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Abstract

Alzheimer's disease (AD) represents an impending global health crisis, yet the complexity of AD 

pathophysiology has so far precluded the development of any interventions to successfully slow or 

halt AD progression. It is clear that accumulation of Amyloid-beta (Aβ) peptide triggers 

progressive synapse loss to cause AD symptoms. Once initiated by Aβ, disease progression is 

complicated and accelerated by inflammation and by tau pathology. The recognition that Aβ 
peptide assumes multiple distinct states and that soluble oligomeric species (Aβo) are critical for 

synaptic damage is central to molecular understanding of AD. This knowledge has led to the 

identification of specific Aβo receptors, such as cellular prion protein (PrPC), mediating synaptic 

toxicity and neuronal dysfunction. The identification of PrPC as an Aβo receptor has illuminated 

an Aβo-induced signaling cascade involving mGluR5, Fyn, and Pyk2 that links Aβ and tau 

pathologies. This pathway provides novel potential therapeutic targets for disease-modifying AD 

therapy. Here, we discuss the methods by which several putative Aβo receptors were identified. 

We also offer an in-depth examination of the known molecular mechanisms believed to mediate 

Aβo-induced synaptic dysfunction, toxicity, and memory dysfunction.

1. INTRODUCTION

Alzheimer's disease (AD) is the most common cause of dementia and the sixth leading cause 

of death in the United States, where there are an estimated 5.5 million individuals currently 

living with the disease. While AD is now the fifth leading cause of death in Americans 65 

and older, the number of individuals who will succumb to AD or AD-related complications 

is expected to rise as deaths from heart disease and prostate cancer continue to fall 

Association (2017). While no dollar amount can accurately represent the pain and suffering 

AD inflicts on patients and their families, an estimated 236 billion US dollars were spent on 

health care and long-term care services for patients with AD in 2016, while an additional 

230 billion US dollars were lost due to unearned wages and opportunity costs (Association, 

2016; Hurd, Martorell, Delavande, Mullen, & Langa, 2013), a total figure representing 
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approximately 2.5% of US gross domestic product in 2016. AD's rapidly increasing 

prevalence along with the current lack of therapeutic interventions to successfully slow or 

halt disease progression makes AD an impending global health crisis.

AD is classically characterized by both the extracellular accumulation of senile plaques 

composed of amyloid beta (Aβ) and the intracellular deposition of neurofibrillary tangles 

(NFTs) composed of hyperphosphorylated tau (Grundke-Iqbal et al., 1986). While Alois 

Alzheimer first described these senile plaques and NFTs in the brains patients who had 

suffered from dementia over a century ago (Alzheimer, 1907), it would take more than three-

quarters of a century for the protein constituents of senile plaques and NFTs to finally be 

purified and identified (reviewed by Haass & Selkoe, 2007). In addition to the hallmark 

appearance of these two lesion types, AD is also characterized by the appearance of neuropil 

threads, dystrophic neurites, and cerebral amyloid angiopathy as well as neuroinflammation, 

synapse loss, neuronal cell death, and cortical atrophy (Holtzman, Morris, & Goate, 2011; 

Serrano-Pozo, Frosch, Masliah, & Hyman, 2011). As the disease progresses, characteristic 

symptoms such as impairments in episodic memory and olfactory deficits eventually 

transition into severe dementia and ultimately death (Murphy et al., 1990). The molecular 

mechanisms that mediate the progression of AD pathophysiology and associated 

symptomatology are the focus of this review.

2. THE AMYLOID HYPOTHESIS AND ITS CRITIQUES

Despite the prerequisite coincidence of both Aβ and hyperphosphorylated tau aggregation in 

AD pathology, a number of observations led to the development and widespread focus on 

the “amyloid cascade hypothesis,” which highlights Aβ accumulation as the primary 

causative factor of AD (Hardy & Higgins, 1992). The first line of evidence to support the 

amyloid cascade hypothesis comes from genomic data of patients with rare forms of 

familial, early-onset AD. Apart from their early-on-set and dominant inheritance, the 

pathology and symptoms of these cases are indistinguishable from common late-onset AD 

(LOAD). Most of the identified genetic mutations known to be associated with familial AD 

involve mechanisms that result in the pathogenic processing and increased aggregation of 

Aβ itself (Bertram, Lill, & Tanzi, 2010). In fact, the first early-onset AD-associated 

mutations identified were found in the gene that encodes amyloid-precursor protein (APP), a 

single-transmembrane protein that when cleaved by the protease γ-secretase liberates Aβ 
peptide extracellularly (Levy et al., 1990). Every known familial mutation of APP associated 

with AD either occurs in or immediately flanks the Aβ domain of APP (reviewed by Haass 

& Selkoe, 2007).

Additional early-onset AD-associated mutations have been identified in the genes of both 

presenilin 1 (PS1) and presenilin 2 (PS2), either of which can form a catalytic subunit of γ-

secretase (Bertram et al., 2013). It is widely believed that these autosomal dominant 

mutations lead to an amyloidogenic shift in the cleavage of APP resulting in the favored 

generation of the Aβ42 isoform over the smaller, less hydrophobic Aβ40 isoform (reviewed 

by Haass & Selkoe, 2007).
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Second, changes in cerebrospinal fluid (CSF) concentrations of Aβ42, the suspected 

pathological isoform of Aβ that most readily oligomerizes to form protein aggregates (Bitan 

et al., 2003), precede changes in CSF concentrations of tau (Jack et al., 2013). A 

characteristic biomarker of AD is a reduction in CSF Aβ42 levels (Fagan et al., 2006). In 

fact, an analysis of data collected from the Alzheimer's disease neuroimaging initiative 

(ADNI) revealed CSF Aβ42 concentration to be the most sensitive biomarker for the 

detection of AD (Shaw et al., 2009). Coincident with decreased CSF Aβ42, the peptide is 

deposited in Aβ plaques. The presence of plaque can be detected by positron emission 

tomography (PET) imaging with ligands such as Pittsburg compound B (PiB), a radioactive 

label which binds selectively to Aβ plaque. The detection of Aβ plaque by PET and 

decreased CSF Aβ levels are contemporaneous and observed well before the emergence of 

AD symptomology (Fagan et al., 2009; McKhann et al., 2011; Sperling et al., 2011; 

reviewed by Karran, Mercken, & De Strooper, 2011). Thus, the earliest signs of clinical AD 

validate Aβ as a trigger for the ensuing decades-long disease process that ends in severe 

dementia and death.

Experimental validation of the amyloid hypothesis derives from the repeated demonstration 

that transgenic mice overexpressing human mutant APP with or without mutated forms of 

presenilin (corresponding to mutations seen in familial AD) develop both senile plaques and 

age-dependent AD-like phenotypes including synapse loss and impaired memory and 

cognition (Citron et al., 1997; Games et al., 1995; Oakley et al., 2006; Oddo, Caccamo, 

Kitazawa, Tseng, & LaFerla, 2003; Oddo, Caccamo, Shepherd, et al., 2003; Puolivali et al., 

2002).

Despite these multiple findings, there have been substantial challenges to the amyloid 

cascade hypothesis, prompting continued reevaluation. First, the degree of plaque burden 

observed in AD brains correlates with neither the degree of patient cognitive impairment nor 

the duration of patient illness (Ingelsson et al., 2004). This may be related to Aβ functioning 

as a trigger of a process which becomes much more complicated over time, involving the 

immune system, metabolism, and tau. Thus, one hypothesis does not explain all phenomena 

in AD. Second, there exist a considerable number of documented cases in which appreciable 

senile plaque burden is observed in brains collected from healthy individuals with no 

presentation of dementia (Perez-Nievas et al., 2013; Shankar et al., 2008). This may suggest 

that these individuals died during the presymptomatic stage of AD and were destined to 

develop AD if they had survived, though this must remain unproven. Finally, while 

immunotherapy with antibodies raised against Aβ has been shown to reduce plaque burden 

in AD patients, such interventions have failed to improve patient outcome (Doody et al., 

2013, 2014; Holmes et al., 2008; Salloway et al., 2014; reviewed by Spires-Jones & Hyman, 

2014). Caveats have been provided that anti-Aβ interventions were too late or at too low 

dose in these instances, and ongoing trails explore these possibilities.
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3. SOLUBLE, OLIGOMERIC Aβ TOXICITY AS KEY TO AMYLOID CASCADE 

HYPOTHESIS

A key shift for the AD field came after observations that transgenic mice overexpressing a 

disease-causing mutant form of human APP showed a reduced density of presynaptic 

terminals paired with severe impairments in synaptic transmission in the hippocampus 

months before the appearance of amyloid plaques (Hsia et al., 1999). These results strongly 

suggest that some component of mutated APP could be leading to synapse loss in early 

stages of the disease through a mechanism independent of senile plaque accumulation. 

Around the same time Lambert and colleagues demonstrated that soluble Aβo could inhibit 

long-term potentiation (LTP) in mouse hippocampal slices, suggesting that a soluble, 

oligomerized form of Aβ might represent the species that triggers synapse loss and memory 

impairment in AD (Lambert et al., 1998). Immunological studies, in particular those of 

Glabe and colleagues, provided clear evidence for antigenically distinct conformations of 

Aβ peptide as monomer, oligomer, and fibril (Kayed et al., 2003). Soon after, Gong and 

colleagues discovered that patient-derived soluble Aβo bound to dendrites in cultured mouse 

hippocampal neurons with high, “ligand-like” specificity (Gong et al., 2003).

Further support for the Aβ oligomer hypothesis came from experiments conducted by 

Selkoe and colleagues demonstrating that acute administration of soluble Aβo (but not Aβ 
monomers or insoluble amyloid plaque cores) derived from AD brains could inhibit LTP (an 

electrophysiological enhancement mechanism believed to contribute to memory formation) 

and enhance long-term depression (LTD, a mechanism that mediates a stable reduction in 

postsynaptic response) in hippocampal slices. The authors additionally showed that 10-day 

incubation with patient-derived Aβo significantly reduced spine density in cultured rat 

pyramidal cells (Shankar et al., 2008).

Although amyloid plaque burden does not correlate with memory loss, astrocyte 

inflammatory response, or neuronal loss in transgenic AD animals, the level of oligomeric 

Aβ in the brain does (DaRocha-Souto et al., 2011; Kostylev et al., 2015; Lue et al., 1999; 

McLean et al., 1999). Similarly, while increases in the amount of Aβ monomers and Aβ 
plaque burden are indeed pathological hallmarks of AD, Aβo represents the species of Aβ 
that correlates most strongly with the severity of dementia in humans (Esparza et al., 2013; 

Haass & Selkoe, 2007; Koffie et al., 2009; Reiman et al., 2009; Savage et al., 2014; Yang et 

al., 2013). Taken together, these results suggest that soluble Aβo likely represents the most 

synaptotoxic and pathophysiologically relevant form of Aβ to AD. A caveat remains that 

Aβo is a generic term for a collection of heterogeneous Aβ oligomer states, and the relative 

role of different oligomer species is ill defined (Benilova, Karran, & De Strooper, 2012; 

Kostylev et al., 2015).

4. MECHANISMS OF Aβ OLIGOMER TOXICITY AT THE SYNAPSE

Synapse loss is the strongest pathological correlate of cognitive deficits in AD 1999 

(Lansbury, 1999) and can be observed in the earliest stage of AD progression (Scheff, Price, 

Schmitt, DeKosky, & Mufson, 2007). Further physiological evidence of Aβ-induced synapse 

loss comes from the observation that the degree of synapse loss is greatest surrounding 
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amyloid plaques (Lanz, Carter, & Merchant, 2003). In AD transgenic animals, Aβo has been 

found to colocalize with synaptic puncta, and this degree of colocalization correlates 

positively with the loss of excitatory synapses (Koffie et al., 2009).

The mechanisms of Aβo-induced disruption of synaptic transmission and subsequent 

synapse loss are obviously key to explaining AD, but have only recently begun to be 

elucidated (Fig. 1) (Heiss et al., 2016). Considering the importance of glutamatergic 

signaling in synaptic transmission and plasticity, it is unsurprising that Aβo treatment 

reduces the expression of both AMPA and NDMA receptors as well as PSD-95, a 

membrane-associated scaffolding protein and a common marker of postsynaptic densities, in 

glutamatergic synapses (Almeida et al., 2005; Jurgensen et al., 2011; Roselli et al., 2005; 

reviewed by Jurgensen & Ferreira, 2010). However, the mechanism by which extracellular 

Aβo signals to affect synaptic plasticity was absent of molecular understanding prior to the 

last 10 years.

5. NEURONAL RECEPTOR AS CENTRAL MEDIATOR OF AβO SYNAPSE 

DAMAGE

The evidence that Aβo action to impair synapses is central to AD pathophysiology focuses 

attention on the initial molecular mechanisms that trigger these toxicities. One hypothesis is 

that Aβo interacts with phospholipid bilayers directly to alter conductance nonspecifically. 

While there is evidence for such membrane-disrupting activity at high Aβ concentration, it is 

unclear how this might explain the selectivity in AD for the CNS and for specific pathways 

within the brain, or for synapses. Instead, the potent, selective, and rapid effects of Aβo on 

synaptic function suggest that specific polypeptide cell surface receptors for their action 

exist. Certain effects on synaptic function may be noncell autonomous. For example, Aβo 

may trigger microglial- and/or compliment-mediated attack on the synapse (Hong et al., 

2016). Especially, in late stages of disease as inflammation and cellular reaction becomes 

prominent, the cellular environment around neuronal synapses and noncell autonomous 

synapse damage may be key. However, at the first triggering stages of AD, direct interaction 

of Aβo with neuronal synaptic receptors to mediate dysregulation and synapse loss appear 

most consistent with the phenomena described earlier.

What characteristics might be expected of a neuronal receptor-mediating Aβo synaptic 

dysfunction and loss? The relevant binding site is expected to be oligomer specific, rather 

than monomer specific, of high affinity and present at adult synapses. Monomers of Aβ are 

present in all individuals and their levels do not substantially change with disease, so any 

binding site that does not distinguish between monomers and oligomers is likely irrelevant to 

AD pathophysiology. Evidence for a role requires demonstration not only of binding but also 

protection from the deleterious effects of Aβo in cells and slices, as well as AD transgenes 

in experimental animal models. While assessment of human genetic risk for AD might 

bolster the case for specific receptor function, none of the currently identified human genetic 

risk genes can be classified as a synaptic receptor protein, implying that the relevant proteins 

may not exhibit substantial polymorphisms. The biochemical basis for discovery of a 

potential Aβo receptor is strongest when unbiased genome-wide methods are utilized, and 
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receptor expression cloning has been applied to a number of systems. In our studies of 

neuronal receptors for Semaphorins (Kolodkin et al., 1997; Nakamura, Tanaka, Takahashi, 

Kalb, & Strittmatter, 1998; Takahashi et al., 1999; Takahashi, Nakamura, & Strittmatter, 

1997), Nogo (Fournier, GrandPre, & Strittmatter, 2001), MAG (Liu, Fournier, GrandPre, & 

Strittmatter, 2002), LGI1 (Owuor et al., 2009), RGM (Rajagopalan et al., 2004), and PGRN 

(Hu et al., 2010), we utilized tagged recombinant protein ligands to screen brain cDNA 

libraries expressed in nonneuronal cell lines. In each case, receptors relevant to physiological 

and pathological functions were discovered. Therefore, the expression cloning method is 

predicted to be of utility for identification of Aβo receptors.

6. IDENTIFICATION OF PRPC AS A RECEPTOR FOR AβO

Using an adult mouse brain library of 225,000 cDNA clones expressed in Cos-7 cells, 

cellular prion protein (PrPC), a membrane-anchored glycoprotein, was identified as in a 

screen for Aβo binding (Lauren, Gimbel, Nygaard, Gilbert, & Strittmatter, 2009). Cos-7 

cells expressing PrPC were found to have a substantially higher affinity for Aβo compared to 

low-molecular weight Aβ and a dissociation constant identical to that of Aβo for cultured 

hippocampal neurons, observations that, respectively, reveal both PrPC’s oligomeric 

specificity and high affinity for Aβo (Balducci et al., 2010; Calella et al., 2010; Chen, Yadav, 

& Surewicz, 2010; Lauren et al., 2009; Rushworth, Griffiths, Watt, & Hooper, 2013). While 

LTP is inhibited in wild-type mouse hippocampal slices treated with Aβo, no such Aβo-

induced LTP inhibition is detected in hippocampal slices from mice in which PrPC was 

genetically deleted, thereby supporting PrPC’s role as a pathophysiologically relevant Aβo 

receptor (Lauren et al., 2009). Similarly, Aβo-induced LTP inhibition in wild-type 

hippocampal slices could be rescued through pretreatment with an anti-PrPC antibody. While 

one study did not observe a requirement for PrPC in Aβo inhibition (Kessels, Nguyen, 

Nabavi, & Malinow, 2010), this key observation has been confirmed now in multiple studies 

(Barry et al., 2011; Haas et al., 2016; Hu et al., 2014; Nicoll et al., 2013; Scott-McKean et 

al., 2016; Zhang et al., 2017).

Subsequent work has corroborated PrPC’s role as a pathophysiologically relevant receptor 

for Aβo. PrPC has been shown to be required Aβo-induced loss of synapses (Bate & 

Williams, 2011; Kudo et al., 2012; Ostapchenko et al., 2013), memory impairment and 

cognitive deficits (Chung et al., 2010; Gimbel et al., 2010), dendritic spine turnover in vivo 

(Heiss et al., 2016), and the early mortality phenotype of APP/PS1 transgenic mice (Gimbel 

et al., 2010; Haas et al., 2016). The role of PrPC as a human disease relevant receptor for 

Aβ42 has also been confirmed; Aβ42 has been shown to bind specifically to immobilized 

PrPC in brain homogenates from AD patients but not in homogenates derived from healthy 

controls, an effect that is dependent on the significantly higher concentration of Aβ42 present 

in AD brains (Dohler et al., 2014; Kostylev et al., 2015; Um et al., 2012).

Thus, a preponderance of evidence suggests that for Aβo, PrPC meets typical requirements 

for a putative receptor: high affinity, specificity, saturability, reversibility, and the ability to 

mediate biologically relevant, downstream, intracellular signaling events (Creese, Burt, & 

Snyder, 1976). However, it is important to note that while PrPC was the only positive hit 

identified in the unbiased genome-wide screen, the genetic deletion of PrPC in cultured 

Brody and Strittmatter Page 6

Adv Pharmacol. Author manuscript; available in PMC 2019 January 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



mouse neurons only reduced Aβo binding by 50%, suggesting the contribution of other 

Aβo-binding cell-surface molecules in addition to PrPC (Lauren et al., 2009).

While the necessity of PrPC to mediate Aβo-induced reduction in synaptic density, LTP 

inhibition, and synaptotoxicity has been well documented (Barry et al., 2011; Bate & 

Williams, 2011; Chung et al., 2010; Fluharty et al., 2013; Freir et al., 2011; Gimbel et al., 

2010; Kostylev et al., 2015; Lauren et al., 2009; Resenberger et al., 2011), certain Aβ-

induced phenotypes, including neural network dysfunction and in vitro dendritic spine loss 

after longer periods of high-concentration Aβo incubation, appear to be independent of 

PrPC, suggesting that these phenotypes may be mediated by alternative Aβo receptors or 

possibly distinct species of oligomeric Aβ (Balducci et al., 2010; Calella et al., 2010; Cisse 

et al., 2011; Kessels et al., 2010). However, since PrPC is the only putative Aβ receptor 

shown to bind specifically to Aβo, the identity of additional Aβo receptors requires further 

investigation (reviewed by Smith & Strittmatter, 2017).

7. IDENTIFICATION OF MGLUR5 AS AN AβO CORECEPTOR

The activation of intracellular Fyn kinase and its subsequent phosphorylation of NMDARs 

has been shown to be triggered by the Aβo–PrPC complex (Larson et al., 2012; Rushworth 

et al., 2013; Um et al., 2012). A requirement for this signaling pathway was employed to 

identify a transmembrane coreceptor that might link the GPI-anchored PrPC to the 

cytoplasmic Fyn kinase, both of which are enriched in the postsynaptic density (PSD) 

(Collins et al., 2006; Um et al., 2013, 2012). A screen of 61-transmembrane PSD-enriched 

proteins expressed in HEK293T cells identified mGluR5 as the only candidate to mediate 

Aβo-induced Fyn phosphorylation in a PrPC-dependent manner (Um et al., 2013) (Fig. 2). In 

cultured cortical neurons, Aβo-induced Fyn activation is eliminated with the application of 

mGluR5 antagonists MPEP and MTEP (but not the mGluR1 antagonist MPMQ) and 

through the genetic deletion of mGluR5. Notably, while mGluR5 associates with both PrPC 

and Fyn, mGluR5 does not bind directly to Aβo. Additionally, the interaction between Aβo–

PrPC is independent of mGluR5 expression, suggesting the existence of direct, pairwise 

associations between Aβo and PrPC, PrPC and mGluR5, and mGluR5 and Fyn.

In high-density cortical cultures, Aβo administration (but not Aβ monomers) increased 

levels of intracellular calcium through a mechanism dependent on the expression of both 

mGluR5 and PrPC (Um et al., 2013). Although Fyn is also activated through Aβo–PrPC–

mGluR5 signaling, the administration of saracatinib to inhibit Fyn failed to eliminate Aβo-

induced increases in intracellular calcium in high-density cortical cultures. Conversely, 

while Aβo-induced calcium increases were abolished after pretreatment with thapsigargin to 

deplete endoplasmic reticulum calcium stores, thapsigargin pretreatment failed to inhibit 

Aβo-induced Fyn activation. Since the pharmacological inhibition of Fyn has been shown to 

rescue memory deficits and spine loss in APPswe/PS1ΔE9 transgenic mice, these results 

suggest the existence of at least two pharmacologically divergent Aβo–PrPC–mGluR5 

signaling pathways (Kaufman et al., 2015).
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8. AβO-INDUCED DISRUPTION OF THE MGLUR5–HOMER1B/C–PYK2–

CAMKII COMPLEX

In lysates extracted from acute mouse brain slices, anti-PrPC coimmunoprecipitation reveals 

that the PrPC–mGluR5 complex associates with Homer1b/c, Pyk2, and CamKII (Haas et al., 

2016, 2017; Haas & Strittmatter, 2016) (Fig. 2). Moreover, the mGluR5–Homer1b/c–Pyk2–

CamKII complex is modulated by Aβo. While acute (S)-3,5-dihydroxyphenylglycine 

(DHPG) administration enhances the indirect association between PrPC and Homer1b/c and 

reduces PrPC’s association with Pyk2 and CamKII, acute Aβo administration enhances not 

only the association between PrPC and mGluR5 but also the association between PrPC and 

CamKII. Conversely, through mGluR5, acute Aβo administration reduces PrPC’s indirect 

association with Homer1b/c and Pyk2, suggesting that normal glutamatergic signaling 

mediated by mGluR5 is aberrantly disrupted by Aβo. Furthermore, pretreatment of brain 

slices with Aβo blocks DHPG's normal ability to modulate mGluR5’s interactions with 

Homer1b/c and CamKII.

Since Aβo levels are chronically elevated in the AD brain and correlate with disease 

severity, the disruption of normal mGluR5 signaling would be persistent, and worsening as 

the disease progresses. In brain slices from APPswe/PS1ΔE9 transgenic mice, DHPG-

induced changes in the behavior of the mGluR5–Homer1b/c–Pyk2-CamKII complex are 

completely abolished (Haas & Strittmatter, 2016). Additionally, DHPG-induced activation of 

Pyk2 and CamKII is absent in brain slices from APPswe/PS1ΔE9 animals, suggesting that 

chronic exposure to pathologically high levels of Aβo disrupts glutamate's ability to regulate 

Pyk2 and CamKII signaling through mGluR5. Interestingly, DHPG and Aβo's ability to 

activate Pyk2 activity is dependent on Fyn, since pharmacological inhibition of Fyn 

abolishes DHPG and Aβo-induced Pyk2 phosphorylation at Tyr402.

It has been previously demonstrated that mGluR-dependent synaptic plasticity is dependent 

on the interaction between Homer and mGluR proteins (Ronesi & Huber, 2008), and that 

CamKII's dissociation from mGluR is associated with LTP (Jin et al., 2011), it is quite 

possible that Aβo's ability to disrupt synaptic plasticity is at least partially explained by the 

Aβo-induced disruption of these two synaptic proteins. Whatever role Pyk2 may have in 

mediating Aβo-induced disruption of synaptic plasticity has yet to be fully elucidated, but 

Fyn signaling is likely to be implicated in such a mechanism.

9. TARGETING THE AβO–PRPC–MGLUR5 COMPLEX

The role of mGluR5 in mediating Aβo-induced synaptic dysfunction and memory 

impairment has been repeatedly demonstrated (Beraldo et al., 2016; Hamilton, Esseltine, 

DeVries, Cregan, & Ferguson, 2014; Hu et al., 2014; Overk et al., 2014; Raka et al., 2015; 

Renner et al., 2010; Um et al., 2013; Wang, Walsh, Rowan, Selkoe, & Anwyl, 2004; Zhang 

et al., 2015). However, since the inhibition of glutamatergic signaling via mGluR5 disrupts 

normal learning and memory, any therapeutic intervention designed to disrupt Aβo–PrPC 

signaling through mGluR5 would ideally leave physiological glutamatergic-signaling intact 

(Abou Farha, Bruggeman, & Balje-Volkers, 2014; Campbell et al., 2004; Lu et al., 1997; 
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Porter et al., 2005; Rodriguez et al., 2010; Um et al., 2013; Xu, Zhu, Contractor, & 

Heinemann, 2009).

Our group recently demonstrated that the silent allosteric modulator (SAM) of mGluR5 

BMS-984923 selectively inhibits Aβo-induced inhibition of LTP in mouse hippocampal 

slices, memory deficits and synaptic loss in APP/PS1 transgenic mice, and tau pathology in 

triple transgenic (3 × Tg) mice-expressing APP, PS1, and human mutant tau while 

preserving normal mGluR5-mediated glutamatergic signaling (Haas et al., 2017). Thus, 

BMS-984923 may represent a potentially effective disease-modifying therapy for AD.

10. ADDITIONAL RECEPTORS FOR Aβ: LILRB2, α7NACHR, AND OTHERS

While PrPC’s interaction with Aβo was discovered via a genome-wide unbiased screen, a 

number of other receptors for Aβo have been proposed from selected candidate studies, and 

we have reviewed these in detail (reviewed by Smith & Strittmatter, 2017). The relative roles 

of these different receptor mechanisms require further investigation. Here, we briefly 

describe a few of these pathways.

Shatz and colleagues started with physiological studies showing that LilRB2 is a receptor for 

both MHC proteins and myelin inhibitor proteins, which titrates synaptic plasticity (Atwal et 

al., 2008; Bochner et al., 2014; Syken, Grandpre, Kanold, & Shatz, 2006). Based on this 

background, they considered whether it might also bind Aβo and modify synapse function 

and stability. Their studies demonstrated a role for LilRB2 in mediating Aβo action to 

inhibit LTP in slices and to mediate impairments in AD transgenic mice (Kim et al., 2013). 

The interplay of Aβo with endogenous ligands at different development stages has not yet 

been clarified.

In 2000, Wang and colleagues proposed α7nAChR, a homomeric, ionotropic acetylcholine 

receptor with high Ca2 + permeability as a receptor for monomeric Aβ42, a proposal that was 

in part informed by the loss of cholinergic neurons commonly observed in AD (Hogg, 

Raggenbass, & Bertrand, 2003; Wang et al., 2000). Subsequent work by Dineley and 

colleagues demonstrated that in brain slices both nicotine and Aβ42 administration could 

stimulate the activation of (extracellular signal-regulated kinase 2) ERK2, an effect that 

could be reversed with the application of MLA, an α7nAChR antagonist (Dineley et al., 

2001). Conversely, pretreatment of slices with Aβ42 prevented nicotine-induced activation of 

ERK2 in a manner that reflects Aβo's ability to impair DHPG-induced regulation of the 

mGluR5–Homer1b/c–Pyk2–CamKII complex. Furthermore, the authors showed that the 

degree of α7nAChR brain expression in mice correlated positively with memory deficits in a 

Morris water maze task.

Additional research conducted by Greengard's team in the mid-2000s demonstrated that 

soluble Aβ treatment induced the endocytosis of NDMA receptors in cultured cortical 

neurons through a mechanism involving the binding of Aβ to α7nAChR and the subsequent 

activation of the striatally enriched phosphatase (STEP) via dephosphorylation by the Ca2 +-

sensitive phosphatase PP2B, also known as calcineurin (Snyder et al., 2005). The authors 

hypothesized that the activation of α7nAChR by soluble Aβ could promote calcium influx 
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and the activation of calcineurin (mirroring Aβo's previously discussed ability to stimulate 

the release of calcium from intracellular stores, a mechanism dependent on the formation of 

the Aβo–PrPC–mGluR5 complex). Once activated, calcineurin could then dephosphorylate 

and thus activate STEP. Activated STEP would then promote the dephosphorylation of the 

NDMA receptor subunit NR2B at Tyr1472, a residue whose phosphorylation state regulates 

the activity and endocytosis of NDMA receptors.

Other experiments have confirmed that Aβo treatment reduces NMDA receptor Ca2 + 

conductance, which consequently leads to a reduction in the activity of CamKII, the 

inhibition of LTP and the promotion of LTD (Mulkey, Endo, Shenolikar, & Malenka, 1994; 

reviewed by Koffie, Hyman, & Spires-Jones, 2011). Aβo-induced calcineurin activation has 

also been shown to be mediated by the activation of mGluRs, initiating a cascade that 

ultimately leads to the endocytosis of AMPA receptors (Mulkey et al., 1994; Zhang et al., 

2008).

It is clear that NMDAR contributes to Aβo-induced dysfunction as a downstream mediator, 

but there is also some evidence that there is a direct interaction of Aβo with NMDAR that 

contributes to AD pathophysiology. De Felice et al. demonstrated that binding of Aβo to 

cultured hippocampal neurons could be substantially reduced with an antibody raised against 

the extracellular N-terminal of NMDAR (De Felice et al., 2007). Disrupting the interaction 

between Aβo and NMDAR with this antibody also helped prevent Aβo-induced increases in 

intracellular calcium levels and the generation of reactive oxygen species (ROS). The same 

group subsequently found that knocking down NMDAR in cultured hippocampal neurons 

dramatically reduced dendritic Aβo-binding and Aβo-induced ROS generation. However, 

since the authors observed no difference in NMDAR expression between oligomer-bound 

and nonbound neurons and observed no reduction in NMDAR expression after insulin-

induced disruption of Aβo binding, the authors conclude that additional sites likely mediate 

direct dendritic Aβo binding (Decker et al., 2010).

11. TAU AND Aβ IN CONCERT: THE ROLE OF FYN AND PYK2

A possible link between Aβ and tau pathology is elucidated by considering Aβo's ability to 

activate Fyn, since Fyn has previously been shown to both physically associate with tau and 

to phosphorylate tyrosine residues of tau (Bhaskar, Hobbs, Yen, & Lee, 2010; Lee et al., 

2004). The phosphorylation of tau by Fyn depends on the upstream formation of the Aβo–

PrPC complex (Larson et al., 2012), and the endogenous expression of PrPC correlates 

positively with the expression of tau in a transgenic APP/PS1 mice (Vergara et al., 2015). 

Notably, extracts from human AD brains have been shown to activate Fyn in cultured mouse 

cortical neurons (Um et al., 2012).

While the role of hyperphosphorylated tau in neuronal cell death has traditionally been 

thought to occur through the physical impedance of axonal trafficking, more recent work 

suggests a mechanistic relationship between Aβ and tau that mediates synaptic dysfunction 

and neuronal toxicity. Hyperphosphorylated tau has been shown to abnormally localize to 

dendrites (Zempel, Thies, Mandelkow, & Mandelkow, 2010). Aβo also promotes 

downstream phosphorylation of tau (Jin et al., 2011). Conversely, it has also been 
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demonstrated that Aβ-induced memory impairment and neuronal hyperexcitability in 

transgenic mice overexpressing mutant human APP depend on the expression of endogenous 

tau (Roberson et al., 2007). Additionally, the pathological localization of Fyn to the 

postsynaptic site and its subsequent binding to NMDA receptors intracellularly are also 

dependent on the expression of tau (Ittner et al., 2010).

The pathological relationship between tau and Fyn is bidirectional; while activated Fyn can 

phosphorylate tau, phosphorylated tau has a higher propensity to bind with Fyn, increasing 

the likelihood of Fyn's aberrant localization into dendrites (Mondragon-Rodriguez et al., 

2012). Specifically, tau delivers Fyn preferentially to NMDA receptors, where Fyn readily 

promotes the phosphorylation of the NMDA receptor subunit NR2B at Tyr1472 (Roche et 

al., 2001). The phosphorylation of NR2B at Tyr1472 has been shown to both inhibit NMDA 

receptor endocytosis and increase NMDA receptor current (Roche et al., 2001; Snyder et al., 

2005).

The role of Fyn in linking Aβ and tau pathologies implicates it as a potential therapeutic 

target for AD treatment. As mentioned previously, inhibiting Fyn pharmacologically with 

the Src family kinase inhibitor AZD0530 rescues both memory impairment and synapse loss 

in APP/PS1 mice (Kaufman et al., 2015). As such, AZD0530 is currently being evaluated as 

a candidate for disease-modifying therapy in a multicenter NIH-funded Phase2a clinical trial 

(ClinicalTrials.gov NCT02167256) (Nygaard et al., 2015).

Evidence suggest that Fyn and Pyk2 may function together to mediate pathological Aβo 

signaling. Pyk2 was identified as a LOAD risk gene in the largest Genome Wide Association 

Study yet conducted to assess AD risk, and Pyk2 was separately identified as a non-ApoE4 

genetic risk loci for AD (Beecham et al., 2014; Lambert et al., 2013). Additionally, Pyk2 has 

been identified as a node for differential gene expression in both ApoE4 allele carriers and in 

patients with early-onset AD (Rhinn et al., 2013).

Pyk2, like Fyn, is enriched in PSDs and has been shown to play a mechanistic role in 

regulating synaptic plasticity (Bartos et al., 2010; Heidinger et al., 2002; Huang et al., 2001; 

Park, Avraham, & Avraham, 2004; Seabold, Burette, Lim, Weinberg, & Hell, 2003). Bartos 

and colleagues showed that NMDAR-mediated Ca2 + influx induced Pyk2 

autophosphorylation and binding to PSD-95, a process that is necessary for LTP induction in 

hippocampal slices. More recently, Giralt and colleagues showed that genetic deletion of 

Pyk2 in mice impaired performance on hippocampal-dependent behavioral tasks as well as 

the induction of LTP in hippocampal slices (Giralt et al., 2017). Conversely, Hsin and 

colleagues demonstrated that Pyk2 was required for LTD induction, and that Pyk2 

overexpression also blocked LTP (Hsin, Kim, Wang, & Sheng, 2010).

As mentioned previously, Pyk2’s association with mGluR5 is disrupted in the presence of 

Aβo (Haas et al., 2016). Pyk2 has also been shown to interact directly with Fyn, which 

phosphorylates and thus fully activates Pyk2 (Collins, Bartelt, & Houtman, 2010; Collins, 

Tremblay, et al., 2010; Park et al., 2004). While Fyn has been shown to phosphorylate 

residues of tau, Pyk2 has been shown to interact with and phosphorylate GSK3β (Hartigan, 

Xiong, & Johnson, 2001; Sayas, Ariaens, Ponsioen, & Moolenaar, 2006), a kinase thought to 
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be involved in the hyperphosphorylation of tau (reviewed by Hooper, Killick, & Lovestone, 

2008). Taken together, these results suggest that Pyk2 may play a critical role in mediating 

Aβ-induced synaptic dysregulation through a process involving Fyn. However, the specifics 

of this mechanism have yet to be elucidated.

12. Aβ AND DISRUPTED HOMEOSTATIC EQUILIBRIUM

It may appear as if different studies of Aβo on NMDA receptor activity were contradictory 

with one another. On the one hand, the phosphorylation of NR2B at Tyr1472 via Fyn 

increases NMDA receptor net activity (Um et al., 2012). On the other hand, NR2B 

dephosphorylation by STEP promotes the endocytosis of NMDA receptors, which would 

reasonably lead to a net reduction in NMDA receptor-mediated currents (Snyder et al., 

2005). However, it would also appear that this pathological system includes redundancies 

that promote NR2B dephosphorization; while STEP dephosphorylates NR2B directly, it also 

dephosphorylates and inactivates Fyn (Nguyen, Liu, & Lombroso, 2002). Because mGluR5 

activation triggers the localization of STEP into dendrites (Zhang et al., 2008) and because 

Aβo has been shown to activate mGluR5, Aβo would also have the dual effect of both 

activating Fyn and promoting its inactivation through recruitment of STEP at different time 

points (Um et al., 2012). The system is further complicated by the previously discussed 

observation that Aβo also leads to tau phosphorylation and thus the activation and 

recruitment of Fyn to the PSD.

Nevertheless, it is highly probable that this system would result in an overall shift toward 

NMDA receptor dysregulation in such a way that contributes to neuronal toxicity. Given the 

necessity of stable NMDA receptor expression for the maintenance of LTP, which would be 

precluded by chronic STEP activation, the net result of NR2B phosphorylation by Fyn might 

solely be to disrupt calcium homeostasis within the cell. Indeed, Aβo administration has 

been shown to disrupt Ca2 + homeostasis through a mechanism dependent on NR2B 

activation (Ferreira et al., 2012). Promisingly, and in support of this theory, an uncompetitive 

NMDA receptor channel blocker memantine has shown modest effectiveness in 

symptomatically improving memory in AD patients (Reisberg, Doody, & Mobius, 2003; 

reviewed by Mota, Ferreira, & Rego, 2014).

13. FUTURE DIRECTIONS

There remain many unanswered questions regarding the mechanisms of oligomeric Aβ-

induced neurotoxicity and its contribution to the pathophysiology of AD. For example, the 

precise Aβo species that are most pathologically relevant forms require better definition. 

While, Shankar and colleagues initially determined Aβ dimers to be the neurotoxic species, 

other groups have subsequently reached conflicting conclusions (Kostylev et al., 2015; 

Shankar et al., 2008; reviewed by Haass & Selkoe, 2007). Considering the existence of Aβo-

induced phenotypes that appear to be independent of PrPC, it is likely that a number of 

additional receptors are mediating these phenotypes. Indeed, a number of other teams have 

identified Aβ receptors in addition to PrPC, LilRB2, α7nAChR, and NMDAR including 

RAGE (Yan et al., 1996), p75NTR (Kuner, Schubenel, & Hertel, 1998; Yaar et al., 1997), 

NgR1 (Park et al., 2006), EphB2 (Cisse et al., 2011) and EphA4 (Fu et al., 2014), FcγRIIB 
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(Kam et al., 2013), Sortilin (Carlo et al., 2013), IR (Xie et al., 2002), EGFR (Wang et al., 

2012), and σ2R/PGRMC1 (Izzo, Staniszewski, et al., 2014; Izzo, Xu, et al., 2014; reviewed 

by Smith & Strittmatter, 2017). It is possible that these additional Aβ receptors may 

demonstrate distinct specificities for monomeric or particular oligomeric Aβ species, each 

potentially signaling through distinct molecular pathways. Indeed, work from Sergio 

Ferreira's group suggests that high- and low-molecular weight Aβo produce aberrant 

phenotypes in vitro and in vivo through separate molecular mechanisms (Figueiredo et al., 

2013). Notably, Selkoe, Walsh, and colleagues have shown that human AD brains contain 

high-molecular weight oligomers which can interconvert into more bioactive, low-molecular 

weight oligomers under certain buffer conditions (Yang, Li, Xu, Walsh, & Selkoe, 2017). 

Further studies are required to elucidate the specificity of each proposed Aβo receptor and 

the downstream signaling pathways that are subsequently disrupted by Aβ. In addition, the 

connections between Aβo neuronal receptor-signaling, glial and immune response, and the 

progression to Tau pathology remain to be elucidated.

14. CONCLUSION

A collection of evidence supports the hypothesis that accumulation of misfolded forms of 

Aβ peptide trigger the Alzheimer's disease cascade. Synapse damage is an early and critical 

phenomenon in the progression of the disease with increasing complexity involving cellular 

inflammation, tau accumulation, and cell death. Receptors for Aβo at the synapse initiate 

this toxic cascade. Here, we have reviewed a collection of data showing that Aβo interacts 

with PrPC to trigger mGluR5 signaling at the synapse, a mechanism that involves Fyn and 

Pyk2 kinases. For experimental AD transgenic mouse models, this pathway is required for 

synapse loss and memory dysfunction. Clinical tests of the role of this pathway are 

underway now.
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Abbreviations

3 × Tg triple transgenic

Aβ amyloid beta

AD Alzheimer's disease

ADNI Alzheimer's disease neuroimaging initiative

AMPA α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

AMPAR α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptor

APP amyloid precursor protein

CamKII Ca2 +/calmodulin-dependent protein kinase II
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CNS central nervous system

CSF cerebrospinal fluid

DHPG (S)-3,5-dihydroxyphenylglycine

EGFR epidermal growth factor receptor

ERK2 extracellular signal-regulated kinase 2

FcγRIIB Fc gamma receptor IIB

GPI glycosylphosphatidylinositol

HEK293T human embryonic kidney cells 293 with SV40 large T 

antigen

IR insulin receptor

LGI1 leucine-rich, glioma-inactivated 1

LilRB2 leukocyte immunoglobulin-like receptor B2

LOAD late-onset Alzheimer's disease

LTD long-term depression

LTP long-term potentiation

MAG myelin-associated glycoprotein

mGluR5 metabotropic glutamate receptor 5

MHC major histocompatibility complex

MLA recombinant histone H3K79me3

MPEP 2-methyl-6-(phenylethynyl)pyridine

MPMQ 6-methoxy-N-(4-methoxyphenyl)-4-quinazolinamine

MTEP 3-((2-methyl-4-thiazolyl)ethynyl)pyridine

NFT neurofibrillary tangle

NgR1 Nogo receptor 1

NMDA N-methyl-D-aspartate

NMDAR N-methyl-D-aspartate receptor

NR2B N-methyl D-aspartate receptor subtype 2B

PET positron emission tomography

PGRN progranulin
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PP2B protein phosphatase 2B

PrPC cellular prion protein

PS1 presenilin 1

PS2 presenilin 2

PSD postsynaptic density

PSD-95 postsynaptic density protein 95

Pyk2 protein tyrosine kinase 2

RAGE receptor for advanced glycation end products

RGM repulsive guidance molecule A

SAM silent allosteric modulator

STEP striatally enriched phosphatase

α7nAChR α7 nicotinic acetylcholine receptor

σ2R/PGRMC1 sigma 2 receptor/progesterone receptor membrane 

component 1
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Fig. 1. 
Synaptic structures and amyloid plaques in Alzheimer model mice. Image of cerebral 

cortical tissue from a transgenic Alzheimer model mouse, expressing human mutant APP 

and PS1. This mouse also carries a Thy1-EGFP transgene to sparsely fill individual neurons 

in the cerebral cortex (green). The amyloid plaque stain is blue, and reactive astrocytes are 

revealed by anti-GFAP staining in red. Derived from experimental system described 
previously (Heiss, J. K., Barrett, J., Yu, Z., Haas, L. T., Kostylev, M. A., & Strittmatter, S. 

M. (2016). Early activation of experience-independent dendritic spine turnover in a mouse 
model of Alzheimer's disease. Cerebral Cortex 27:3660–3674. doi:https://doi.org/10.1093/

cercor/bhw188 (web archive link)).
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Fig. 2. 
Receptor signaling cascade-mediating Alzheimer's disease synapse damage by Aβ 
oligomers. Schematic illustrates the role of mGluR5 in linking cell surface Aβo–PrPC 

complexes to intracellular Fyn/Pyk2 and synaptic loss. Proteins are clustered in the PSD and 

alter NMDARs, calcium, and protein translation. Pyk2(PTK2B) variation is a verified 

genetic risk for late-onset AD. Tau plays a role in localizing Fyn. Aberrant PrPC–mGluR5–

Fyn–Tau signaling leads to synaptic malfunction and loss.
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