation to age. We examined the cortical 

granularity of these differences across seven parcellation approaches, from a 1 region 

(unparcellated cortical ribbon) to 1000 regions (patches with boundaries informed by anatomical 

landmarks), and three measures: thickness, gyrification, and fractal dimensionality. Rather than 

merely examining age-related relationships, we examined how these parcellations and measures 

can be used to predict age.
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Introduction

It is well-established that the structure of the brain changes as adults age—with decreases in 

cortical thickness as one of the most pronounced of these changes (e.g., Fjell et al., 2009, 

2013; Hogstrom et al., 2013; Hutton et al., 2009; Irimia et al., 2015; Jernigan et al., 2001; 

Lemaitre et al., 2012; Madan & Kensinger, 2016; McKay et al., 2014; Raz & Rodrigue, 

2006; Salat et al., 2004). However, other measures of cortical structure are also sensitive to 

age-related differences, such as gyrification (Cao et al., 2017; Hogstrom et al., 2013; 

Jockwitz et al., 2017; Madan & Kensinger, 2016; Magnotta et al., 1999; Wang et al., 2016), 

which is a ratio of the regional surface area relative to the surface area of a simulated 

enclosing surface (Armstrong et al., 1995; Hofman, 1991; Kochunov et al., 2012; Toro et al., 

2008; Zilles et al., 1988, 1989). More recently, a mathematical measure of the complexity of 

a structure, fractal dimensionality, has also been shown to index age-related differences in 

brain structure (Madan & Kensinger, 2016). While the use of fractal dimensionality with 

cortical aging is recent, it has been used in prior studies investigating differences in cortical 

structure in patient populations (Cook et al., 1995; Free et al., 1996; King et al., 2009, 2010; 

Nenadic et al., 2014; Sandu et al., 2008; Thompson et al., 2005; Wu et al., 2010), as well as 

cross-species comparisons (Hofman, 1991). Importantly, age-related differences in these 

structural measures are not homogenous across the cortex; decreases in cortical thickness are 

most evident in frontal regions, while gyrification decreases primarily in parietal cortex. 

Given this, we wondered what degree of precision is useful in understanding age-related 

differences in cortical structure. Furthermore, it is unknown how well the relation between 

age and cortical structure metrics will generalize across independent samples. In the present 

study we sought to examine (1) the relative sensitivity of different cortical measures to age-

related differences across the adult lifespan, (2) the granularity of these differences across 

different cortical parcellation approaches, and (3) how well these different measures and 

parcellations can be used to predict age in independent samples. These findings should 

further our understanding of the neurobiological basis of healthy aging (Falk et al., 2013; 

Reagh & Yassa, 2017).
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Cortical metrics and granularity

While there is heterogeneity in age-related differences in cortical structure—e.g., greater 

cortical thinning in frontal cortex than occipital (Allen et al., 2005; Fjell et al., 2009; 

Hogstrom et al., 2013; Hutton et al., 2009; Salat et al., 2004; Sowell et al., 2003)—it is 

unclear what degree of parcellation would be beneficial in characterizing healthy aging. 

Lobe-wise estimates of cortical thickness would likely be beneficial relative to overall mean 

cortical thickness, but would estimates for distinct gyri and lobules provide additional 

information? At some level of parcellation, additional predictive features should diminish, as 

cortical thickness between adjacent patches of cortex would be highly similar (within an 

individual).

Here we investigated three measures of cortical structure—thickness, gyrification, and 

fractal dimensionality. These measures were selected based on prior studies that had 

identified relationships between these measures and healthy aging, although these previous 

studies had used correlations rather than predictive models (e.g., Fjell et al., 2009; Hogstrom 

et al., 2013; Madan & Kensinger, 2016; McKay et al., 2014; Salat et al., 2004). This 

approach of using surface-based morphology allowed us to examine distinct measures of 

cortical structure. In particular, this is in contrast to voxel-based morphology (VBM) 

techniques which estimate gray matter volume and are influenced by a combination of 

structural features (Fairchild et al., 2015; Gerrits et al., 2016; Hutton et al., 2009; 

Palaniyappan & Liddle, 2012). This point is made explicit by Mechelli et al. (2005), 

“exactly the same differences would be detected when comparing images of thin, unfolded 

cortex against thin, folded cortex and thick, unfolded cortex” (see Figure 5 of Mechelli et al., 

2005). As such, VBM is not sensitive to precise features as we sought to examine here, 

whereas surface-based morphometry captures these details unambiguously.

Many different approaches have been suggested to parcellate the human cortex (see Zilles & 

Amunts, 2010, for a review); here we used seven parcellation approaches, focusing on 

atlases that have been implemented within FreeSurfer. The two standard parcellation atlases 

within FreeSurfer are the Desikan-Killiany-Tourville (DKT) atlas (Desikan et al., 2006; 

Klein & Tourville, 2012) and the Destrieux atlas (Destrieux et al., 2010), which divide the 

cortex into 62 and 148 parcellations, respectively. Both of these atlases define boundaries 

based on anatomical landmarks, with the main difference being that the Destrieux atlas 

divides gyri and sulci into separate parcellations, while the DKT atlas generally uses sulci as 

parcellation boundaries between gyri, as shown in Figure 1. As two coarse atlases, we also 

considered the unparcellated cortical ribbon (i.e., only 1 region) as well as a lobe-wise 

parcellation (4 regions). Supplementing the parcellation atlases standard within FreeSurfer, 

we also conducted analyses using structural metrics derived from three additional 

parcellation schemes: von Economo-Koskinas (86 regions; Scholtens et al., 2018), 

Brainnetome (210 regions; Fan et al., 2016), and Lausanne (1000 regions; Hagmann et al., 

2008). The von Economo-Koskinas atlas was developed by Scholtens et al. (2018), based on 

the foundational work of von Economo and Koskinas (1925, 2008). This parcellation atlas is 

based on the cyctoarchitecture of the cortex (also see von Economo, 1927, 2009; previously 

some have used a hybrid approach to integrate von Economo’s work with the Desikan-

Killiany atlas [Scholtens et al., 2015; van den Heuvel et al., 2015]). The Brainnetome atlas 
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takes a different approach, using the Desikan-Killiany atlas and further parcellating it based 

on connectivity data from diffusion and resting-state scans (Fan et al., 2016). The Lausanne 

atlas also initially starts from the Desikan-Killiany atlas and then further parcellates it into 

patches of approximately similar area (Hagmann et al., 2008); here we used the 1000 

parcellation variant, though variants with less patches also exist. By predicting age in 

independent samples, across these different parcellation approaches, we can assess the 

cortical granularity of different structural metrics in relation to age-related differences in 

cortical structure.

While these parcellations are defined using anatomical landmarks, different parcellation 

approaches exist and it is unknown to what degree more discrete cortical parcellation regions

—the topological granularity—will provide additional predictive value to inform the age 

prediction performance. It is also unknown whether some metrics of brain morphology 

would yield better prediction accuracy than others; the topology of age-related differences in 

thickness and gyrification have been shown to differ, and thus may be indicators of distinct 

aging processes (Hogstrom et al., 2013; Madan & Kensinger, 2016). More recently, we have 

shown that measures of fractal dimensionality can show stronger age correlations than 

measures of cortical thickness and gyrification (Madan & Kensinger, 2016), but it was not 

known whether this would translate to additional predictive accuracy.

Predicting age from cortical measures

Though age-related differences in brain morphology are robust, there also can be extensive 

individual variability in the trajectory of brain aging (e.g., Pfefferbaum & Sullivan, 2015), 

and cross-sectional comparisons demonstrate that some older adults can have similar mean 

cortical thickness volumes as young adults (e.g., Fjell et al., 2009; Madan & Kensinger, 

2016; Salat et al., 2004). In the absence of acquiring multiple MRI scans from the same 

individual, there are no methods that can easily discriminate among different age-related 

trajectories, nor is there agreement as to which metrics might be the best for identifying 

which individuals are likely to be on an accelerated-aging trajectory. The present study took 

a first step by examining which parcellation techniques and estimates of cortical morphology 

would best predict an individual’s age. Critically, here we measured the age predictions, 

rather than simply correlations with age, because significant relationships are not necessarily 

indicative of predictive value (e.g., see Lo et al., 2015). As a further point of consideration, 

age-related differences in these metrics have been shown to be non-linear (Fjell et al., 2010, 

2013), with age-related trajectories declining more steeply after ‘critical ages,’ that also 

differ across structures (generally occurring between ages 40 and 70). Based on this 

evidence, we used a multiple smoothing-spline based regression procedure (Madan, 2016). 

Figure 2 shows representative cortical surfaces for individuals with ages in the first year of 

each decade, for each sex and training dataset used here. These cortical surfaces visibly 

show the degree of inter-individual differences in cortical structure, but also make apparent 

the age-related differences in gyrification and sulcal width, along with other structural 

characteristics such as Yakovlevian torque. It is also visible here that male brains are 

generally slightly larger than female brains, and that brain size tends to decrease with age. 

(Note that these are representative individual brains from the datasets used here, however, 

and not ‘average’ brains.)
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Here we sought to predict an individual’s age from their brain morphology, attempting to 

optimize the brain parcellation and segmentation techniques so as to maximize their 

predictive accuracy. Though a few others have similarly sought to predict an individual’s age 

from structural MRI volumes (e.g., Ashburner, 2007; Cole et al., 2015; Franke & Gaser, 

2012; Franke et al., 2010, 2014; Schnack et al., 2016; see Cole and Franke, 2017, for a 

review), these implementations relied on voxel-based morphometry (VBM) rather than 

regional surface-based morphology estimates and thus cannot be used to assess the 

predictive value of specific morphological features (e.g., thickness, gyrification) and cortical 

granularity as sought here. To construct this age-prediction model, we used several open-

access MRI datasets. The public sharing of MRI data has been quickly growing and a large 

number of open-access datasets are now available (Biswal et al., 2010; Das et al., 2017; 

Madan, 2017; Mennes et al., 2013; Poldrack & Gorgolewski, 2014; Poldrack et al., 2017; 

Shenkin et al., 2017). The use of open-access datasets enabled us to have the large sample 

sizes needed to have training datasets as well as held-out datasets, as well as demonstrate the 

generalizability and reproducibility of the presented results, though this was not possible 

only a few years ago (Dickie et al., 2012).

Figure 3 provides an overview of factors that are known to influence estimates of brain 

morphology. These factors can be quite varied, ranging from transient changes, such as time-

of-day (Nakamura et al., 2015; Trefler et al., 2016) and hydration (Duning et al., 2005; 

Nakamura et al., 2014), to more long-lasting changes, such as exercise (Hayes et al., 2014; 

Steffener et al., 2016), diet/lifestyle (Booth et al., 2015; Khan et al., 2015; Kullmann et al., 

2016), and meditation (Tang et al., 2015). Brain morphology has also been linked with 

genetic variations, such as APOE and BDNF (see Strike et al., 2015, for a comprehensive 

review). As such, it is important to acknowledge the breadth of effects that influence any 

measure of brain morphology. Although some of these sources of variability would be 

minimized if multiple scans were taken (e.g., at different times of day or with different levels 

of hydration), any model predicting an individual’s age from only brain morphology 

estimates will be unable to account for some additional sources of variance and thus will 

have some degree of error. Nevertheless, it is useful to understand how well age predictions 

can be made on the basis of a structural scan that can be acquired in just a few minutes. Not 

only is this a relevant exercise for confirming the aspects of brain structure that are most 

strongly associated with age-associated differences, it also has potential clinical relevance; if 

the brain structure of healthy adults is a reasonable predictor of their age, then failures in age 

prediction (e.g., a structural scan that suggests someone is a decade older than they are) may 

help to indicate the presence of a prodromal state (Cole et al., 2015; Franke & Gaser, 2012; 

Franke et al., 2010, 2014; Schnack et al., 2016; see Cole & Franke, 2017, for a review). 

While the current focus is on age-related differences through the adult lifespan, brain 

structure has also been examined through development (Brown et al., 2012; Dosenbach et 

al., 2010; Lee et al., 2014; Mills et al., 2016; Qin et al., 2015; Somerville, 2016).
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Procedure

Datasets

Three datasets were used to train the age-prediction algorithm, with an additional two 

datasets used as independent test samples. The age distribution for each of the datasets are 

shown in Figure 4.

Training Sample 1 (IXI) consisted of 427 healthy adults, (260 females) aged 20–86, from 

the publicly available Information eXtraction from Images (IXI) dataset (http://brain-

development.org/ixi-dataset/). This is the same subset of individuals we used previously to 

investigate age-related differences in cortical regions; see Madan and Kensinger (2016, 

2017a) for further details.

Training Sample 2 (OASIS) consisted of 314 healthy adults (196 females), aged 18–94, 

from the publicly available Open Access Series of Imaging Studies (OASIS) cross-sectional 

dataset (Marcus et al., 2007; http://www.oasis-brains.org). Participants were screened for 

neurological and psychiatric issues; the Mini-Mental State Examination (MMSE) and 

Clinical Dementia Rating (CDR) were administered to participants aged 60 and older. In the 

current sample, participants with a CDR above zero were excluded; all remaining 

participants scored 25 or above on the MMSE. Multiple T1 volumes were acquired using a 

Siemens Vision 1.5 T with a MPRAGE sequence; only the first volume was used here. Scan 

parameters were: TR=9.7 ms; TE=4.0 ms; flip angle=10°; voxel size=1.25×1×1 mm. This 

sample was previously used in Madan and Kensinger (2017a) and Madan (in press).

Training Sample 3 (DLBS) consisted of 315 healthy adults (198 females), aged 20–89, 

from wave 1 of the Dallas Lifespan Brain Study (DLBS), made available through the 

International Neuroimaging Data-sharing Initiative (INDI; Mennes et al., 2013) and hosted 

on the the Neuroimaging Informatics Tools and Resources Clearinghouse (NITRC; Kennedy 

et al., 2016) (http://fcon_1000.projects.nitrc.org/indi/retro/dlbs.html). Participants were 

screened for neurological and psychiatric issues. All participants scored 26 or above on the 

MMSE. T1 volumes were acquired using a Philips Achieva 3 T with a MPRAGE sequence. 

Scan parameters were: TR=8.1 ms; TE=3.7 ms; flip angle=12°; voxel size=1×1×1 mm. See 

Kennedy et al. (2015) and Chan et al. (2014) for further details about the dataset; this sample 

was previously used in Madan (in press).

Test Sample 1 consisted of 176 healthy adults (89 females), aged 18–83, recruited by the 

Cognitive and Affective Laboratory at Boston College (BC) and screened for neurological 

and psychiatric issues, and to have scored above 26 on the MMSE. T1 volumes were 

acquired using a Siemens Trio 3 T with a MEMPRAGE sequence optimized for 

morphometry studies (van der Kouwe et al., 2008; Wonderlick, et al., 2009). Scan 

parameters were: TR=2530 ms; TE=1.64, 3.50, 5.36, 7.22 ms; flip angle=7°; voxel 

size=1×1×1 mm. This sample was previously used in Madan and Kensinger (2017a).

Test Sample 2 consisted of 116 healthy adults (70 females), aged 20–87, recruited by Dr. 

Craig Stark’s laboratory at University of California–Irvine (UCI) and screened for 

neurological and psychiatric issues, and to have scored above 26 on the MMSE, made 
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available on NITRC (Kennedy et al., 2016) (https://www.nitrc.org/projects/stark_aging/). T1 

volumes were acquired using a Philips Achieva 3 T with a MPRAGE sequence. Scan 

parameters were: TR=11 ms; TE=4.6 ms; flip angle=12°; voxel size=0.75×0.75×0.75 mm. 

See Stark et al. (2013) and Bennett et al. (2015) for further details about the dataset.

Pre-processing of the structural MRIs

Data were analysed using FreeSurfer v.5.3.0 (https://surfer.nmr.mgh.harvard.edu) on a 

machine running CentOS 6.6. FreeSurfer was used to automatically volumetrically segment 

and parcellate cortex from the T1-weighted images (Dale et al., 1999; Fischl, 2012; Fischl & 

Dale, 2000; Fischl et al., 1999, 2002, 2004). FreeSurfer’s standard pipeline was used (i.e., 

recon-all) and no manual edits were made to the surface meshes. Cortical thickness is 

calculated as the distance between the white matter surface (white-gray interface) and pial 

surface (gray-CSF interface) (Dale et al., 1999; Fischl & Dale, 2000). Thickness estimates 

have previously been found to be in agreement with manual measurements from MRI 

images (Kuperberg et al., 2003; Salat et al., 2004), as well as ex vivo tissue measurements 

(Cardinale et al., 2014; Rosas et al., 2002). Gyrification was calculated using FreeSurfer, as 

described in Schaer et al. (2012).

Cortical parcellations—Here we used seven parcellation atlases to determine the amount 

of relevant age-related differences in cortical structure: (1) entire cortical ribbon (1 region; 

i.e., unparcellated); (2) each of the four lobes (4 regions); (3) Desikan-Killiany-Tourville 

(DKT) atlas (62 regions; Klein & Tourville, 2012); (4) Destrieux et al. (2010) atlas (148 

regions); (5) von Economo-Koskinas atlas (86 regions; Scholtens et al., 2018); (6) 

Brainnetome atlas (210 regions; Fan et al., 2016); and (7) Lausanne atlas (1000 regions; 

Hagmann et al., 2008). Each of these parcellation approaches is shown in Figure 1. The 

DKT and Destrieux atlases are included as standard parcellation atlases within FreeSurfer. 

The lobe parcellation was delineated by grouping parcellation regions from the Destrieux 

atlas, as done in Madan and Kensinger (2016).

The von Economo-Koskinas, Brainnetome, and Lausanne atlases were applied to each 

individual’s reconstructed cortical surface using mris_ca_label with the cortical 

parcellation atlas files ( *.gcs) that have been distributed online by the respective 

researchers. The von Economo-Koskinas atlas was implemented in FreeSurfer by Scholtens 

et al. (2018; http://www.dutchconnectomelab.nl/economo/), based on the cortical areas 

identified by von Economo and Koskinas (1925). The Brainnetome atlas was developed by 

Fan et al. (2016; http://atlas.brainnetome.org) based on a modified Desikan-Killiany atlas 

(Desikan et al., 2006; a precursor to the DKT atlas) that initially reduced the number of 

cortical regions to 20 per hemisphere (rather than the 34), but then further parcellated the 

cortex using connectivity data extracted from diffusion and resting-state scans, resulting in a 

total of 210 regions. The Lausanne atlas was similarly initially constructed using the 

Desikan-Killiany atlas, then further subdivided each region into smaller patches of 

approximately equivalent area (Hagmann et al., 2008). The Lausanne atlas is distributed as 

part of the Connectome Mapper (Daducci et al., 2012; https://github.com/LTS5/cmp).
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Fractal dimensionality—The complexity of each structure was calculated using as the 

fractal dimensionality of the filled structure. Our work previously demonstrated that fractal 

dimensionality indexes age-related differences in cortical and subcortical structures better 

than extant measures (i.e., cortical thickness, cortical gyrification, subcortical volume), 

where older adults exhibit reductions in structural complexity relative to younger adults 

(Madan & Kensinger, 2016, 2017a; Madan, in press). In fractal geometry, several 

approaches have been proposed to quantify the ‘dimensionality’ or complexity of a fractal; 

the approach here calculates the Minkowski–Bouligand or Hausdorff dimension (see 

Mandelbrot, 1967). This structural property can be measured by considering the 3D 

structure within a grid space and counting the number of boxes that overlap with the edge of 

the structure. By then using another grid size (i.e., changing the box width), the relationship 

between the grid size and number of counted boxes can be determined (‘box-counting 

algorithm’). Here we used box sizes (in mm) corresponding to powers of 2, ranging from 0 

to 4 (i.e., 2k [where k = {0, 1, 2, 3, 4}] = 1, 2, 4, 8, 16 mm). The slope of this relationship in 

log-log space is the fractal dimensionality of the structure. Thus, the corresponding equation 

is:

If only the boxes overlapping with the edge/surface of the structure are counted, this slope 

represents the fractal dimensionality of the surface (FDs). If the boxes within the structure 

are additionally counted, the resulting slope represents the fractal dimensionality of the filled 
volume (FDf; see Figure 5). As the relative alignment of the grid space and the structure can 

influence the obtained fractal dimensionality value using the box-counting algorithm, we 

instead used a dilation algorithm that is equivalent to using a sliding grid space and 

calculating the fractal dimensionality at each alignment (Madan & Kensinger, 2016, 2017b).

Fractal dimensionality was calculated using the calcFD toolbox (Madan & Kensinger, 2016; 

http://cmadan.github.io/calcFD/). Briefly, the toolbox calculates the ‘fractal dimensionality’ 

of a 3D structure, and is designed to use intermediate files from the standard FreeSurfer 

analysis pipeline. calcFD was first applied to measure the complexity of the cortical ribbon 

and lobes (Madan & Kensinger, 2016), but has been extended to subcortical structures 

(Madan & Kensinger, 2017a; Madan, in press), and the DKT parcellation atlas (Madan & 

Kensinger, 2017b).

Here we only used the fractal dimensionality of the filled structures (FDf), as this measure 

has been demonstrated to be more sensitive, than the fractal dimensionality of the surface, to 

age-related differences in cortical structure (Madan & Kensinger, 2016). For each 

participant, the fractal dimensionality was calculated for: (a) entire cortical ribbon (1 

region); (b) four lobes (4 regions); (c) DKT-parcellated atlas (62 regions); and (d) von 

Economo-Koskinas atlas (86 regions). As smaller parcellations of cortex inherently have 

decreased fractal dimensionality, i.e., becoming closer to a truncated rectangular pyramid, 

we did not calculate the fractal dimensionality for the parcellation atlases with smaller 

regions (see Figure 1) (Madan & Kensinger, 2017a, 2017b). Indeed, prior analyses indicated 
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that the parcellations in the Destrieux atlas were too fine-grained for meaningful fractal 

dimensionality calculations, but that the regions within the DKT atlas were of sufficient size 

(Madan & Kensinger, 2017b).

Age-prediction algorithm

A machine learning approach was used to predict age (in years) from brain morphology. 

Specifically, we trained a machine-learning regression framework with the aggregated 

training data (N=1056), using brain morphology data to predict the age data. We then 

applied the trained regression model to the brain morphology data from the test samples to 

obtain age predictions. Age predictions were then compared with the actual age data. 

Performance of the age-predictions was evaluated using two metrics: R2 and MdAE. R2 was 

used as a measure of explained variability. Median absolute error (MdAE) has been found to 

be more robust to outliers than mean squared error (MSE) (Armstrong & Collopy, 1992; 

Hyndman & Koehler, 2006).

The machine-learning regression framework primarily relies on several statistical methods to 

minimize over-fitting through regularization, dimensionality reduction, and feature selection. 

This is accomplished through sequentially applying three statistical techniques: smoothing 

spline regression, PCA, and relevance vector regression (RVR)—which we have 

implemented as a MATLAB toolbox called Prism (Madan, 2016). These statistical 

techniques are described further below. As a whole, Prism is a MATLAB toolbox designed 

for conducting spline-based multiple regression using training and test datasets. Benchmark 

analyses indicated that Prism provided better age-prediction estimates than standard RVR 

(Madan, 2016). Prism was configured to (a) use least-squares splines were to reduce over-

fitting (smoothness parameter set to 0.1) and (b) keep the principal components that 

explained the most variance, retaining as many components as necessary to explain 95% of 

the variance. Values were Z-scored prior to the smoothing spline regression to ensure that 

different measures were smoothed to the same degree, as the smoothness parameter is 

influenced by the overall magnitude of the input values (as in Madan, in press).

Relevance Vector Regression (RVR)—To make predictions using the structural 

measures, we employed relevance vector regression (RVR). RVR is the application of 

relevance vector machine or RVM to a regression problem, and is a relatively recent 

machine learning technique (Tipping, 2000, 2001; Tipping & Faul, 2003). In functionality, 

RVM shares many characteristics with support vector machines (SVM), but is generally 

more flexible (Tipping, 2000). RVM can also be considered as a special case of a Sparse 

Bayesian framework (Tipping, 2001; Tipping & Faul, 2003) or Gaussian process 

(Rasmussen & Williams, 2006). For a more in-depth discussion of RVM, see Bishop (2006).

Broadly, RVR is similar to multiple linear regression with regularization (e.g., LASSO and 

ridge regression; see Hastie et al., 2009; Tibshirani, 1996), which reduces the number of 

predictors/model complexity by removing those predictors that are redundant, reducing 

over-fitting and yielding a more generalizable model. The implementation of this procedure 

is sometimes referred to as automatic relevance determination (ARD) (MacKay, 1996; Wipf 

& Nagarajan, 2007). Further, it has been suggested that RVR is comparable to a Bayesian 
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implementation of LASSO regression (Gao et al., 2010; Jamil & ter Braak, 2012; Park & 

Casella, 2008). Here we used the MATLAB implementation of RVM that uses an 

accelerated training algorithm (Tipping & Faul, 2003), freely available from the author’s 

website (http://www.miketipping.com/sparsebayes.htm).

Smoothing spline regression—While age-related changes in morphology are often 

modeled using linear and quadratic functions (e.g., Hogstrom et al., 2013; Madan & 

Kensinger, 2016, Sowell et al., 2003; Walhovd et al., 2011), non-linear functions have been 

shown to better model age-related differences (Fjell et al., 2010, 2013). This approach uses 

smoothing spline regression, where the relationship between a predictor and dependent 

variable is fit using piece-wise cubic functions (Fox, 2000; Wahba & Wold, 1975; Wahba, 

1990). Cubic smoothing spline is implemented in MATLAB as the function csaps. Here 

each predictor (i.e., brain morphology measure) was treated as an independent predictor of 

age and were individually regressed versus age. To combine these estimates, i.e., for 

multiple regression, the Prism toolbox was used (Madan, 2016).

Held-out test data—Age prediction performance here was evaluated using independent 

test datasets. This approach was taken to ensure that the age predictions were not biased—

for instance, numerous studies have demonstrated that performance with k-fold cross-

validation can lead to over-fitting in the model selection (e.g., Golbraikh & Tropsha, 2002; 

Rao et al., 2008; Saeb et al., 2016; Skocik et al., 2016).

Pre- and post-processing—Data were maintained as three separate datasets: Training, 

Test Sample 1, and Test Sample 2. Within each dataset, main effects of sex were initially 

regressed out before being entered into the machine-learning regression framework; the 

main effect of site was also regressed out for the Training dataset. Outputted age predictions 

were mean centered (to the mean of the predicted ages) to compensate for sample 

differences (as in Franke et al., 2010; Franke & Gaser, 2012). The variance in the predicted 

ages in the test data was also matched to variance of the training data, to correct for a 

regression-to-the-mean bias.

Results

Regional age-related differences in cortical structure

In our prior work investigating age-related differences in cortical structure (Madan & 

Kensinger, 2016), we had only used bilateral lobe parcellations (i.e., 4 regions). However, in 

subsequent work, our fractal dimensionality analyses were used with the DKT parcellation, 

with 62 cortical parcellations (Madan & Kensinger, 2017b). While we use this improved 

parcellation method in the current paper, along with multiple regression methods to estimate 

age predictions in held-out test samples, we thought it would be useful to calculate the 

relationship between structural measures for each parcellation with age.

We used a smoothing spline regression approach, as described in the methods, with the full 

training dataset (N=1056). All of the regressions controlled for effects of site.
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We first conducted smoothing-spline regressions using the cortical ribbon measures. Inter-

individual differences in mean cortical thickness explained 47.17% of the variance in age 

(i.e., R2). Mean gyrification explained 36.07% of the variance; fractal dimensionality (of the 

filled volume) explained 73.53% of the variance. Reassuringly, these values correspond 

reasonably well with the variances explained in the independent, held-out test samples (see 

Table 1). For comparison, with linear and quadratic effects in the IXI sample alone, these 

values were 33.55%, 20.61%, and 51.66%, respectively (as reported in Madan & Kensinger, 

2016); the relative increases in the explained variance correspond to the use of spline 

regression, instead of linear and quadratic regression, and also indicate that our overall 

approach and between-site harmonization was successful.

We subsequently conducted similar smoothing-spline regressions for each of the 62 cortical 

parcellations of the DKT atlas, as shown in Figure 6A. The cortical thickness and 

gyrification analyses correspond well with the comparable analysis by Hogstrom et al. 

(2013). Age-related differences in cortical thickness are most pronounced in frontal regions 

and the superior temporal gyrus, and are least effected in occipital regions, the superior 

parietal lobule, and the postcentral gyrus. In contrast, age-related differences in gyrification 

are most pronounced in the pre- and postcentral gyri, caudal middle frontal gyrus, as well as 

supramaginal gyrus and inferior parietal lobule. Frontal regions and parcellations on the 

medial surface have the least age-related differences in gyrification.

Age-related differences in fractal dimensionality have a topology that resembles a mixture of 

the thickness and gyrification patterns, but is generally higher in explained variance (i.e., 

R2). Regional fractal dimensionality was most affected by age in the superior temporal gyrus 

and inferior parietal lobule, though frontal regions were also markedly affected. Inter-

individual differences in fractal dimensionality of the inferior temporal gyrus and regions 

along the medial surface were the least associated with age.

As shown in Figure 6B, we also conducted a similar analysis using the von Economo-

Koskinas atlas (Scholtens et al., 2018) and found a similar pattern of results across the 

parcellations and cortical measures. Figure 6C shows that the most age-sensitive regions 

from the other atlases generalize to the Brainnetome atlas as well, however, thickness of 

many parcellations are only weakly related to age, likely due to the substantially smaller 

regions here and an increasing role of inter-individual differences and regional specificity.

Age-prediction models

To investigate the relationship between brain morphology and age-prediction performance, 

we first calculated a benchmark measure, then compared age-prediction models using 

regional cortical thickness for each of the seven parcellation approaches. Next we compared 

different structural measures (i.e., thickness, gyrification, fractal dimensionality, and a 

combination of all three) across four parcellation atlases. Finally, we took a theoretical 

approach to combining the morphological measures to best capture age-related differences 

in structure. Results from the age-prediction models are summarized in Table 1.

Benchmark performance—To provide a benchmark to evaluate the age-prediction 

performance in the held-out test data using the various estimates of brain morphology, a 
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simple estimation of a lower-bound (shown in light gray in Figure 7) was determined by 

‘predicting’ that all participants’ ages in the test dataset were the mean of the dataset. As 

such, R2=0 for this benchmark model, and we would not expect any reasonable age-

prediction model to produce worse estimates than this.

In Figure 7, each box-and-whisker denotes the median (i.e., MdAE) as a tick-mark. The box 

spans the 25th to 75th percentiles; the whiskers span the 10th to 90th percentiles.

Cortical thickness—Performance for the age-prediction models based on cortical 

thickness, for each of the seven parcellation approaches, are shown in Figure 7 and Table 1. 

Results show that finer-grain parcellations generally yielded better age predictions, 

demonstrating that regional heterogeneity in age-related differences in cortical thickness led 

to improved prediction performance. Age-prediction models using the cortical ribbon and 

lobe parcellations performed comparably, indicating that the slight increase in heterogeneity 

with the lobe parcellations was not sufficient to improve predictions. However, performance 

on the atlases that had more fine-grain parcellations, led to a decrease in the median absolute 

error of approximately three years. Performance between these different atlases did not 

markedly differ, with age predictions having a median error of 7 to 10 years. While 

performance with the Lausanne atlas (which comprised 1000 regions) was relatively good, it 

was not better than the parcellation atlases that had far fewer regions. Here we considered 

the Brainnetome atlas to be the best performing model based on cortical thickness estimates.

Comparing different measures of morphology—Next, we compared age-prediction 

models based in cortical thickness, gyrification, and fractal dimensionality. As indicated 

earlier, fractal dimensionality inherently becomes less sensitive with smaller parcellations 

and was only used for the cortical parcellations with less than 100 regions.

Beginning with models using only a single value for the unparcellated cortical ribbon, the 

model based on the fractal dimensionality did markedly better than those based on mean 

cortical thickness or gyrification. Combining the three measures (i.e., three predictors in the 

regression) led to worse age predictions than complexity alone, due to insufficient feature 

selection and/or possible over-fitting. Given that there were only three predictors input, this 

suggests that the automatic relevance determination used in RVR was not ‘strict’ enough to 

only use complexity, though later combined models were able to perform better than their 

component models that relied on only a single measure of morphology. Performance on the 

age-prediction models using the lobe-wise parcellation scheme performed relatively 

similarly to those that only used the cortical ribbon.

The models that used the DKT parcellation atlas using only one of the morphology measures 

performed comparably to those with the unparcellated ribbon and lobe parcellations, 

however, the combined model here did perform notably better. The combined model had a 

median error of 8 years and R2 values near .70. As noted earlier, age predictions based on 

cortical thickness improved markedly when using the DKT parcellation, relative to the 

ribbon and lobe parcellations. Importantly, we also found that the fractal dimensionality 

model using the DKT parcellation was performing worse than the ribbon and lobe models, 

suggesting that using the finer-grain parcellations was resulting to notable losses in 
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complexity-related information, as alluded to previously. Interestingly, the age-prediction 

models based on the von Economo-Koskinas atlas performed comparably with the DKT 

atlas when each structural metric was used independently, but error was sufficiently lower 

when the metrics were combined.

Combining measures—The four combined models are shown in orange in Figure 7. 

Based on the performance of these age-prediction models, we constructed an additional 

model, combining the two best cortical measures, across different parcellation approaches—

cortical thickness from the regions of the Brainnetome parcellation atlas, and fractal 

dimensionality from the lobe-wise parcellation. This newly constructed model (shown in 

light green) out-performed the component models, indicating that the two structural 

measures each provided unique age-related difference characteristics. A scatter plot of the 

predicted and actual ages for this model is shown in Figure 8.

Discussion

The present study reveals that inter-individual differences in cortical structure are not only 

strongly correlated with age, but also can robustly be used to predict age. Although almost 

any metric of cortical structure can predict age to within a decade (10–12 years), the present 

study also reveals that by optimizing metrics, a much more accurate prediction (6–7 years) 

can be achieved. In-line with prior results (Hogstrom et al., 2013; Madan & Kensinger, 

2016), we found that differences in gyrification are not as related to age as cortical thickness, 

and fractal dimensionality was a better morphological metric of age-related differences than 

either of these other metrics. Importantly, the best age predictions were achieved when both 

fractal dimensionality and cortical thickness were combined, demonstrating that these 

metrics contribute unique information about age-related differences in brain structure.

Across different cortical parcellation schemes, cortical thickness estimates localized to 

different gyri and sulci are substantially more indicative of age-related differences relative to 

lobe-wise measurement. The recently developed Brainnetome atlas was selected as the best 

atlas for representing age-related differences in cortical thickness, though the DKT, 

Destrieux, and von Economo-Koskinas atlases did not markedly differ in performance. 

Parcellating the cortex into even more constrained patches (i.e., the Lausanne atlas) did not 

provide any additional predictive value, indicating that the level morphological granularity in 

the Brainnetome parcellation was sufficient for age predictions based on cortical thickness 

estimates. Fractal dimensionality inherently becomes less sensitive with smaller 

parcellations, and performed best when only using lobe-wise parcellations, rather than the 

more fine-grained parcellations of the DKT and von Economo-Koskinas atlases. 

Gyrification did not appear to be sufficiently predictive of age to further contribute to 

predictions. Without pooling across different atlases, the von Economo-Koskinas atlas 

produced relatively good age predictions when the three cortical metrics were combined.

Within the broader literature, the age-prediction approach here can serve as a baseline model 

of healthy, successful aging. For instance, this approach can be used to characterize which 

regions exhibit more or less age-related variability. Since the training and test datasets were 

wholly independent, age-predictions applied to additional independent datasets should be 

Madan and Kensinger Page 13

Eur J Neurosci. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



indicative of healthy aging. Future studies could use the current approach with smaller 

samples, where larger differences between predicted age and chronological age would be 

indicative of cohort characteristics related to atypical aging. Of course, it would still be 

optimal to have MRI data for ‘healthy’ individuals acquired alongside the group of interest 

to account for differences related to scanner hardware, pulse sequence, or potential 

differences in demographics (e.g., years of education).

Although the present results reveal systematic age-related differences in brain structure, 

several questions remain about the nature of these age differences. For instance, the cortical 

measures used here are limited to macroscopic differences, as differences in the 

microstructure (e.g., neuron density, neuropil composition) are beyond the capabilities of 

current MRI methods. This raises the question of what neurobiological changes are 

manifesting in these macroscopic changes in structure. In a different vein, in models where 

age-predictions performed relatively poorer, and in light of the myriad of ways that 

individual brains can differ, one must wonder what other non-aging factors may be 

manifesting in morphological differences and minimizing the ability to isolate age 

differences. In the following two sections we outline the extant literature that investigates 

these two topics.

Neurobiological basis of age-related differences in brain structure

While a large number of studies examining age-related differences in cortical thickness have 

found reduced cortical thickness in older adults, particularly in frontal regions, the 

underlying changes in the cortical microstructure are unclear (Dickstien et al., 2013; Koo et 

al., 2012; Meyer et al., 2014; Sowell et al., 2003). One reason this has yet to be resolved is 

that to do so appropriately would require not only MRI data, but also post-mortem 

histological tissue samples. Extant histological evidence suggests that age related differences 

in cortical regions is generally not associated with a decrease in the number or size of 

neurons (Freeman et al., 2008; Gefen et al., 2015; Morrison & Hof, 1997; Peters & Rosene, 

2003; Peters et al., 1998; Uylings & de Brabander, 2002; von Bartheld, in press), despite 

initial suggestions to the contrary (Terry et al., 1987). What does appear to differ, however, is 

the dendritic structure, particularly in pyramidal neurons, as well as other features of the 

neuropil (Casanova et al., 2011; Dickstein et al., 2007, 2013; Duan et al., 2003; Eickoff et 

al., 2005; Hao et al., 2007; Morrison & Baxter, 2012; Peters, 2002; Scheibel et al., 1975; 

Uylings & de Brabander, 2002). Convergently, pyramidal neurons are particularly prominent 

in prefrontal cortex, as well as prefrontal pyramidal neurons having orders of magnitude 

more dendritic spines than those in some other regions (Elston, 2003).

The literature investigating the biological basis for age-related differences in gyrification is 

even more sparse. Unlike cortical thickness, age-related differences in gyrification are most 

pronounced in the parietal lobe (Hogstrom et al., 2013; Madan & Kensinger, 2016). In a 

large sample of chimpanzees, Autrey et al. (2014) observed increased gyrification in adults 

relative to adolescents, consistent with human data; however, an age-related decrease in 

gyrification was not observed. The authors thus attributed the age-related decrease in 

gyrification in humans as a being related to the extended lifespan of humans, though many 

other factors also may be relevant (e.g., exercise and diet).
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Non-aging factors that influence brain morphology

While the goal of the current work was to examine the relationship between age and brain 

morphology, a multitude of other factors are also known to influence estimates of brain 

morphology. Broadly, these other factors can be categorized as: (1) inter-individual 

differences; (2) transient physiological changes; and (3) scan-related factors, as outlined in 

Figure 3. Here we only included age as a predictor and did not include these additional 

factors, and thus prediction accuracy was inherently limited; however, future work including 

some of these factors should yield more precise predictions. Furthermore, an important next 

step will be to examine the relative contribution of different inter-individual difference 

measures to age-prediction performance.

Inter-individual differences in morphology can arise from many sources, including 

biological and lifestyle/experiential factors. It is well established that there are sex 

differences in brain morphology (Barnes et al., 2010; Herron et al., 2015; Hutton et al., 

2009; McKay et al., 2014; Potvin et al., 2016; Salat et al., 2004; Sowell et al., 2007). Brain 

morphology has also been linked with genetic variations; even in healthy individuals, genetic 

variants of APOE (Donix et al., 2010; Honea et al., 2010; Mormino et al., 2014; Okonkwo et 

al., 2012; Reinvang et al., 2013; Riedel et al., 2016) and BDNF (Nemoto et al., 2006; 

Pezawas et al., 2004; but see Harrisberger et al., 2014) relate to brain morphology estimates. 

Factors related to perinatal development such as birth weight and nutrition are also 

associated with morphology, during development and through to adulthood (Strømmen et 

al., 2015; Walhovd et al., 2012, 2014, 2016). Other lifestyle and experiential factors also can 

influence brain morphology. Expertise within specific domains has been associated with 

regional differences in morphology (see May, 2011, for a review), such as in chess players 

(Hänggi et al., 2014), taxi drivers (Maguire et al., 2000), musicians (Tervaniemi, 2009), 

athletes (Schlaffke et al., 2014; Tseng et al., 2013), and video game players (Erickson et al., 

2010; Kühn et al., 2013). Morphological changes can also arise from experiences such as 

meditation (Luders et al., 2016; Tang et al., 2015) or from a lack of normal experience, as in 

acquired blindness (Li et al., in press). Other important inter-individual factors lay 

somewhere on a continuum in-between biological and lifestyle. Physical health factors, such 

as exercise and diet, can also influence brain morphology (Booth et al., 2015; Fletcher et al., 

2016; Hayes et al., 2014; Khan et al., 2015; Kullman et al., 2016; Steffener et al., 2016; 

Williams et al., 2017). Inter-individual differences such as cognitive abilities, personality, 

and affective style are also associated with morphological differences (Bjørnebekk et al., 

2013; Gignac & Bates, 2017; Holmes et al., 2016; Kievit et al., 2014; Riccelli et al., 2017; 

Valk et al., 2017; Yamagishi et al., 2016). A growing literature has also demonstrated 

relationships between socioeconomic status and brain morphology (Brito et al., 2017; Brito 

& Noble, 2014; Hanson et al., 2013; LeWinn et al., 2017; Piccolo et al., 2016).

Beyond inter-individual differences in morphology, transient physiological effects can also 

influence estimates of brain morphology, and likely also estimates of test-retest reliability. 

These changes include time-of-day effects (Nakamura et al., 2015; Trefler et al., 2016) and 

structural changes over the course of longer periods (i.e., infradian), such as the menstrual 

cycle (Hagemann et al., 2011; Lisofsky et al., 2015; Ossewaarde et al., 2013; Protopopescu 

et al., 2008). Hydration can also influence brain morphometry (Duning et al., 2005; 

Madan and Kensinger Page 15

Eur J Neurosci. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kempton et al., 2009; Nakamura et al., 2014; Streitbürger et al., 2012; but see Meyers et al., 

2016).

Scan-related effects can affect estimates of morphology, without an actual change in 

morphology. For instance, head movement during scan acquisition can lead to decreased 

estimates of cortical thickness (Alexander-Bloch et al., 2016; Pardoe et al., 2016; Reuter et 

al., 2015; Savalia et al., 2017). Effects of head movement on morphology estimates is 

particularly relevant here, as there is evidence that older adults tend to move more during 

scanning than younger adults (Andrews-Hanna et al., 2007; Salat, 2014; Savalia et al., 2017; 

Van Dijk et al., 2012; but see preliminary evidence that fractal dimensionality may be robust 

to head movement, Madan & Kensinger, 2016). Differences in pulse sequence, magnetic 

field strength, and other inter-scanner effects can also influence estimates of morphology 

(Han et al., 2006; Erus et al., 2018; Fortin et al., 2018; Iscan et al., 2015; Jovicich et al., 

2009, 2013; Lüsebrink et al., 2013; Madan & Kensinger, 2017b; Potvin et al., 2016; 

Wonderlick et al., 2009; Zaretskaya et al., 2018), as well as software packages, and even 

versions, used for data analysis (Chepkoech et al., 2016; Glatard et al., 2015; Gronenschild 

et al., 2012; Johnson et al., 2017).

In sum, estimates of brain morphology are subject to many sources of variability that are 

often not considered, with future studies necessary to further our understanding of the 

complex interplay among these factors.

Future directions

Prediction accuracy may be improved by extending it to multimodal protocols. For instance, 

other imaging techniques have been found to index age-related differences, such as iron 

content (Acosta-Cabronero et al., 2016; Bartzokis et al., 1994; Callaghan et al., 2014; 

Daugherty & Raz, 2015; Ghadery et al., 2015; Ward et al., 2014; Zecca et al., 2004), white-

matter tract integrity (Bender et al., 2016; Chen et al., 2013; Cox et al., 2016; Gunning-

Dixon et al., 2009; Kodiweera et al., 2016; Lebel et al., 2012; Teipel et al., 2014), and 

arterial-spin labeling (Chen et al., 2013). Functional connectivity (e.g., from resting-state 

fMRI data) could also be used to complement the current approach (e.g., Dosenbach et al., 

2010; Liem et al., 2017; Geerligs & Tsvetanov, 2016; Qin et al., 2015). Other non-imaging 

measures, such as lifestyle factors (e.g., diet, smoking, vascular health, education, and 

exercise) or blood biomarkers may also improve prediction accuracy (Geerlings & 

Tsvetanov, 2016; Madsen et al., 2016).

Future work can take advantage of this framework to compare relative differences in ‘brain 

age’ associated with different participant samples, both healthy and patient populations. For 

instance, prior studies have found evidence suggesting overestimated aging predictions in 

patients with Alzheimer’s disease (Franke & Gaser, 2012), traumatic brain injuries (Cole et 

al., 2015), and schizophrenia (Schnack et al., 2016). Other individuals, such as long-term 

meditation practitioners, have been found to have significantly underestimated age 

predictions (Luders et al., 2016).
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Conclusion

Here we demonstrate that reliable age predictions can be made from structural MRI 

volumes. A combination of cortical thickness and fractal dimensionality yielding the best 

predictions. The present framework may also prove useful for future research contrasting 

healthy aging relative to samples of participants exhibiting pathological aging or superagers, 

as well as for investigating other sources of variability within healthy older adults (such as 

cognition-, lifestyle-, or health-related factors).
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Figure 1. 
Inflated and pial surfaces and an oblique coronal slice, from a young adult (20-year-old 

male), illustrating the seven parcellation approaches used.
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Figure 2. 
Cortical surfaces for each age decade, sex, and training sample. Representative cortical 

surface reconstructions for individuals with ages in the first year of each decade (with the 

exception of 40s, where there were insufficient male participants between ages 40 and 41). 

All reconstructions are shown at the same scale. 3D reconstruction images were generated as 

described in Madan (2015).
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Figure 3. 
Overview of factors known to influence estimates of brain morphology.
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Figure 4. 
Age distributions for each of the datasets. (A) Age distributions for each of the datasets used 

in the training. (B) Age distribution for the aggregated training dataset (i.e., combining IXI, 

OASIS, and DLBS). (C) Age distributions for the independent test datasets.
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Figure 5. 
Illustration of how fractal dimensionality is measured from a 2D structure. Modified from 

Madan and Kensinger (2016).
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Figure 6. 
Regional age-prediction differences (R2) using the (A) DKT, (B) von Economo-Koskinas 

atlases, and (C) Brainnetome for the respective structural measures using smoothing-spline 

regression.
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Figure 7. 
Age-prediction performance for the models based on each of parcellation atlases and 

structural measures. ‘Regions’ corresponds to the number of regions/predictors used in the 

model (see Figure 1). ‘FD’ denotes fractal dimensionality of the filled structures. Each box-

and-whisker bar denotes the median (i.e., MdAE) as a tick-mark. The box spans the 25th to 

75th percentiles; the whiskers span the 10th to 90th percentiles. Values for each of these 

percentiles, as well as R2, are reported in Table 1.
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Figure 8. 
Scatter plot of the actual and predicted age for the best-fitting model.
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