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Abstract

Overexpressed cell-surface receptors are hallmarks of many disease states and are often used as 

markers for targeting diseased cells over healthy counterparts. Cell adhesion peptides, which are 

often derived from interacting regions of these receptor-ligand proteins, mimic surfaces of intact 

proteins and, thus, have been studied as targeting agents for various payloads to certain cell targets 

for cancers and autoimmune diseases. Because many cytotoxic agents in the free form are often 

harmful to healthy cells, the use of cell adhesion peptides in targeting their delivery to diseased 

cells has been studied to potentially reduce required effective doses and associated harmful side-

effects. In this review, multiple cell adhesion peptides from extracellular matrix and ICAM 

proteins were used to selectively direct drug payloads, signal-inhibitor peptides, and diagnostic 

molecules, to diseased cells over normal counterparts. RGD constructs have been used to improve 

the selectivity and efficacy of diagnostic and drug-peptide conjugates against cancer cells. From 

this precedent, novel conjugates of antigenic and cell adhesion peptides, called bifunctional 

peptide inhibitors (BPIs), have been designed to selectively regulate immune cells and suppress 

harmful inflammatory responses in autoimmune diseases. Similar peptide conjugations with 

imaging agents have delivered promising diagnostic methods in animal models of rheumatoid 

arthritis. BPIs have also been shown to generate immune tolerance and suppress autoimmune 

diseases in animal models of type-1 diabetes, rheumatoid arthritis, and multiple sclerosis. 

Collectively, these studies show the potential of cell adhesion peptides in improving the delivery of 

drugs and diagnostic agents to diseased cells in clinical settings.
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A. Cell Adhesion Molecules and Their Roles in Biology

Cells interact with their surroundings in different ways to fulfill various functions, ranging 

from vital intercellular signaling to the formation of an intercellular junction of biological 

barriers (i.e., intestinal mucosa barrier and blood-brain barrier [BBB]). Cell adhesion 

proteins play important roles in various diseases including, tumor metastasis, angiogenesis, 

tumor invasion, inflammation, thrombosis, and autoimmune diseases (i.e., Type-1 diabetes 

(T1D), multiple sclerosis (MS), rheumatoid arthritis (RA), Crohn’s) [1–4]. The changes in 

the expression of cell adhesion proteins on the cell surface can be used as biomarkers for a 
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disease state as well as for distinguishing diseased cells from normal ones. For example, the 

upregulation of cell adhesion receptors, αVβ3 and αVβ5 integrins, has been shown during 

angiogenesis in tumors [5]. Thus, cell adhesion proteins have been used as targets for (a) 

development of diagnostic agents, (b) drug development by inhibiting cell-adhesion process 

and signaling, and (c) directing drug molecules specifically to disease cells with upregulated 

cell adhesion proteins [3–4, 6–11].

Cell adhesion molecules (CAMs) are glycoproteins found on the cell surface and 

extracellular matrices (ECM) and are involved in homophilic and heterophilic protein-

protein interactions during the cell adhesion process [12–13]. Homophilic interactions 

involve interactions between two of the same proteins, while heterophilic interactions are 

mediated by two different cell adhesion molecules. CAMs are responsible for (a) anchoring 

cells in tissues, (b) cell migrations, (c) cell-cell communications (signaling), and (d) 

connecting cells in the intercellular junctions of biological barriers (i.e., intestinal mucosa 

and the BBB). There are several families of cell adhesion molecules, including (a) integrin 

receptors, (b) immunoglobulins, (c) cadherins, (d) selectins, and (e) extracellular matrix 

proteins [13–17]. The integrin family is a combination of various heterodimers of α- and β-

subunits on the cell surface. Several members of the integrin family include fibronectin 

receptor (FNR), vitronectin receptor (VNR), very late antigen-4 (VLA-4), and lymphocyte 

function-associated antigen-1 (LFA-1). The integrin family has cell-signaling roles during 

cell migration as well as immune cell activation, including their involvement in the “outside-

in” and “inside-out” signaling processes in immune cell activation and the cell adhesion 

process.

The members of the immunoglobulin superfamily consist of proteins that contain 

immunoglobulin structural repeats such as intercellular cell adhesion molecule-1 (ICAM-1), 

vascular cell adhesion molecule-1 (VCAM-1), and cadherins. T-cell adhesion to the antigen-

presenting cell (APC) is mediated by the interaction between LFA-1 on T cell and ICAM-1 

on APC. Similarly, T-cell adhesion to vascular endothelial cells can be mediated by 

interaction between very late antigen-4 (VLA-4) integrin receptor on T-cells and VCAM-1 

on vascular endothelial cells. Immune cells can extravasate from the blood to tissue through 

vascular endothelium after their firm adhesion on the surface of endothelial cells mediated 

by ICAM-1/LFA-1 and VLA-4/VCAM-1 interactions. Prior to firm adhesion of leukocytes 

(e.g., T cells) onto vascular endothelium, the rolling of these immune cells on the surface of 

vascular endothelium is mediated by the interaction of selectin on immune cells and Sialiyl-

Lewis-X molecules on the cell surface vascular endothelium. The structure of the 

extracellular domain of E-, L-, or P-Selectin has a lectin domain, an epidermal growth factor 

(EGF) domain, and two complement regulatory (CR) domains.

Cadherins (i.e., E-, P-, and N-cadherins) are cell surface calcium-binding glycoproteins with 

immunoglobulin repeats that interact in a homophilic manner to induce cell-cell adhesion in 

the intercellular junctions of biological barriers (i.e., intestinal mucosa barrier and the blood-

brain barriers). However, cadherins have also been shown to interact with integrin to mediate 

cell-cell adhesion. Finally, the extracellular matrix (ECM) proteins interact with integrins for 

anchoring cells to tissues as well as during tumor metastasis; ECM family includes 

fibronectin, vitronectin, fibrinogen, collagen, von Willbrand Factor, and laminin.
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Several cell surface cell adhesion receptors have been shown to internalize their ligands into 

the cytoplasmic domain of cells. LFA-1 receptors on T cells and HL-60 leukemic cells 

internalize cIBR peptide derived from the ICAM-1 protein [18–20]. In a similar fashion, 

ICAM-1 proteins on the surface of vascular endothelial cell mediate the uptake of cLABL 

peptide derived from the I-domain of LFA-1 protein [21]. RGD peptides that are specifically 

bound to highly expressed αVβ3 and αVβ5 integrins on cancer cells have been used as 

peptide-drug conjugates to selectively deliver drugs and nanoparticles to cancer cells over 

normal cells [5–10, 22]. Thus, many cell adhesion molecules have been conjugated to drugs 

and imaging agents for disease treatment and diagnostics.

This review is focused on the use of cell adhesion peptides to target therapeutic, antigenic, 

and diagnostic molecules to cancer and immune cells with upregulated or activated cell 

adhesion receptors. RGD peptides have been used to deliver anticancer drugs or diagnostic 

agents to cancer cells with upregulated integrins such as αVβ3 and αVβ5 integrins. ICAM-1 

peptides have been designed to target molecules to LFA-1 on the surface of immune cells 

and LFA-1 peptides to target ICAM-1 in epithelial and endothelial cells as well as immune 

cells. ICAM-1 peptides (i.e., cIBR) have been used to deliver an anticancer drug into cancer 

cells and an anti-inflammatory agent to suppress T-cell activation in rheumatoid arthritis 

(RA) animal model. LFA-1 peptides have also been used to deliver antigenic peptides to 

control immune responses in animal models of autoimmune diseases (i.e., RA, T1D, and 

MS). Cell adhesion peptides have been used to direct polymers and nanoparticles to deliver 

drugs and antigens to target cells. Although most conjugates of cell adhesion peptides have 

not yet reached clinical trials, the hope is that this review will stimulate interest in this area 

of research and provide background for investigating the potential of using other cell 

adhesion peptides for conjugates to deliver drugs and diagnostic agents.

B. Cell Adhesion Peptides

B.1. RGD Peptides Derived from ECM Proteins

Among the currently published in literature, one of the most well-studied cell adhesion 

peptides is RGD. The “Arg-Gly-Asp” or “RGD” sequence is found in many extracellular 

matrix (ECM) proteins, including fibronectin, vitronectin, fibrinogen, von Willebrand 

Factor, laminin, and collagen [12–15]. The RGD sequence is recognized by various integrin 

receptors on the cell surface for cell adhesion to ECM. The conformation of RGD sequence 

and the flanking residue have an important role in their recognition by specific receptor(s) in 

the integrin receptor family [29–30]. A cyclic RGD peptide, Integrilin®, has been used to 

clinically treat thrombosis because it inhibits platelet aggregation [31]. In this case, the RGD 

peptide binds to the integrin gpIIb/IIIa receptor on platelets and renders it unable to bind to 

fibrinogen for mediating platelet aggregation. Other cyclic RGD peptides have been 

designed for cancer treatment by inhibiting angiogenesis. These cyclic peptides selectively 

bind to αVβ3 and αVβ5 integrins, which are upregulated in tumors during angiogenesis [5, 

29].

The recognition and selectivity of RGD peptides are governed by the distance among the 

positively charged guanidinium cation of the Arg residue, the carboxylic acid anion of the 

Asp residue, and the hydrophobicity of the flanking residue (Table 1) [32–33]. Therefore, 
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the peptide conformation becomes essential in imposing the structure favorable for 

selectivity toward a specific target integrin. The formation of a cyclic peptide delivers a 

degree of backbone rigidity, which limits possible conformations to those favorable for a 

selected integrin. Integrilin® is a cyclic peptide that is formed by a disulfide bond from two 

cysteine residues at the respective N- and C-terminus. Its selectivity for gpIIb/IIIa integrin 

receptor is due to the restricted backbone conformation [31]. In contrast, cyclic cRGDfV and 

cRGDyV peptides use N- to C-terminus cyclization for a rigid backbone. They are selective 

toward αVβ3 and αVβ5 integrins and can be delivered to solid tumor to suppress 

angiogenesis [10, 30, 34–36].

B.2. Non-RGD Peptide

Recently, a new non-RGD cyclic peptide called ALOS4 (cyclo-(CSSAGSLFC)) was found 

to bind to overexpressed integrin αVβ3 in malignant melanoma cells (Figure 1; Table 1) 

[37]. ALOS4 peptide has been similarly explored as a tumor targeting peptide due to its 

binding affinity for αVβ3 integrin. The binding site for ALOS4 on αVβ3 integrin is different 

from the binding site of RGD peptide [37]. However, this peptide can be used as an 

alternative method of delivering cytotoxic drug to cancer cells overexpressing αVβ3 integrin.

B.3. LFA-1 Derived Peptides

Another group of cell adhesion peptides found in the literature have their origins in 

immunological processes, particularly in the inflammatory response. The immune system 

defends the body against foreign antigens via the involvement of T cells and antigen-

presenting cells. Interactions between ICAM-1 on the surface of APC and LFA-1 on T-cells 

are important not only for APC-T-cell adhesion but also as a co-stimulatory signal (Signal-2) 

for T-cell activation and proliferation. The antigen-specific activation of T-cells is also 

mediated by the T-cell receptor (TCR) recognition of antigen-major histocompatibility 

complex II (Ag-MHC II) presented by APCs. The TCR/Ag-MHC-II interactions can be 

categorized as signal-1, and the combination of signal-1 and -2 to form immunological 

synapse (IS) on the interface of T-cells and APC is necessary for T-cell activation and 

proliferation [38–40].

Inhibition of ICAM-1/LFA-1 interaction using monoclonal antibodies (mAbs) has been 

shown to suppress autoimmune diseases. Injections of a combination of anti-ICAM-1 and 

anti-CD11a mAbs twice a week for four weeks can induce immunotolerance to suppress 

type-1 diabetes and infiltration of islets by mononuclear cells in non-obese diabetes (NOD) 

mice [41]. A combination of these antibodies also prevents alograph rejection in cardiac 

transplantation in mice [42]. Anti-CD11a mAb (Efalizumab, Raptiva®) was previously used 

to treat psoriasis and it was also evaluated in phase I/II clinical trial for renal transplantation 

[43]. Unfortunately, this drug was pulled from the market because patients treated with this 

antibody developed progressive multifocal leukoencephalopathy (PML) [44]. Anti-ICAM-1 

(Enlimomab) was also investigated for the treatment of rheumatoid arthritis (RA) [45–46].

X-ray crystallography of the interactions between ICAM-1 heterodimer and the I-domain 

was shown in Figure 2A. Two D1 domains of ICAM-1 form a homodimer, and each D1 

domain binds to the I-domain of LFA-1. This interaction involves the metal ion dependent 

Moral and Siahaan Page 4

Curr Top Med Chem. Author manuscript; available in PMC 2018 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



adhesion site (MIDAS) region of I-domain. LFA-1 peptides (i.e., LABL or cLABL) were 

derived from the I-domain of LFA-1 α-subunit where their sequence is located in the 

interface region of binding between I-domain and D1 of ICAM-1 (Figure 2B). Linear LABL 

and/or cLABL have been shown to inhibit ICAM-1/LFA-1-mediated homotypic T-cell 

adhesion [47–48] as well as heterotypic T-cell adhesion to Caco-2 epithelial cell monolayer 

[49–51]. cLABL can also inhibit binding of the anti-ICAM-1 antibody to ICAM-1 on 

Molt-3 T-cells, suggesting that it binds to ICAM-1. Fluorescence-labeled cLABL peptide is 

also internalized by ICAM-1 into Molt-3 T-cells and Caco-2 cell monolayers, indicating that 

it has a potential for targeting drugs to ICAM-1-expressing cells [21]. Although LABL 

peptide was designed using information from residue mutation studies of the I-domain prior 

to the availability of the X-ray structure of I-domain/ICAM-1 complex, it is interesting to 

find that the sequence of LABL is located within the MIDAS region of the I-domain, and at 

the binding interface with ICAM-1 [52]. This correlation is one of many examples affirming 

the value of structural elucidations of protein-protein interactions in designing promising 

peptides of interest.

B.4. ICAM-1 Derived Peptide

Several linear and cyclic peptides designed from the sequences of the D1 of ICAM-1 can 

inhibit ICAM-1/LFA-1-mediated T-cell adhesion. Both IE and IB peptides were derived 

from D1 of ICAM-1. Analysis of the crystal structure of the ICAM-1/I-domain complex 

shows that the IE peptide epitope resides in the interface between D1 of ICAM-1 and the 

MIDAS region of I-domain of LFA-1 (Figure 2C). In contrast, epitope for the IB peptide 

was found in the interface of ICAM-1/ICAM-1 homodimer (Figure 2D). The IE peptide and 

its cyclic peptide derivatives (i.e., cIEL, cIEC, and cIER) were observed to enhance binding 

of anti-CD11a mAb binding to LFA-1 on T-cells, while they inhibit ICAM-1/LFA-1 T-cell 

adhesion. In contrast, IB peptide and its cyclic derivatives (i.e., cIBL, cIBC, and cIBR) block 

the binding of anti-CD11a mAb to LFA-1 and also inhibit ICAM-1/LFA-1-mediated T-cell 

adhesion [47–48, 53]. FITC-labeled cIBR peptide has been shown to colocalize with 

antibody to the β-subunit (R15.7 mAb) of LFA-1 on SKW-3 T-cells, which is detected with 

R-phycoerythrin (PE)-labeled goat antimouse secondary antibody, suggesting that cIBR 

binds to LFA-1 [18]. However, X-ray crystal structure of the I-domain/ICAM-1 complex 

showed that the cIBR sequence was at the homodimer region of ICAM-1 not at the interface 

of I-domain/ICAM-1. cIBR peptide inhibits binding of various mAbs to the MIDAS and 

IDAS regions of the I-domain [53]. NMR binding studies between cIBR peptide and I-

domain indicate that cIBR peptide binds to the IDAS region of the I-domain [54]. Thus, the 

hypothesis is that binding of cIBR to the IDAS region of I-domain induces the 

conformational change, which inhibits I-domain binding to ICAM-1 and to anti-I-domain 

mAbs.

C. General Principle of Peptide-Drug Conjugates (PDC)

Peptide-drug conjugates (PDC) have been developed to target drugs and radioisotopes to 

specific cells for therapeutic and diagnostic purposes [4, 23]. This method is similar to 

antibody-drug conjugates (ADC), which have been successfully used to treat cancer [24–

27]. For example, Kadcycla® and Adcetris® are antibody-drug conjugates on the market that 
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are currently used for treating cancer patients [27]. The underlying principle is to utilize the 

specific binding property of the targeting peptide to unusually upregulated receptors on the 

surface of diseased cells compared to normal cells. This would render the concentration of 

the delivered drug to be higher in diseased cells than in normal cells. The ultimate aim for 

PDC is to be selective for diseased cells, consequently lowering the occurrence of drug side-

effects with the conjugates, compared with the sole parent drugs in patients.

PDC has three fundamental components: 1) the targeting peptide, 2) the linker, and 3) the 

“drug payload” [23, 28]. The peptide has a function to direct the drug to a specific type of 

cell. It is often that the peptide segment of the PDC binds to the target receptor on the cell 

surface followed by PDC internalization into intracellular space via receptor-mediated 

endocytosis. The PDC enters the early endosomes, then moves to late endosomes and, 

finally, to lysosomes. The peptide portion on the PDC is degraded in the lysosomes, 

consequently releasing the drug intracellularly to exert its activity. The linker between 

peptide and drug can be designed as either fixed or cleavable to control the drug release 

kinetics at the desired site (i.e., target cells or tissue). The release of the drug payload from 

the linker can be accomplished enzymatically or via a change in pH inherent to the cellular 

compartments in intracellular spaces of targeted cells. However, the linker has to be 

sufficiently stable in the systemic circulation and easily cleaved only when the PDC reaches 

the target cells; thus, the drug should not be prematurely released from the PDC prior to 

reaching its target cell or tissue.

D. Cell Adhesion Peptide-Drug Conjugates (PDC)

D.1. RGD-Drug Conjugates for Therapy

Many cytotoxic anti-cancer agents remain unviable for widespread clinical use because of 

harmful side effects resulting from their non-selective delivery between normal and cancer 

cells. One good example is paclitaxel (PTX), which is an effective cytotoxic anti-cancer drug 

that targets microtubule formation inside cancer cells [55]. As earlier described, one of the 

hallmarks of angiogenesis in tumors is the overexpression of the αVβ3 integrin, to which 

certain RGD peptides selectively bind over other integrins on normal cells [8, 29, 34]. PTX 

was then conjugated to RGD peptide in an intent to enhance its targeting to tumor cells and 

to overcome some of its drawbacks such as low solubility and systemic toxicity [55]. In this 

case, PTX was conjugated to bivalent and tetravalent RGD-based integrin ligands. While 

most RGD constructs employed in literature resemble the RGDfK construct of Cilengitide 

(Table 1), this study utilized a unique cyclic RGD pentapeptide construct, which 

incorporated 1-aza-1-bicycloalkane amino acids (Figure 3) [10, 55]. Single and multiple 

units of cyclic RGD were conjugated to the PTX payload via a triazole ring linkage, which 

were subsequently connected to ethylene glycol units by an amide function (Figure 3A) 

[55]. Mono-, bi-, tetravalent conjugates of RGD-PTX conjugates have been shown to inhibit 

binding of vitronectin to αVβ3 integrin receptor with relative inhibitory activities observed 

to be highest with tetravalent > bivalent > monovalent RGD-constructs [55]. The bivalent 

RGD-PTX showed cell selectivity toward IGROV-1 and IGROV-1/Pt1 ovarian cells, 

compared with the other conjugates. Bivalent RGD-PTX also showed a similar activity as 

PTX in suppressing tumor growth of xenografted IGROV-1/Pt1 tumor.
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In order to similarly improve their therapeutic index by enhancing targeted delivery to tumor 

cells, both camptothecin (CPT) and chlorambucil (CLB) were conjugated to RGDfK using a 

bi-forked linker (Figure 3B) [56]. The overall intent was to create an RGD-targeted “double-

drug attack”, which would both be more potent and less likely to allow the tumor to develop 

any adequate drug resistance [56]. CPT is a very potent inhibitor of topoisomerase I enzyme; 

unfortunately, CPT has off-target cytotoxicity and poor solubility [56]. On the other hand, 

CLB is a DNA alkylator and an established anti-leukemic drug. In vitro, CLB was observed 

to be relatively inactive in its free form against melanoma and non-small cell lung cancer 

cell lines. However, conjugation of CLB to the carrier peptide via an amide- or ester-bonded 

linker with the lysine residue of RGDfK recovered its “activity” against murine leukemic 

cells [56]. Unlike the multimeric RGD construct, the enhanced cytotoxicity of this dual-drug 

conjugate was achieved through modifications of the payload component. Variations in the 

drug linkages were designed to achieve a sequential release of the drug upon reaching its 

target as directed by the RGD component. Relative stabilities of the varied drug-linked 

constructs were assessed across different pHs (ranging from physiologic to acidic) in order 

to survey their drug release profiles in the simulated environments of their tumor targets. 

Further bio-stability evaluations of these constructs were done in murine liver homogenate, 

confirming that although all constructs degraded, only conjugates with the carbamate and 

ester drug-linked functionalities showed the release of the free drug. This is in contrast to the 

construct with the amide-linked payload, which decomposes within minutes in the 

enzymatic environment without releasing the free drug.

Relative cytotoxicities of the mono and dual drug conjugates were evaluated against free-

CLB/CPT in vitro using αVβ3-overexpressing B16F10 (human non-small cell lung 

carcinoma), H1299 (murine melanoma), and αVβ3-negative HEK (human embryonic 

kidney) cell-lines. In vitro growth inhibition assays revealed that bi-loaded CPT conjugate 

was more potent than mono-loaded counterparts and free-CPT. Furthermore, although 

growth inhibition data also showed that mixtures of free-CLB/CPT mixtures were cytotoxic 

in all cell lines, the dual-drug RGD construct showed the greatest cytotoxicities against 

αVβ3 overexpressing cell-lines (i.e., human non-small cell lung carcinoma and murine 

melanoma) than mono-drug conjugates and mixtures of free-CPT/CLB. Even more 

remarkable are the differences in cytotoxicity when ratios between “targeted” to “off-target” 

IC50s are compared, thus showing the potential of the RGD-construct in reducing off-target 

(i.e., non-αVβ3 overexpressing cell) toxicities in next-generation CPT and CLB therapies.

W22 PDC is a conjugate between cyclo(RGDyK) and PD0325901, using a PEG-succinate 

linker. W22 is aimed at treating glioblastoma in the central nervous system (CNS) (Figure 

3C) [57]. PD0325901 is a potent inhibitor of mitogen-activated protein kinase-1/2 (MEK1/2) 

– an important signaling key player during receptor tyrosine kinase (RTK) activation via 

extracellular signal-regulated kinase (ERK) pathway. Because RTK is upregulated in 

glioblastoma, inhibition of MEK1/2 activity suppresses RTK activation to inhibit 

glioblastoma growth. Unfortunately, intracellular delivery of PD0325901 is not efficient. 

Thus, W22 PDC was designed to improve targeting and drug-uptake to glioblastoma. The 

drug is released via cleavage of the ester bond between PD0325901 and the linker [57]. In 
vitro, the W22 PDC was more active in αVβ3 expressing U87MG cancer cells than A549 

control cells. It has a higher efficacy than PD0325901 alone in U87MG and U251MG cells, 
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which are cell lines derived from glioblastoma. The glioblastoma tumor suppression in vivo 
was observed to be slightly better when the animals were treated with W22 PDC compared 

with controls PD0325901 or RGD-PEG+PD0325901. It was confirmed that the W22’s 

mechanism of action is via suppression of the pERK1/2 expression. Furthermore, results 

indicate that the RGD peptide can improve the selectivity and uptake of PD0325901 in 

glioblastoma cells in vitro and in vivo.

A novel “photolabile switch” has been incorporated into the cRGDfK peptide component of 

a PDC (Figure 3D). In this construct, the lysine residue is conjugated via an amide bond to a 

ruthenocene complex, which serves as the payload toxic drug (component). In addition, the 

Asp residue of the RGD sequence is derivatized with a dicyanocoumarin protecting group 

(DEAdcCE) via an ester bond – resulting in a photo cleavable “cage” for the RGD 

component [58]. Due to the protection of the Asp residue, this RGD peptide will not be 

recognized by the target integrin receptor. Thus, the activity of this PDC is initiated by the 

cleavage of the ester bond between the Asp residue and the photosensitive DEAdcCE 

moiety. After the release of DEAdcCE moiety using a biologically compatible green light, 

the RGD sequence will be active for integrin recognition and will accordingly deliver the 

payload to its intended cancer target. Because the required “activating” green light has a 

much longer wavelength than UV wavelengths, it offers a safer alternative to previously 

reported photolytic constructs requiring UV light [58]. Furthermore, a methyl group near the 

cleavable ester bond between the caging group and the RGD-Drug construct has been 

reported to provide a vital structural feature that minimizes the unfavorable aspartimide 

forming side-reaction in its synthesis [58]. This methyl group perhaps may even contribute 

to the increased stability of this ester bond in physiological conditions, where the construct 

has not yet been reported to be tested [58]. Nonetheless, an RGD-based prodrug that is 

photoactivated by a biologically compatible green light presents a safe and novel addition to 

the growing examples of cell-adhesion peptide-based drug delivery.

D.2. RGD Peptide Conjugates for Diagnostics

Because of the ongoing success of RGD peptide conjugates in targeting drugs, the RGD 

conjugates have also been designed as diagnostic agents to localize cancer cells within the 

tissue. RGD peptides can be labeled with radioisotopes, near IR (NIR) dyes, and magnetic 

resonance imaging (MRI) contrast agents. As an example, cyclic RGDfK was linked to a 

fusion of human serum albumin and tissue inhibitor of metalloproteinase 2 (HSA-TIMP2) to 

make RGD-HSA-TIMP2 (Figure 3E) [59]. 68Ga-NOTA- and 123I-radiolabeled were 

incorporated to RGD-HSA-TIMP2 for cancer diagnostics that can be observed by positron 

emission tomography (PET) and single photon emission computed tomography (SPECT). In 
vitro, RGD-HSA-TIMP2 was engulfed more efficiently (91%) than HSA-TIMP2 (45%) by 

U87MG cancer cells due to the recognition of the RGD peptide [59]. RGD-HSA-TIMP2 

also suppressed the proliferation of U87MG cancer cells better than HSA-TIMP2. Uptake of 
68Ga-NOTA-RGD-HSA-TIMP2 is higher in U87MG cells than in C6 cells, and its uptake by 

U87MG cells can be inhibited by free RGD peptide in solution. This suggests that the 

uptake of the conjugate is mediated by the recognition of RGD peptide by αVβ3 integrins on 

U87MG cancer cells. The uptake of 123I-RGD-HSA-TIMP2 was reported to be higher than 
123I-HSA-TIMP2 by xenografts of human glioma cancer cells in nude mice, as detected by 
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SPECT; however, the images were not of good quality [59]. On the other hand, PET showed 

a good quality image of tumor xenograft using 68Ga-NOTA-RGD-HSA-TIMP2, with no 
68Ga-NOTA-HSA-TIMP2 image detected in the tumor.

In rheumatoid arthritis (RA), angiogenesis to increase vascularization was observed in the 

synovium along with the increase in the expression of αVβ3 integrins [60]. Thus,99mTc 

(HYNIC-3PRGD2)(tricine) called TPPTS is a cyclic RGD peptide dimer with radioisotope 
99mTc. TPPTS has been utilized to detect the upregulation of αVβ3 integrins in endothelium 

during inflammation in RA using the SPECT system [60]. In this study, adjuvant induced 

RA in Sprague–Dawley rat was used as an animal model. After 30 min of TPPTS injection, 

the compound was observed around the rat arthritic ankles. This agent was also observed in 

various other organs, including bladder, kidneys, and liver. There was a linear correlation 

between the expression of αVβ3 integrin and the deposition of TPPTS in the arthritic ankles 

[60]. Furthermore, the amount of TPPTS was significantly higher in the arthritic ankles than 

untargeted control imaging agents with no RGD peptide. These results indicate that the high 

TPPTS deposition is due to binding of RGD peptide to upregulated αVβ3 integrin and has 

potential use as a diagnostic agent for RA

D.3. Non-RGD Peptide Conjugates

Recently, ALOS4 has been discovered as a new non-RGD cyclic peptide 

[Cyclo1,9(CSSAGSLFC)] that also binds to the αVβ3 integrin receptor. ALOS4 was 

conjugated to fluorescein isothiocyanate (FITC) via a γ-aminobutyric acid (GABA) linker, 

to make FITC-GABA-ALOS4 [37]. This molecule was engulfed by WM-266-4 melanoma 

cells via binding to upregulated αVβ3 integrins, as detected by FACScan [37]. The high 

deposition of FITC-GABA-ALOS4 was found at the tumor xenograft of WM-266-4 

melanoma cells in nude mice, indicating tumor targeting by ALOS4 peptide. The peptide 

was then conjugated to camptothecin (CPT) to make CPT-GABA-ALOS4, and the 

cytotoxicity of CPT-GABA-ALOS4 was evaluated in WM-266-4 metastatic melanoma cells 

and non-malignant human kidney HEK-293 cells. The results showed that CPT-GABA-

ALOS4 killed WM-266-4 cells in a dose-dependent manner to as much as 70% at 10 μM. In 

contrast, it only killed 30% of non-malignant HEK-293 with the same dose [37]. Because 

non-malignant HEK-293 do not overexpress αVβ3 integrin on their cell surfaces, the results 

suggest that selectivity of ALOS constructs for WM-266-4 over HEK-293 cells are due to 

the overexpression of αVβ3 integrins on WM-266-4 cells.

CPT-GABA-ALOS4 also shows a remarkable contrast in cancer-specific cytotoxicity 

compared with free CPT and two other cytotoxic drugs. In addition, the free CPT and two 

other cytotoxic drugs consistently killed considerable percentages of cell-populations in both 

WM-266-4 and non-malignant HEK-293. This study presents a promising non-RGD 

targeting peptide for the enhancement of chemo-stability and effective tumor-specific 

delivery of cytotoxic drugs [37].

D.4. ICAM-1 Peptide Conjugates

In the context of the immune response, cIBR peptide was derived from the sequence of 

ICAM-1. FITC-labeled cIBR has been shown to bind and be internalized by LFA-1 on the 
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surface of T-cells [18, 53]. Antibody inhibition and colocalization studies indicate that cIBR 

peptide binds to the I-domain of LFA-1 [53]. An NMR study shows that cIBR peptide binds 

at the IDAS region of the I-domain [54]. Conjugation of cIBR with methotrexate (MTX) to 

form MTX-cIBR has been shown to suppress rheumatoid arthritis in rat adjuvant arthritis 

model. In this case, conjugation to the cell adhesion/targeting peptide - cIBR lowered the 

toxicity of MTX [61].

D.5. Bifunctional Peptide Inhibitors (BPI)

Similar to the targeting design of RGD-conjugates, Bifunctional Peptide inhibitors (BPIs) 

are conjugates of an antigenic and cell adhesion peptide. They were designed to selectively 

alter the immune cell phenotypes from inflammatory to regulatory or suppressor cells in an 

antigenic-specific manner [62–63]. It is hypothesized that if BPIs suppress only a 

subpopulation of immune cells in an antigenic-specific manner, then BPIs can be an 

alternative solution to current drugs for autoimmune diseases, which normally suppress the 

general immune response. Suppression of the general immune response increases the risk for 

patients to be unable to fight pathogenic infections. For example, Tysabri® (Natalizumab) 

was withdrawn from the market because several treated patients developed progressive 

multifocal leukoencephalopathy (PML), most likely because of its suppressive effects on the 

general immune response rather than those associated only with the autoimmune disease 

[64–66]. Later, the use of Tysabri® was reinstated after providing certain precautions of its 

uses [67].

BPI molecule is a conjugate between a cell adhesion peptide (i.e., LABL) and an antigenic 

peptide specific for controlling a specific subpopulation T-helper (Th) cells that recognize 

the antigen [68–70]. The design of BPI is aimed at interfering with the formation of the 

immunological synapse (IS) during the T-cell activation and differentiation, when the T-cells 

bind to APC with a specific antigen-major histocompatibility complex-II (Ag-MHC-II) 

presentation (Figure 4A) [62–63]. It has been shown that the interaction between T-cell and 

APC forms IS on their interface, which resembles a “bull’s eye” structure [38–40]. IS is a 

cluster of Ag-MHC-II/TCR complexes (Signal-1) in the center, and a cluster of ICAM-1/

LFA-1 complexes in the outer ring of the “bull’s eye”. Before the final IS is formed at the 

initial contact of T cell to APC, signal-2 complexes are in the center ring and the signal-1 

complexes are in the outer ring to form an initial “bull’s eye”. Consequently, the two clusters 

of signals translocate or “trade places”, where the signal-2 complexes migrate to the outer 

ring, and the signal-1 complexes move to the center to form an inverted bull’s eye, which 

ultimately signals the inflammatory response. It was proposed that disrupting this final bull’s 

eye would trigger the proliferation of specific Th cells that recognize specific antigen on the 

MHC-II, resulting in antigen-specific tolerance and immunosuppression.

It has also been shown that delivery of soluble antigenic peptide can induce immune-

tolerance in the animal models of autoimmune diseases such as multiple sclerosis (MS), 

rheumatoid arthritis (RA), and Type-1 diabetes (T1D) [71–75]. It is proposed that the 

soluble antigenic peptide binds to immature dendritic cells (DCs) that lack CD80 and/or 

CD86 molecules. Therefore, the presence of MHC-II/Ag on immature DCs without any co-

stimulatory signal from CD80 and/or CD86 renders naïve T-cell/DC interactions result in the 
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differentiation of naïve T-cells to produce regulatory T-cells (Treg) [76]. Tregs produce 

regulatory cytokines to suppress the activation of the inflammatory T-cells such as Th1 and 

Th17 and suppresses the autoimmune disease progression.

BPI molecules were designed to simultaneously bind to empty MHC-II and ICAM-1 on the 

surface of APC and block the formation of the IS when incoming T-cells bind to APCs 

labeled with BPI (Figure 4B). To accommodate BPI’s simultaneous binding to MHC-II and 

ICAM-1, both antigenic and LABL peptides were docked to the X-ray structures of MHC-II 

and ICAM-1, respectively, as if these two proteins sit on the cell surface [74]. The length of 

the linker between the antigenic peptide and LABL peptide was measured by measuring the 

distance between the N-terminus and LABL peptide and the C-terminus of the antigenic 

peptide. The linker was initially generated by a combination of aminocaproic and glycine 

amino acids to accommodate simultaneous binding of both peptides to the respective target 

receptors. The concept of BPI was evaluated in animal models of autoimmune diseases, 

including T1D, MS, and RA.

D.5.1. BPI for Multiple Sclerosis—MS is an autoimmune neurodegenerative disease in 

which the immune cells infiltrate the central nervous systems (CNS) and degrade the myelin 

sheath of neuronal axons. The myelin sheath is partly composed of proteolipid proteins 

(PLP), myelin basic proteins (MBP), and myelin oligodendrocyte glycoproteins (MOG). 

During the disease progression, a subpopulation of T-cells recognize peptides from PLP, 

MBP, and MOG proteins as antigens. BPI has been developed as a potential treatment for 

MS. To evaluate the activity of BPI molecules as potential therapeutics for MS, experimental 

autoimmune encephalomyelitis (EAE) animal models have been extensively used as models 

for MS [63, 68–70]. EAE models show symptoms and neurodegeneration similar to MS. 

Relapsing and remitting MS (RRMS) model and chronic progressive MS (CPMS) EAE 

animal models have been used to evaluate potential therapeutic agents for MS.

The RRMS EAE mouse model (female SJL/J mice) can be stimulated using PLP peptide in 

complete Freund’s adjuvant (CFA) on day 0, followed by injection of pertussis toxin on the 

same day and on day 2. Disease symptoms in mice start manifesting on day 9, with 

maximum disease exacerbation around days 13–15, followed by disease remission starting 

on day 20. The disease scores are low around days 30–45, reflecting disease remission. 

Animals show disease relapse again with high disease scores after day 45. At relapse, mice 

show high disease scores at day 54 and forward. PLP-BPI molecules have been shown to 

suppress the disease symptoms or lower the disease scores when injected on days 4, 7, and 

10 with 100 nmol/injection [69–70]. PLP-BPIs suppress disease exacerbation and prevent 

the onset of relapse in the RRMS EAE model as a prophylactic type of treatment. PLP-BPI 

has been shown to induce remission during disease exacerbation faster than the control when 

injected at the beginning of disease exacerbation on day 11, suggesting the molecule can be 

used to suppress the disease progression. Finally, injections of PLP-BPI on days −11, −8, −5 

as vaccine-like treatment before the stimulation of the disease on day 0 can also suppress the 

onset of EAE disease symptoms [80–82].

The CPMS EAE model (C57BL/6 mice) can be generated by injection of MOG peptide in 

CFA on day 0, followed by injections of pertussis toxin on the same day and on day 2. 
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Observable disease symptoms begin to manifest by day 7 and peak by day 13, with 

symptoms continuing at high scores without any remission. After induction of CPMS EAE 

in mice, MOG-BPI (100 nmol/injection) was administered on days 4, 7, and 10. Results 

showed continuous suppression of the disease scores until the end of the study on day 25 

[83]. Multivalent antigen BPIs were also designed with both PLP and MOG peptides 

attached to LABL peptide to form PLP-MOG-BPI [83]. When injected into CPMS EAE 

mice on days 4, 7, and 10 at 100 nmol/injection, this multipeptide conjugate suppressed the 

disease better than MOG-BPI and MOG peptide alone. This suggests that a combination of 

PLP and MOG antigens in BPI can suppress T-cells that recognize both PLP and MOG. It 

was suggested that, due to the severity of the CPMS model, immune cells in this model also 

respond to antigens from PLP in addition to antigens from MOG. This is normally described 

as antigenic spreading. Administrations of 100 nmol/injection of PLP-MOG-BPI in RRMS 

EAE mice on days 4, 7, and 10 also suppress the disease symptoms significantly better than 

control.[83] As expected, MOG-BPI did not suppress the RRMS EAE primarily because the 

disease was stimulated with the PLP peptide. This suggests that BPI molecules suppress 

EAE in an antigene-specific manner, with MOG sensitivity being a potential hallmark of a 

more advanced/latter stage of the disease model than PLP.

To elucidate BPI’s potential mechanisms of action, several experiments were carried out. 

These included evaluation of BPI’s effects on: (a) cytokine production, (b) axon 

demyelination, and (c) blood-brain barrier (BBB) leakiness. The effects of BPI- and PBS-

treatments on the inflammatory, regulatory, and suppressor cytokines were evaluated in EAE 

mice. BPI molecules significantly suppressed the productions of inflammatory cytokines 

IL-17, IL-6 and IFN-γ, compared with PBS controls [80, 82–83]. BPI-treated mice had a 

significantly higher production of regulatory (i.e., IL-2 and IL-10) and suppressor (i.e., IL-4 

and IL-5) cytokines compared with that of PBS-treated ones [68–69, 80, 82–83]. These 

suggest that BPI alters the balance of immune cells from predominantly inflammatory to 

regulatory and/or suppressor phenotypes. Upon evaluation of the axon demyelination in the 

brain, BPI-treated EAE mice had intact myelination of their brains, while the PBS-treated 

EAE mice had clear demyelination of the axon. This indicates that BPIs suppress the 

activation of immune cells and prevent the infiltration of immune cells into the CNS. Finally, 

MRI was used to detect the leakiness of the BBB through the administration and detection of 

MRI contrast agent – Gadopentetic acid (Gd-DTPA) – in the brain [82]. Three different 

groups of mice were administered with Gd-DTPA: (1) normal mice, (2) EAE mice, and (3) 

EAE mice treated with BPI. Normal mice showed very limited deposition of Gd-DTPA in 

the brain, while the non-treated EAE mice had significantly higher Gd-DTPA deposition in 

the brain, suggesting that the BBB of EAE mice are leaky [82]. It is interesting to find that 

the deposition of Gd-DTPA in the brains of BPI-treated EAE mice are very low or even 

similar to those in the normal mice. This indicates that BPI treatments prevent the leakiness 

of the BBB.

D.5.2. BPI for Rheumatoid Arthritis (RA)—BPI molecules (i.e., CII-BPI-1, -2, and -3) 

were also evaluated in collagen-induced arthritis (CIA) mouse model [73]. There were two 

CIA mouse models used in this study. The first model used DBA/1J mice, with the disease 

stimulated using bovine type II collagen in CFA on day 0, followed by a booster dose on day 
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21. Manifestation of arthritis disease symptoms (i.e., paw swelling, inflammation) began 

between days 24 and 27. CII-BPI molecules (i.e., CII-BPI-1, -2, and -3) and CII-1 peptide 

were administered on days 19, 22, and 25, at a dose of 100 nmol/injection. CII-1 peptide 

alone is an antigenic peptide that has been used previously to suppress RA in an animal 

model. MTX-cIBR conjugate has also been shown to suppress arthritis in rat adjuvant 

arthritis model, and in this case was used as a positive control. For the positive control 

group, MTX-cIBR was injected daily (5 mg/kg) for 10 days starting on day 19. Results 

showed that CII-BPI-1 significantly suppressed the increase in paw volumes compared with 

those treated with PBS [73]. CII-BPI-1 appeared to have been more potent than CII-1 

peptide alone, with three injections of CII-BPI-1 having a potency similar to 10 injections of 

MTX-cIBR. Next, CII-2 and CII-3 peptides alone were similarly compared to their 

respective BPI molecules (i.e., CII-BPI-2 and CII-BPI-3). CII-BPI-2 was found to be better 

than CII-2, CII-3, and CII-BPI-3. CII-BPI-3 had a better efficacy than CII-3 peptide alone 

[73].

The second CIA model used DBA1BO mice, which were stimulated with chicken collagen-

II on CFA emulsion on day 0, and a booster dose on day 21. Disease symptoms began to 

show on day 17, and treatment was carried out with BPI on days 17, 22, and 25 (3x), or on 

days 17, 22, 25, and 28 (4x) [73]. This study showed that CII-BPI-2 was more potent than 

CII-2 peptide during the administration of 3 doses of peptides. These confirmed that BPIs 

were more effective than their parent antigenic peptides. The histopathology study of the 

joints showed that both CII-BPI-2 and CII significantly suppress the damage and 

inflammation in the knee joints, compared with those treated with PBS. Compared with 

PBS, CII-BPI-2 suppressed productions of inflammatory cytokines IL-6, IL-17, IFN-γ, IL-2, 

and TNF-α while enhancing the regulatory cytokines IL-10.[73] These further indicate that 

BPI molecules alter the balance of immune cells from inflammatory to regulatory cells.

D.5.3. BPI for Type-1 Diabetes—Type-1 diabetes (T1D) is an autoimmune disease in 

which β-cells in the islets of the pancreas are destroyed by the immune cells, and the disease 

progress is signified by infiltration of the islets by T-cells. Previously, soluble GAD65208-217 

peptide derived from residues 208–217 of glutamic acid decarboxylase 65 (GAD65) can 

suppress type-1 diabetes in NOD mice [77–79]. Thus, conjugation of GAD65208-217 and 

LABL peptides via a linker (e.g., Acp-Gly-Acp-Gly-Acp) created the GAD-BPI conjugate 

[74]. The linker and its length were designed for simultaneous binding of BPI to MHC-II 

and ICAM-1 on the surface of APC, ultimately to block the formation of IS during the 

activation of T-cells.

The efficacy of GAD-BPI was evaluated in non-obese diabetic (NOD) mice, in which the 

disease was stimulated with the GAD65208–217 peptide in complete Freund’s adjuvant 

(CFA) on day 0 to developed T1D [74]. GAD-BPI was injected intravenously (i.v.) into 

NOD mice on days 0 and 7, and the mice were sacrificed on day 8 for evaluation of T-cell 

infiltration of islets called insulitis. For a control group, mice were injected with PBS. The 

islets of mice treated with GAD-BPI were 85% normal (or 15% insulitis), while those 

treated with PBS only had 30% normal (or 70% insulitis). This result indicates that GAD-

BPI suppressed the activation of T-cells to prevent insulitis. GAD-BPI induced the 

production of IL-4 producing cells.
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Next, T cells isolated from both GAD-BPI- and PBS-treated T1D NOD mice were isolated, 

and these two groups of T-cells were evaluated in NOD.Scid mice in co-adoptive transfer 

experiments [74]. Two groups of NOD.Scid mice were injected with immune cells isolated 

from the NOD mice that have developed T1D. Then, the two groups of NOD.Scid mice were 

injected with T-cells isolated from GAD-BPI-treated NOD and PBS-treated mice. NOD.Scid 

mice (77%) that received T-cells isolated from GAD-BPI-treated mice did not have diabetes, 

with glucose levels below 250 mg/dL. Only 19% of NOD.Scid mice that received T-cells 

isolated from PBS-treated mice did not get diabetes. These results suggest that GAD-BPI 

can suppress the insulitis in NOD and NOD.Scid mice by suppressing T-cell activation. The 

study also showed that the GAD-BPI can simultaneously bind to ICAM-1 and MHC-II on B 

cells isolated from NOD mice. The anti-MHC-II and anti-ICAM-1 mAbs co-capping studies 

on B cells, after treatment with GAD-BPI and unlinked GAD+LABL peptides, showed a 

high probability that GAD-BPI binds simultaneously to MHC-II and ICAM-1 on the surface 

of B cells [74]. This also suggests that GAD-BPI can inhibit the formation of the 

immunological synapse and suppress T-cell activation in autoimmune diseases.

E. Peptide-Particle and Peptide-Polymer Conjugates

Overall efficacies reported on BPIs and PDCs have inspired innovations which either aim to 

utilize their targeting abilities, or load higher number of active BPIs or PDCs in a single 

pharmacological construct such as polymers and nanoparticles. Nanoparticles have been 

used to deliver drugs to improve drug dosing and for controlled drug release. Many 

nanoparticles are being developed as cancer therapeutic and diagnostic agents. There are 

several approved drugs in nanoparticle formulations including Doxil [84–86], DepoCyt [87], 

and Estrasorb [88]. For example, Doxil is a liposome formulation of doxorubicin 

functionalized with PEG [84–86]. Some of these particles have been targeted to a particular 

type of cell or tissue.

E.1. RGD-conjugated Biopolymers and Nanoparticles

Biopolymers bearing RGD peptides have been designed for tissue engineering and 

regeneration because RGD peptides can be used for cell recruitment and adhesion, 

especially for building tissues in wound healing, reconstructive surgeries, and neuronal 

regeneration. To exert RGD activity for integrin recognition, it is necessary for the peptide to 

have a distance from the polymer surface to avoid steric hindrance during their recognition 

by a specific integrin. It was suggested that the RGD peptide should be distanced from the 

polymer surface around 11 to 46 Å, using a PEG spacer for optimal interactions with 

integrin receptors on the cell surface [9, 89].

RGDfK peptides have been conjugated to chitosan, PEG polylactic acid (PLA), and 

polyethyleneimines (PEI) for delivering anticancer drugs and DNA. RGD peptide 

conjugated with polylactic acid (PLA) polymer (RGD-ST-NH-PEG-PLA) has been shown to 

induce attachment of human osteoblasts to the polymer [90]. This cell attachment can be 

blocked by soluble RGD peptide. In contrast, immobilized Arg-Ala-Asp (RAD) peptide 

attached to the polymer (RAD-ST-NH-PEG-PLA) did not initiate the attachment of human 

osteoblasts [90]. Taken together, the data indicate that the cell attachment of human 
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osteoblast cells to the polymer is due to the recognition of RGD peptide by integrin 

receptors on the cell surface.

As mentioned previously, liposomes have been used to deliver drugs to tumor cells, 

including RGDfK peptide constructs conjugated to PEG-2000 distearoylphosphatidyl-

ethanolamine (DSPE), for incorporation into liposomes to target cancer cells. RGD and 

RAD peptides conjugated to polyethylene glycol (PEG) were incorporated into long-

circulating liposomes (LCL) to make RGD-LCL and RAD-LCL. RGD-LCL shows 

significant binding to human umbilical vein endothelial cells (HUVEC) compared with LCL 

and RAD-LCL as negative controls [91]. Furthermore, binding of RGD-LCL was inhibited 

by soluble RGD peptide but not RAD peptide, indicating that the RGD-LCL binding to 

HUVEC was mediated by RGD peptide. Then, RGD-LCL was labeled with fluorescence 

dye Rho-PE and injected into tumor-bearing mice. The Rho-PE–labeled RGD-LCL was 

bound to the tumor vasculature, as observed by intravital microscopy [91]. Finally, 

doxorubicin-loaded liposomes (i.e., LCL, RAD-LCL, RGD-LCL) were injected into mice 

bearing a C26 tumor. The results showed that Dox-RGD-LCL suppressed tumor growth 

more significantly than those treated with Dox-RAD-LCL and Dox-LCL, thus confirming 

the role of RGD peptide in directing liposomes to tumor cells [91].

RGD-PEG-liposomes have been developed to deliver dexamethasone phosphate to treat 

arthritis in adjuvant-induced arthritis in rats [92]. As earlier mentioned, upregulated αVβ3 

integrins have been shown in arthritic tissues; thus, a high localization of RGD-PEG-

liposomes was found in the inflamed skin of joints of lipopolysaccharide-induced 

rheumatoid arthritis rats [92]. RGD-PEG-liposomes carrying dexamethasone were more 

potent in suppressing RA than blank liposomes containing dexamethasone alone, indicating 

the capability of RGD peptide to target liposomes to arthritis tissues.

Carboplatin is an anticancer drug and, although it is widely used, these types of drugs are 

known to have low cellular uptake and to generate multi-drug resistance in cancer therapy. 

One way to overcome drug resistance is by formulating carboplatin in unimolecular 

nanoparticles with the idea that the targeted carboplatin can be released in a pH-sensitive 

manner [93]. In this case, a block copolymer poly(amidoamine)-b-poly(aspartic acid)-b-

poly(ethylene glycol) (PAMAM-PAsp-PEG) was used as a core nanoparticle with multiple 

linkable arms. cRGDfC peptide was one of the linked moieties used to target the 

nanoparticles to cancer cells [93]. The core arm was connected to poly-aspartic acid chains 

in order to coordinate carboplatin on the nanoparticle through two carboxylic acid side 

chains of the series of Asp residues [93]. Additional arms that extend from the PAMAM 

core were conjugated to fluorescent dye cyanin5 (Cy5) in order to follow cell or tissue 

deposition of the nanoparticles. The uptake of RGD-containing nanoparticles was 3–4 fold 

more than nanoparticles without RGD peptide in ovarian cancer-3 (OVCAR-3) cells, 

indicating the role of RGD peptide and overexpression of αVβ3 integrins in the targeted 

nanoparticle delivery [93]. Furthermore, nanoparticles were internalized into lysosomes of 

the cancer cells. The pH drop resulting from the inherently acidic environment of the 

cancerous lysosomes protonates the carboxylic side-chains of the carboplatin-complexed 

poly-Asp network and releases the cytotoxic payload to its target [93]. In vitro, the 

carboplatin is released up to 88% at pH 5.5, while it is only released up to 18% at pH 7.4 by 
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the 50-hour time point, showing that carboplatin can be released in a targeted and controlled 

way in lysosomes of cancer cells. The cytotoxicity assays showed that RGD-containing 

carboplatin nanoparticles significantly suppress the OVCAR-3 cell viability, compared with 

carboplatin nanoparticles without RGD peptide and carboplatin alone [93].

E.2. Particles with Bifunctional Peptides

Recently, bifunctional peptide-targeting has been explored to improve tumor targeting and 

apoptosis effects. Here, nanoparticles were decorated with encapsulated docetaxel (DOC). A 

combination of HAV, NGRRGD, and AVPIAQK sequences was implemented in HRK-19 

peptide (HAVRNGRRGDGGAVPIAQK) to target the DOC-bearing nanoparticles to tumor 

cells. The HAV, NGR, and RGD sequences were used to target cadherin, αVβ3 integrins, and 

aminopeptidase-N (CD13), respectively, on tumor blood vessels [94]. At 5 nM dose, the 

apoptotic index of DOC-loaded-HRK-19 peptide nanoparticles was significantly higher than 

DOC alone on treated A549 cancer cells. Nanoparticles decorated with HRK-19 peptide 

(DOC-loaded-HRK-19) penetrated xenograft tumor with high efficiency in vivo, with 

slightly better efficacy than that of drug alone, in extending animal survival [94]. The 

nanoparticle efficacy was significantly better than saline and HRK-19 alone in suppressing 

A549 tumor growth and extending animal survival [94]. DOC-loaded-HRK-19 nanoparticles 

also significantly suppressed pulmonary tumor metastasis of A549 cells, compared with 

saline and peptide alone.

E.3. LABL Conjugation to Particles for Delivery

CPP), has been conjugated to a linear LABL peptide to make the TAT-PEG-LABL conjugate 

[95]. The TAT peptide in the conjugate was complexed with luciferase DNA via electrostatic 

interactions by condensing them using calcium to form particles with a 300-nm size [95]. 

The LABL peptide had the role of targeting the particles to ICAM-1-bearing A549 cells for 

DNA internalization [95]. Upon activation of A549 lung epithelial cells with TNF-α, TAT-

PEG-LABL(DNA) enhanced luciferase transfection compared with TAT-PEG(DNA), 

suggesting that LABL peptide targets the particles into A549 cells [95]. The TAT-PEG-

LABL(DNA) transfection was also blocked by free LABL peptide and anti-ICAM-1 mAb, 

indicating that TAT-PEG-LABL(DNA) uptake was ICAM-1-mediated endocytosis via 

binding to LABL peptide on the surface of particles [95].

The surface of nanoparticles made from pluronic-F-127/PLGA was decorated with a cyclic, 

cLABL peptide (Cyclo-(1,12)-PenITDGEATDSGC) to produce cLABL-NP (or cLABL-

Pluronic-F-17-PLGA) [96]. The uptake of cLABL-NP was higher than that of NP (2.3 fold) 

alone by A549 lung epithelial cells bearing the ICAM-1 receptor. Internalized within 5 min, 

cLABL-NP had a fast kinetic uptake [96]. Uptake of cLABL-NP, however, was inhibited by 

cLABL and anti-ICAM-1 mAb, suggesting that the uptake was mediated by ICAM-1 

receptors on the cell surface [96]. It was suggested that the internalization of the cLABL-NP 

was induced by clustering of ICAM-1 to form multimeric interaction with the nanoparticles, 

similar to that of anti-ICAM-1 decorated nanoparticles [97–99]. The lysosome accumulation 

of cLABL-NP was within 1 h after incubation, compared with 2 h after incubation for blank 

nanoparticles. The cLABL-NP was removed from the lysosomes within 24 h and this 

removal was not due to a lysosomal disruption.
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Similar to BPI molecules, the development of soluble antigen arrays (SAgAs; Figure 5) was 

inspired by a combination of the BPI concept and Dintzis’ rules, which have been shown to 

induce immune stimulation or tolerance [100–106]. Dintzis’ rules indicated that induced 

immune responses are influenced by particle size, solubility, flexibility, antigen valency, 

spacing, and binding avidity. The BPI concept showed that a conjugation of an antigenic 

peptide and co-stimulatory signal peptide (inhibitor) can alter immune cell phenotypes [107–

108]. Thus, SAgAPLP-LABL molecules were designed to resemble BPI molecules containing 

a combination of PLP antigenic and LABL peptides linked to hyaluronic acid polymers with 

an 11:10 LABL:PLP peptide ratio per polymer unit (Figure 5) [103]. The SAgA molecules 

are soluble and small, with a size of <100kDa. The presence of multiple ligands on the 

polymer construct enhances avidity for dendritic cells. SAgAPLP-LABL delivers a 

multivalence of adhesion peptides, which have previously been reported to enhance cell-

binding by increased avidity and to inhibit inflammatory signaling by mimicking the native 

clustering of bound cell-surface protein targets related to the immunological synapse. 

Overall features of SAgAs fulfilled good tolerogenic properties according to Dintzis’ rules, 

and their efficacy was evaluated in the EAE animal model for MS. Compared with HAPLP, 

HALABL and HA alone (Figure 5), SAgAPLP-LABL had excellent efficacy in suppressing 

EAE in mice; however, administration of a 1:1 mixture of homopolymers HAPLP and 

HALABL also showed a significant disease suppression similar to that of SAgAPLP-LABL. 

These results support the idea that SAgAPLP-LABL is a novel and effective antigenic-SIT and 

affirm the need for co-delivering a cell-adhesion inhibitor and an antigenic peptide to induce 

degrees of immunotolerance in autoimmune diseases. Because comparable protections were 

delivered against murine EAE by administrations of the novel SAgAPLP-LABL, and a 1:1 

mixture of HAPLP+HALABL, the immunosuppressive mechanisms of both formulations 

remain uncertain; thus, further studies on their mechanism of action need to be explored.

In an attempt to elucidate the mechanism of action of SAgAs in vitro, a separate multi-

peptide construct using hyaluronic acid (HA) conjugated with multiple LABL and antigenic 

ovalbumin (OVA) peptides was synthesized to construct SAgAOVA-LABL [100]. The cellular 

binding and uptake properties of FITC-labeled SAgAOVA-LABL were compared to HAOVA 

and HALABL, using bone marrow derived dendritic cells (DC). The maturation of DC was 

accomplished using TNF-α. Because HA alone is a natural ligand to many cell surface 

receptors, observed fluorescence indicating substantial binding of unconjugated HA was 

expected [100]. SAgAOVA-LABL and HALABL both showed a considerable increase in 

binding to DCs compared with HA alone [100]. Because HAOVA did not appear to bind 

efficiently to DC, it is unclear if its grafting with LABL provided the slight binding 

enhancement in the SAgAOVA-LABL construct even though it has been suggested that 

antigenic peptides can bind with low affinity to empty MHCs of DC. As in the previous 

study, the degree of T-cell proliferation was determined after co-culture with groups of DC 

which were initially matured, primed and pre-treated with the different HA grafts. T-cell 

proliferation was measured by flow cytometry after 24-hours and 7-days. Both 

SAgAOVA-LABL and HALABL grafts showed a statistically significant reduction in cells 

which have divided vs. the untreated group and the negative control of T-cells alone. It was 

noted that there was no significant difference between the untreated control and cell group 

treated with HA alone.
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Because affecting T-cell proliferation can also correlate to a modified control in cytokine 

production, the production of TNF-α, IFN-γ, IL-4, IL-10, and IL-17 were investigated by 

ELISA [100]. HA and SAgAOVA-LABL did not show any increase in the levels of IFN-γ, 

IL-4, and IL-10. When compared with the untreated control, a significant reduction in TNF-

α and IL-17 secretion was observed in the presence of HA and SAgAOVA-LABL grafts. TNF-

α promotes inflammatory responses and can lead to various autoimmune and inflammatory 

diseases. IL-17 has likewise been associated with a wide range of similar diseases such as 

asthma, rheumatoid arthritis, psoriasis, and systemic sclerosis. Amounts of TNF-α in the 

medium of cells treated with HA, SAgAOVA-LABL and SAgALABL were from 10.9 ng/mL 

(untreated) to 3.7, 4.1, and 8.2 ng/mL, respectively. IL-17 produced from untreated cells was 

13.9 ng/mL, in contrast to those secreted by HA and SAgAOVA-LABL and SAgALABL-treated 

cells, which were below the detection limit of < 2 pg/mL. These are consistent with the 

significant reduction in T-cell-DC interactions observed in the presence of HA (79%), 

SAgALABL(82%), and SAgAOVA-LABL(85%), compared with the untreated control. These 

results demonstrate HA graft polymers as potential inhibitors of Th17 CD4 cell 

differentiation and unwanted inflammatory responses in the context of autoimmune diseases.

F. Conclusions

Cell adhesion peptides have been important innovations in addressing the problem of off-

target cytotoxicity and the side effects of drug molecules. Cell-adhesion peptides serve as 

effective targeting agents in directing diagnostic and therapeutic molecules toward diseased 

cells and tissues (e.g., cancer and autoimmune) often through abnormally overexpressed cell 

adhesion receptors. By mimicking native interactions of fully intact proteins, peptide 

epitopes derived from protein surfaces have been used to design targeting cell adhesion 

peptides. Insights on viable cell adhesion sequences have far evolved from the study of 

primary sequences and in vitro inhibition and/or binding studies to more direct 

crystallographic and structural techniques probing vital interactions of cell adhesion 

proteins. Current biophysical methods to visualize locations of viable cell-adhesion epitopes 

on intact protein structures facilitate the mining of vital amino acid sequences and a greater 

understanding of viable homing peptides for disease-specific delivery of drug and diagnostic 

molecules. Unlike intact proteins and antibodies, cell-adhesion peptides are simpler to 

synthesize, isolate, and manage. The absence of any tertiary structure renders them more 

forgiving in storage and formulation. More importantly, their considerably smaller size 

allows for multiple peptide units to be conjugated to a single construct for the enhancement 

of both potency and selective delivery of conjugated cytotoxic molecules. In promoting 

immunotolerance, BPI molecules deliver antigenic peptides to specifically suppress 

autoimmune diseases in animal models for type-1 diabetes, rheumatoid arthritis, and 

multiple sclerosis. They further demonstrate additional important roles of conjugate linkers, 

beyond the simple function of bridging targeting and payload components of a conjugate 

construct. From a pharmacokinetic standpoint, conjugates have to be stable in circulation 

until their target cells or tissues are reached, prior to the release of the drug. Thus, various 

factors need to be considered in designing conjugates for cell adhesion peptides, including 

the conjugation methods and the length of the covalent linker to control the stability and 

toxicity of the construct. In any case, the range of applications presented in the reviewed 
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conjugate molecules demonstrate good models to be adopted for next generation therapies to 

be considered for clinical trials.
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Abbreviations

Ac acetyl

Acp aminocaproic acid

ADC antibody drug conjugates

Ag antigen

Ag-MHC-II antigen-majorhistocompatibility complex-II

APC antigen-presenting cell

BBB blood brain barrier

BPI bifunctional peptide inhibitor

CAMs cell adhesion molecules

CD13 aminopeptidase-N

CFA complete Freund’s adjuvant

CIA collagen-induced arthritis

CLB chlorambucil

CNS central nervous systems

CPMS chronic progressive multiple sclerosis

CPP cell-penetrating peptide

CPT camptothecin

CR complement regulatory

Cy5 cyanin5 fluorescent dye

DC dentritic cells

DOC docetaxel

DSPE distearoylphosphatidylethanolamine

EAE experimental autoimmune encephalomyelitis
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ECM extracellular matrix

EGF epidermal growth factor

ERK extracellular signal-regulated kinase

FITC fluorescein isothiocyanate

FNR fibronectin receptor

GABA γ–aminobutyric acid

GAD65 glutamic acid decarboxylase 65

Gd-DTPA gadopentetic acid

HA hyaluronic acid

HEK human embryonic kidney cells

HSA human serum albumin

HUVEC human umbilical vein endothelial cells

HYNIC 6-hydrazinonicotinyl

ICAM-1 intercellular cell adhesion molecule-1

IDAS I-domain allosteric site

IFN-γ interferon gamma

IL interleukin

IS immunological synapse

LCL long circulating liposomes

LFA-1 lymphocyte function-associated antigen-1

MAPK/MEK1/2 mitogen activated protein kinase-1/2

MBP myelin basic protein

MHC-II major histocompatibility complex-II

MIDAS metal-ion dependent adhesion site

MOG myelin oligodendrocyte glycoprotein

MRI magnetic resonance imaging

MS multiple sclerosis

MTX methotrexate

NIR near infrared
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NOD non-obese diabetes

NP nanoparticle

OVA ovalbumin

OVCAR-3 ovarian cancer-3 cells

PAMAM poly(amidoamine)-b-poly(aspartic acid)-b-poly(ethylene 

glycol)

PBS phosphate buffered saline

PDC peptide drug conjugates

PEG/Peg polyethylene glycols

PEG4 15-amino-4,7,10,13-tetraoxapentadecanoic acid

PEI polyethyleneimines

Pen penicillamine

PET positron emission tomography

PLA polylactic acid

PLGA poly(lactic-co-glycolic acid)

PLP proteolipid protein

PML progressive multifocal leukoencephalopathy

PTX paclitaxel

RA rheumatoid arthritis

RAD Arg-Ala-Asp

RGD Arg-Gly-Asp

RRMS relapse remitting multiple sclerosis

RTK receptor tyrosine kinase

SAgAs soluble antigen arrays

SPECT single photon emission computed tomography

T1D type-1 diabetes

TAT trans-activating transcriptor

TCR T-cell receptor

Th T-helper cell
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TIMP2 tissue inhibitor of metalloproteinase 2

TNF-α tumor necrosis factor alpha

TPPTS trisodium triphenylphosphine-3,3′,3′-trisulfonate

Treg regulatory T-cells

TXT taxotere

VCAM-1 vascular cell adhesion molecule-1

VLA-4 very late antigen-4

VNR victronectin receptor.
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Figure 1. 
ALOS4 Conjugates. ALOS4 peptide conjugated with either FITC or camptothecin using a 

GABA linker.
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Figure 2. 
X-ray structure of LFA-1 I-Domain in complex with ICAM-1 (PDB: 1MQ8). (A) ICAM-1 

protein forms a homodimer, which interacts with two separate I-domains of LFA-1 at each 

D-1 domain of ICAM-1. Counter-clockwise quarter-turn on the encircled interface shows 

(B) the interacting region of LFA-1 I-domain with ICAM-1, also referred to as the MIDAS 

region (yellow/gold), which overlaps with the region of the LABL peptide sequence (green). 

(C) Shows the region on LFA-1 interacting with the IEL sequence (purple) from ICAM-1. 

Moral and Siahaan Page 30

Curr Top Med Chem. Author manuscript; available in PMC 2018 March 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(D) Maps regions on the ICAM-1 homodimer where IB (cyan) and IE (yellow) peptide 

sequences are located.
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Figure 3. 
RGD peptide drug conjugates. (A) RGD-PTX conjugates bearing: (i) monovalent, (ii) 

bivalent, and (iii) tetravalent RGD units; (B) Dual-Drug-RGD conjugates with camptothecin 

and/or chlorambucil; (C) W22-RGD conjugates using (i) PEG and (ii) amide linkers; (D) 

Photocontrolled RGD conjugate bearing a cleavable bond (green arrow) with a “caging” 

DEAdcCE group; and (E) RGD-HSA-TIMP2 conjugate, where cyclic RGDfK is linked to a 

fusion protein (HSA/TIMP2) through a thioether bond.
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Figure 4. 
Inhibition of intercellular Signal-1/Signal-2 surface protein interactions between antigen-

presenting (APC) and docked T-helper (Th) cells. Intercellular protein complexes cluster and 

translocate (A) to form the immunological synapse (IS), which precludes the triggering of 

inflammatory response processes. (B) Bifunctional peptide inhibitors (BPI), comprised of a 

covalently linked antigenic and Signal-2 inhibitor peptide (LABL), mimic interacting 

surfaces of both Signal-1 and -2 complexes, and preclude inflammatory responses by 

disrupting the protein clustering and translocation required in the IS, presumably due to the 

non-cleavable peptide linker.
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Figure 5. 
Derivatized hyaluronic acid (HA) polymers with multiple units of either conjugated 

antigenic or Signal-2 inhibiting peptides. Analogous to BPIs are Soluble Antigen Arrays 

(SAgAs), which are similarly derivatized HA polymers with multiple units of both antigenic 

and Signal-2 inhibitor peptides. Figure 1.
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Table 1

Peptide Names and Sequences

Name Peptide Sequence

RGD in Cilengitide Cyclo(RGDfK)

RGD Cyclo(RGDfV)

RGD Cyclo(RGDyV)

RGD in W22 PDC Cyclo(RGDyK)

RGD in PAMAM Cyclo(RGDfC)

3PRGD2 PEG4-E[PEG4-c(RGDfK)]2

ALOS-4 Cyclo1,9(CSSAGSLFC)

IB QTSVSPSKVILPRGGSVLVTC

cIBR Cyclo1,12(PenPRGGSVLVTGC)

IE DQPKLLGIETPLPKKELLLPGNNRK

cIEL Cyclo1,12(PenDQPKLLGIETC)

LABL ITDGEATDSG

cLABL Cyclo1,12(PenITDGEATDSGC)

PLP HSLGKWLGHPDKF

PLP-BPI Ac-HSLGKWLGHPDKF-(AcpGAcpGAcp)2-ITDGEATDSG-NH2

MOG GWYRSPFSRVVHL

MOG-BPI Ac-GWYRSPFSRVVHL-(PEG3)-G-(PEG3)-ITDGEATDSG-NH2

PLP-MOG-BPI Ac-GWYRSPFSRVVHL -(PEG3)-G-(PEG3)-ITDGEATDSG-(PEG3)-G-(PEG3)-HSLGKWLGHPDKF-NH2

MBP ASQKRPSQRSK

MOG GWYRSPFSRVVHL

OVA AVHAAHAEINEA

CII-1 PPGANGNPGPAGPPG

CII-2 Ac-GEPGIAGFKGEQGPK-NH2

CII-3 Ac-QYMRADEADSTLR-NH2

CII-BPI-1 Ac-PPGANGNPGPAGPPG-(AcpGAcpGAcp)2-ITDGEATDSG-NH2

CII-BPI-2 Ac-GEPGIAGFKGEQGPK-(AcpGAcpGAcp)2-ITDGEATDSG-NH2

CII-BPI-3 Ac-QYMRADEADSTLR-(AcpGAcpGAcp)2-ITDGEATDSG-NH2

HRK-19 HAVRNGRRGDGGAVPIAQK

TAT RKKRRQRRR

TAT-PEG-LABL RKKRRQRRR-(Peg)n-ITDGEATDSG

GAD EIAPVFVLLE

GAD-BPI EIAPVFVLLE-(AcpGAcpGAcp)-ITDGEATDSG
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