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ABSTRACT The most common practice in studying and cataloguing prokaryotic di-
versity involves the grouping of sequences into operational taxonomic units (OTUs)
at the 97% 16S rRNA gene sequence identity level, often using partial gene se-
quences, such as PCR-generated amplicons. Due to the high sequence conservation
of rRNA genes, organisms belonging to closely related yet distinct species may be
grouped under the same OTU. However, it remains unclear how much diversity has
been underestimated by this practice. To address this question, we compared the
OTUs of genomes defined at the 97% or 98.5% 16S rRNA gene identity level against
OTUs of the same genomes defined at the 95% whole-genome average nucleotide
identity (ANI), which is a much more accurate proxy for species. Our results show
that OTUs resulting from a 98.5% 16S rRNA gene identity cutoff are more accurate
than 97% compared to 95% ANI (90.5% versus 89.9% accuracy) but indistinguishable
from any other threshold in the 98.29 to 98.78% range. Even with the more strin-
gent thresholds, however, the 16S rRNA gene-based approach commonly underesti-
mates the number of OTUs by �12%, on average, compared to the ANI-based ap-
proach (�14% underestimation when using the 97% identity threshold). More
importantly, the degree of underestimation can become 50% or more for certain
taxa, such as the genera Pseudomonas, Burkholderia, Escherichia, Campylobacter, and
Citrobacter. These results provide a quantitative view of the degree of underestima-
tion of extant prokaryotic diversity by 16S rRNA gene-defined OTUs and suggest
that genomic resolution is often necessary.

IMPORTANCE Species diversity is one of the most fundamental pieces of informa-
tion for community ecology and conservational biology. Therefore, employing accu-
rate proxies for what a species or the unit of diversity is are cornerstones for a large set
of microbial ecology and diversity studies. The most common proxies currently used rely
on the clustering of 16S rRNA gene sequences at some threshold of nucleotide identity,
typically 97% or 98.5%. Here, we explore how well this strategy reflects the more accu-
rate whole-genome-based proxies and determine the frequency with which the high
conservation of 16S rRNA sequences masks substantial species-level diversity.
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The definition of species as the unit of biodiversity for Bacteria and Archaea has been
a longstanding problem in microbiology, with important conceptual implications

for the study of microbial ecology and diversity (see, e.g., references 1–3). Currently, the
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predominant view is that species should be named based on a consensus of pheno-
typic and genomic characteristics (4). Indeed, for most named species, this consensus
does exist, resulting in a classification scheme with adequate stability, operability, and
predictability (5). For example, named species with available sequenced genomes can
be reliably demarcated by a genome-aggregate average nucleotide identity (ANI) of
95%, with an accuracy of �98% (6–8). However, analysis of whole genomes for
environmental and diversity studies is far less common than an analysis of individual
marker genes, notably the 16S rRNA gene sequence. Indeed, analysis of 16S rRNA
full-length or partial gene sequences has revolutionized the study of prokaryotic
diversity during the past 2 decades.

A typical 16S rRNA gene analysis pipeline involves the recovery of 16S rRNA-
encoding sequences from environmental samples, their subsequent clustering at 97%
nucleotide identity, and finally, a count or comparison of the resulting operational
taxonomic units (OTUs), which are used as a unit of diversity, approximating the species
level (see, e.g., references 9 and 10). The 97% identity threshold was first proposed as
a (purposefully conservative) lower boundary to subsequently screen isolates for
assignment to species using higher-resolution methods, such as DNA-DNA hybridiza-
tion (11), and is the default in two of the most popular pipelines for 16S rRNA gene
analyses: QIIME and mothur (12, 13). Moreover, surveys and estimations of the extant
prokaryotic species diversity on Earth are often based on OTUs defined by 97% 16S
rRNA gene sequence identity (see, e.g., references 10, 14, and 15). However, the more
recently established 98.5% 16S rRNA gene nucleotide identity threshold appears to
more precisely reflect genomic and nomenclatural standards for the species level (6,
11). Other thresholds have been proposed as well, such as 98.65% (16) and 98.7% (17).
In any case, it is now well appreciated that the above-mentioned 16S rRNA thresholds,
although they should not be equated with the genomic and phenotypic standards for
species definition (4), represent an important unit of microbially diverse populations
that is close enough to the species level, i.e., they can serve as a reliable proxy for
measuring microbially diverse populations. It has also been realized that 16S rRNA
genes are too conserved to delineate closely related species; thus, the 97% identity
level (or even 98.5 to 98.7%) may lump together distinct species (18, 19). For example,
identical 16S rRNA gene sequences can be found between pairs of phenotypically and
genomically distinct species, including some from the genera Campylobacter, Xan-
thomonas, Escherichia, Mycobacterium, Yersinia, and Cycloclasticus. However, the sim-
plicity of the approach, its broad applicability due to the availability of (nearly) universal
PCR primers to amplify 16S rRNA gene sequences from most prokaryotes, and the
existence of large reference databases to facilitate analysis have made 16S rRNA
gene-based surveys the method of choice for diversity studies.

Genome-derived parameters, such as the 95% average nucleotide identity (ANI),
have been shown to better encompass the named species based on isolates (8, 20) and
the natural sequence-discrete populations sampled by metagenomics (21), as these
parameters capture better than 16S rRNA gene sequence analysis the traditional
methods and standards for demarcating species, e.g., DNA-DNA hybridization (20). For
instance, Kim and colleagues estimated that the precision of the 98.65% 16S rRNA gene
threshold for species demarcation is 92.2% (16), meaning that about 8% of the pairs of
genomes showing a 16S rRNA gene identity of �98.65% show an ANI of �95%; thus,
they should be actually assigned to different OTUs or species. These results, which
echoed previous similar studies with a smaller collection of genomes (6), indicated that
although genome-derived methods offer higher resolution than 16S rRNA gene-based
ones, the difference is probably not dramatic. However, it is likely that these results are
misleading with respect to how many distinct species may exist in a habitat that are
grouped under the same 16S rRNA OTU for several reasons.

First, the genomes sequenced during the previous decade aimed to cover phylo-
genetic diversity, as opposed to close relatives, with the possible exception of patho-
genic taxa. Yet, several close relatives often cooccur within a natural habitat (21), which
could amplify the above-mentioned limitation of the 16S rRNA gene method. Second,
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environmental surveys do not typically include complete high-quality 16S rRNA gene
sequences but instead error-prone short sequences of the V4 or V6 (or other) region,
with the potential effects of both underestimating the number of OTUs due to
insufficient resolution and inflating OTU counts due to sequence artifacts and errors.
Finally, the previous studies were focused on whether or not organisms should be
assigned to the same species (or OTU) and did not evaluate how many distinct species
are represented by these organisms, which is more relevant for environmental diversity
surveys. Accordingly, it still remains speculative as to how much 16S rRNA gene analysis
underestimates the prokaryotic diversity sampled within natural habitats. Addressing
this issue is important for the estimation of prokaryotic community diversity richness,
a highly important topic for diversity cataloguing and conservation (cf. reference 15
and debate therein), as well as for assessing diversity shifts across spatial or temporal
scales, which is typically based on comparative studies of alpha and beta diversity.
Importantly, the distribution of features, such as gene and metabolic pathways under-
lying abundance profiles, may differ between species and higher taxonomic levels (1,
14), further underscoring the importance of accurate and reproducible comparisons.
Such comparisons require a clear understanding of the taxonomic richness, which may
differ depending on the level of genetic or phylogenetic depth assessed (e.g., 97% 16S
rRNA gene versus 95% ANI [6]). How OTUs are defined is particularly relevant for the
underlying evolutionary or ecologic assumptions during these alpha/beta diversity
comparisons as well (see, e.g., references 1 and 3).

To provide quantitative estimates of the degree of underestimation of naturally
occurring diversity by 16S rRNA and, thus, guidance on how to perform diversity
surveys more accurately in the future, we evaluated the 16S rRNA gene identities and
ANI values in a collection of 8,350 complete genomes to determine the optimal
threshold of 16S rRNA gene identity corresponding to 95% ANI, and we compared the
number of OTUs defined at the 97% or 98.5% 16S rRNA gene identity level to those
defined at 95% ANI based on the same genome sequences.

RESULTS AND DISCUSSION
16S rRNA gene identity thresholds. In order to identify the 16S rRNA gene

threshold most consistent with an ANI of 95%, we performed a bootstrapped F1 score
and accuracy analysis for different thresholds ranging from 96 to 100% 16S rRNA gene
identity (every 0.01%). We identified two thresholds with almost identical F1 scores
(0.949): 98.32% and 98.64%, which were statistically indistinguishable with 80% power
from any thresholds in the range of 98.29 to 98.78% (Fig. 1). This range includes
previously proposed 16S rRNA gene thresholds, such as 98.5% (6, 11), 98.65% (16), and
98.7% (17), but not 97% (Table 1). Since they are all roughly equivalent with the
available data collection (8,350 genomes) and 1,000 bootstraps, we employed the
98.5% threshold for the rest of our analysis. This threshold appears to be more widely
used in the literature (compared to 98.65% or 98.7%) and, by being more conservative
than other proposed thresholds, 98.5% is less likely to be influenced by artifacts or
other sources of variation not considered here that may inflate diversity measurements.
For example, intragenomic 16S rRNA gene diversity has been observed to be on
average 0.3%, but with substantial variation around this mean value (22), and typical
data-processing pipelines of second-generation sequencing technologies for 16S rRNA
amplicon analyses may allow sequencing errors of up to 0.1 to 1% (or Q20 to Q30 Phred
score).

Diversity estimates using 16S rRNA gene and ANI methods. We sought to
quantify the likely range by which diversity is underestimated using 16S rRNA gene
sequences with respect to an ANI of 95%. The 8,350 genomes in NCBI-Prok were
clustered into 2,988 OTU using ANI 95% (OTUANI�95%) or 2,636 OTU using a 16S rRNA
gene threshold of 98.5% (OTU16S�98.5%). That is, 16S rRNA gene clustering yielded
11.8% fewer OTUs than ANI (or, conversely, a ratio of OTUANI�95% to OTU16S�98.5% of
1.13; Fig. 2ii). The difference was 5-fold smaller in the RefSeq collection, i.e., only 2.05%
fewer OTUs (Fig. 2viii), presumably due to the RefSeq reference genome collection
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including only one or a few genomes per named species, while no such taxonomic
selection is applied to the NCBI-Prok collection. Therefore, the species-level classifica-
tion problem is harder in the NCBI-Prok set and more relevant for the main objectives
of our study. As expected, the underestimation of the number of OTUANI�95% was even

FIG 1 Most accurate 16S rRNA gene identity thresholds with respect to 95% ANI. The figure shows the
F1 score (top) and accuracy (bottom) of different 16S rRNA gene identity thresholds (x axis) using 95%
ANI as a reference. Both metrics represent trade-offs between recall and precision. For each metric, the
plot displays the summary statistics of 1,000 rounds of bootstrap on the NCBI-Prok collection as bands; mean
(solid line), 80% power range (�20%, darker band), interquartile range (IQR; intermediate band), and 95%
confidence interval (CI95%; lightest band). In the lower portion of each panel (horizontal shading), the identity
thresholds with the highest F1 score or accuracy are marked with vertical solid black lines (98.32% and 98.64%
for F1, 98.64% for accuracy). The regions in which the mean F1 score or accuracy is within the �20%, IQR, and
95% CI ranges of the thresholds with highest values are indicated with concentric gray bands. The 16S rRNA
gene identity threshold used in this study (98.5%) is indicated with a filled black arrowhead, the default 16S
rRNA gene identity threshold in QIIME and mothur (97%) is indicated with a filled gray arrowhead, and other
less common thresholds used in the literature (98.65% and 98.7%) are indicated with open black arrowheads.
All except 97% are within the �20% range of the highest F1.

TABLE 1 Comparisons between OTU16S and OTUANI�95%

Set 16S region
16S identity
threshold (%) Accuracy (%) Precision (%) Recall (%) F1 Rand index Adjusted Rand index OTU ratio

NCBI-Prok Full 97.0 89.83 90.26 99.40 0.9461 0.9990 0.9459 1.1613
98.5 90.47 91.41 98.67 0.9490 0.9991 0.9487 1.1335
98.7 90.60 91.86 98.25 0.9494 0.9991 0.9507 1.1208

V4 97.0 88.16 90.54 96.95 0.9364 0.9989 0.9357 1.0949
98.5 88.39 91.25 96.31 0.9371 0.9989 0.9378 1.0756
98.7 88.39 91.25 96.31 0.9371 0.9989 0.9378 1.0756

V6 97.0 65.69 90.88 68.69 0.7824 0.9967 0.7820 1.0440
98.5 63.42 93.96 63.34 0.7567 0.9965 0.7553 0.9661
98.7 63.42 93.96 63.34 0.7567 0.9965 0.7553 0.9661

RefSeq Full 97.0 50.41 49.58 100.0 0.6629 0.9999 0.6210 1.0229
98.5 53.71 51.30 100.0 0.6782 1.000a 0.6344 1.0210
98.7 52.97 50.45 94.92 0.6588 1.000a 0.6378 1.0203

V4 97.0 53.72 51.30 100.0 0.6782 1.000a 0.6344 1.0210
98.5 57.85 53.64 100.0 0.6982 1.000a 0.6413 1.0197
98.7 57.85 53.64 100.0 0.6982 1.000a 0.6413 1.0197

V6 97.0 49.59 48.75 66.10 0.5612 1.000a 0.5128 1.0135
98.5 57.02 56.86 49.15 0.5273 1.000a 0.5273 1.0036
98.7 57.02 56.86 49.15 0.5273 1.000a 0.5273 1.0036

aRounded value collapses to 1.0, but the actual value is slightly smaller.
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larger with the 97% identity threshold for 16S rRNA genes, with 13.9% fewer OTU using
a 16S threshold of 97% (OTU ratio, 1.16).

Interestingly, the variable regions of the 16S rRNA gene frequently used in amplicon
sequencing (V4 and V6) resulted in estimates of richness closer to those using an ANI
of 95%, with only 7% fewer and 3.5% more 16S rRNA OTUs, respectively (Fig. 2iv and
v). However, these regions also resulted in lower accuracies in the classification of a pair
as the same or different species (using 95% ANI as a reference standard) of 88.4% and
63.4% in V4 and V6, respectively, compared to 90.1% in the complete sequence (Table
1). Moreover, the OTUs resulting from both variable regions were less similar to those
formed by a 95% ANI, with adjusted Rand index values decreasing from 94.9% in the
complete sequence to 93.8% and 75.5% in V4 and V6, respectively (Table 1). Together,
these results reveal a substantial systematic underestimation of diversity using 16S
rRNA gene complete sequences with respect to genomic standards by about 12% (or
14% when using the 97% identity threshold). Even more concerning, a nonsystematic
noise in the diversity estimates when using only variable regions of the 16S rRNA was
also observed. Importantly, the degree of underestimation is contingent upon the
number of genomes related at near- and underspecies levels, as demonstrated by the
difference between the NCBI-Prok and RefSeq collections. Therefore, the average
underestimation found by our analysis should not be used as an absolute standard
correction factor on 16S rRNA gene-based estimates of richness but, rather, as an
approximate guide or reference point.

Taxonomic biases in diversity estimates. To provide an estimate on how these
values might change with more closely related, but distinct, species sampled, we
subsampled, with replication, the genomes of the most sampled phyla and classes
(over 50 genomes within each taxon) and rarefied the resulting OTU ratio (Fig. 3). The
analysis shows that the ratio of OTUANI�95% to OTU16S�98.5% approximated 1.1 to 1.3
and plateaued at that value with a higher number of genomes compared (Fig. 3C).
Therefore, it appears that a 16S rRNA gene analysis approach may underestimate
natural diversity by up to 10 to 23%, depending on the species sampled and their
taxonomic composition.

We analyzed the resulting OTUs at finer taxonomic levels in more detail in order to
identify the taxa whose diversity has been more underestimated because they have

FIG 2 Differences in the number of OTUs recovered by ANI relative to 16S rRNA. Graph shows the ratio
of the number of OTUs recovered based on 95% ANI (OTUANI�95%) versus 16S rRNA (y axis) for different
16S rRNA gene cutoffs (x axis): i and vi, 97% identity across the full-length gene sequence (OTU16S�97%);
ii and vii, 98.5% across the full-length gene sequence (OTU16S�98.5%); iii and viii, 98.7% across the
full-length gene sequence (OTU16S�98.7%); iv and ix, 98.5% across the V4 region only, a cutoff exceeded
with two nucleotide substitutions; and v and x, 98.5% across the V6 region, exceeded with one
substitution. Open circles indicate the OTU ratio estimations; error bars denote standard deviations over
1,000 rounds of bootstrapping.

Genomic and 16S rRNA Gene Estimates of Richness Applied and Environmental Microbiology

March 2018 Volume 84 Issue 6 e00014-18 aem.asm.org 5

http://aem.asm.org


accumulated less variation in their 16S rRNA gene relative to the whole genome. We
identified 14 genera with OTUANI�95%-to-OTU16S�98.5% ratios significantly different
from 1.0, between 1.5 and 7 (Fig. 4), 6 of which are classified in the Enterobacteriaceae
family. For a few of the taxa with abnormally high OTU ratios, the underlying factors for
the high 16S rRNA gene sequence conservation, or, conversely, the faster evolution of
the whole genome, are known at least in part, but for most taxa, these factors remain
to be elucidated. For example, Campylobacter spp. are among the most recombino-
genic species known and show increased genomic sequence diversity (23). Similarly,

FIG 3 Phylogenetic biases in the ANI-to-16S rRNA OTU ratio. (A) Average OTUANI�95%-to-OTU16S�98.5% ratios based on all genomes in NCBI-Prok and RefSeq
collections. (B) Ratios are reported separately for the most frequently sampled phyla and classes (at least 50 available genomes). Boxplots denote the
distribution of estimations over 1,000 rounds of bootstrapping (box, interquartile range; whiskers, full range without outliers), open circles indicate the estimate
without bootstraps, and numbers denote the number of genomes used for each taxon. Alphaproteo., Alphaproteobacteria; Betaproteo., Betaproteobacteria;
Deltaproteo., Deltaproteobacteria; Epsilonproteo., Epsilonproteobacteria; Gammaproteo., Gammaproteobacteria. (C) Rarefaction of ratios for most sampled classes
and phyla. Shaded ribbons denote the interquartile range over 100 rounds of bootstrapping. Inset is the zoomed-in version of the gray-shaded area in the
graph.

FIG 4 OTU ratios for different genera in NCBI-Prok. All genera with at least nine genomes available in the
NCBI-Prok collection were reclustered in OTUANI�95% and OTU16S�98.5%, and OTU ratios (y axis) were
calculated as in Fig. 2. The OTU ratios per genera are displayed by the number of genome representatives
available (x axis). The 95% and 99% confidence intervals for a binomial-based ratio statistic are displayed
as dark and light gray bands, respectively.
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Citrobacter spp. display high frequencies of gene exchange with other enteric bacteria
(see, e.g., reference 24). Interestingly, two of the detected outliers include species
previously observed to exhibit high intragenome 16S rRNA diversity (but relatively even
higher genomic diversity that resulted in these species being outliers): Borrelia afzelii (�
Borreliella afzelii) and Escherichia coli (22). Borreliella afzelii (and other species in the
Borreliella genus) typically present a linear chromosome with 2 copies of the 16S rRNA
gene (one pseudogenized), with about 80% identity between them (22, 25). In such
cases, whole-genome comparisons are more appropriate for cataloguing differences
among closely related populations with accelerated or constrained mutation rates (see
also below) that reflect distinctive ecologic and evolutionary strategies, and these are
not captured by 16S rRNA gene differences.

Only the genus Brucella was observed to have an abnormally low OTU ratio, i.e.,
higher average genome-wide conservation than 16S rRNA gene conservation. All ANI
values within the genus are above 97.4%, generating a single OTUANI�95%, while most
16S rRNA gene identities are above 99.3%, with only the two genomes from yet-
unnamed species displaying 96.0 to 96.3% identity to the rest of the set, resulting in
two OTU using a 16S rRNA gene threshold of 98.5%. The Brucella genus is composed
of facultative intracellular pathogens causing brucellosis, with genomes typically com-
posed of two chromosomes of about 2.1 and 1.2 Mbp in length (26). The genus-wide
intracellular lifestyle typically with host-species specificity may have served as a barrier
for horizontal gene transfer (HGT), and only scarce HGT events have been identified
(26). This barrier, combined with genome streamlining typical of intracellular parasites,
could have resulted in high genome-wide sequence conservation not necessarily
affecting the 16S rRNA gene mutation and fixation rates.

Finally, we explored the effect that small OTU counts (few total OTUs in a collection)
could have on OTU ratios, as well as the effect that small OTUs (OTUs with few
genomes) could have on OTU counts. As expected, smaller OTU counts caused a larger
dispersion (by chance) on OTUANI�95%-to-OTU16S�98.5% ratios (Fig. 4 and 5, leftmost
data points). However, when collating all different data sets, we observed that the ratio
tended toward a value of �1 (around 1.2) when collections with more OTUs were
considered (Fig. 5, rightmost data points), indicating that a 95% ANI consistently
recovers a larger number of OTUs than a 16S rRNA gene cutoff of 98.5% (Fig. 5A and
B). A special case of OTUs to receive attention is singletons (OTUs with only one
member), because they are more likely to reflect incorrect assignment (e.g., due to
sequencing errors). Hence, we also evaluated the effect that removing singleton OTUs
as well as OTUs with fewer than 10 genomes would have on the observed OTUANI�95%-
to-OTU16S�98.5% ratios. As expected, the density of the data was significantly impacted,
but we noted no effect on the general trend toward an OTUANI�95%-to-OTU16S�98.5%

ratio of �1 (Fig. 5C and D).
Conclusions. Knowing the number of species in an ecological system (i.e., species

richness) is of fundamental importance for understanding community structure and its
value. The results presented here provided a guide, and an associated genome-based
methodology, to more reliably estimate the number of taxa or OTUs present. In
particular, we identified taxa with strong biases (underestimation) in the 16S rRNA
gene-derived estimation of richness, including groups with high intragenome 16S rRNA
gene variation, such as Escherichia and Borreliella, and groups with high frequency of
genome-wide recombination, such as Campylobacter and Citrobacter. Our results also
suggest that previous 16S rRNA gene-based estimates of the number of prokaryotic
species on Earth (10, 15) should be considered lower-boundary estimates, likely un-
derestimating richness by at least 10 to 15%, although the exact percentage would
depend on the genera living in particular habitats (e.g., see Fig. 4). As the technologies
to recover hundreds to thousands of metagenome-derived genomes and single-cell
amplified genomes from individual or collection series samples become more routine
in the not-so-distant future (see, e.g., references 27–30), the genome-based method-
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ology outlined here is also expected to become more relevant and provide more
accurate estimates of species richness in nature.

MATERIALS AND METHODS
Source genomes. A total of 8,350 complete genomes were retrieved from the NCBI Genome

database Prokaryotic section (NCBI-Prok) on 17 April 2017 (see https://www.ncbi.nlm.nih.gov/genome)
using the automated retrieval features of the Microbial Genomes Atlas (MiGA) (see http://microbial
-genomes.org/ and https://github.com/bio-miga/miga). In addition, a high-quality collection of 1,689
reference genomes sampling mostly different species was retrieved from the NCBI RefSeq database (31). The
identity matrices used in this study are available online (http://enve-omics.ce.gatech.edu/data/ani-16s), and
the up-to-date collections are also available on the MiGA website (http://microbial-genomes.org/).

Comparisons between estimations of relatedness. The 16S rRNA gene identification and
extraction, ANI estimations, and matrix construction were executed as implemented in MiGA (see

FIG 5 Effect of number of genomes within an OTU on OTU ratio estimates. (A) The number of OTU16S�98.5% (x axis) is lesser than or equal to the number of
OTUANI�95%, with only few examples of the opposite trend mostly from small sets (5 or fewer OTUANI�95%; diagonal line indicates a 1:1 relationship, or OTU ratio
of 1.0). The remaining panels show the OTU ratios (y axis) per number of OTUANI�95% (B), number of OTUANI�95% excluding singletons (i.e., with 2 or more
genomes) (C), and number of OTUANI�95% with 10 or more genomes (x axes) (D). The colors indicate the type of genome collection used: NCBI-Prok (red), RefSeq
(blue), phylum-/class-level subsets (green), or genus-level subsets (black). Lighter dots, mostly overlapping and forming clouds of the corresponding data set
color, indicate bootstrapped values. Note that the three distributions in panels B to D are not substantially different from each other.
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https://github.com/bio-miga/miga). Briefly, for each genome, the longest 16S rRNA gene was identified
and extracted using Barrnap (see https://github.com/tseemann/barrnap) and BEDTools (32). For every
genome pair with an average amino acid identity (AAI) of �80%, the ANI was estimated using aai.rb and
ani.rb from the Enveomics Collection (33). The identity between 16S rRNA gene sequences was estimated
using the Needleman-Wunsch algorithm for global sequence alignment as implemented in Needle from
EMBOSS (34). Regions V4 and V6 of the 16S rRNA gene sequences were identified with V-Xtractor (35),
with Escherichia coli (accession no. U00096) coordinates 588 and 674 and 994 and 1046 for Bacteria,
respectively, and Archaeoglobus fulgidus (accession no. X05567) coordinates 538 and 706 and 932 and
995 for Archaea, respectively. The same method to determine identity was applied. Taxonomic selections
were made using the NCBI Taxonomy database as imported by MiGA. Bootstrapping was performed by
selecting at random with replacement a number of genomes equal to the total collection size and
reconstructing the relatedness matrices 1,000 times. Comparisons between 16S rRNA gene identity and
ANI thresholds were performed using the F1 score and accuracy, taking an ANI of �95% as the standard.
The F1 score is defined as the harmonic mean of precision and recall:

F1 �
2

recall�1 � precision�1

where recall is defined as the number of true positives (pairs where ANI is �95% and 16S rRNA gene
identity is greater than or equal to the test threshold) divided by the number of condition positives (pairs
where ANI is �95%), and precision is defined as the number of true positives (as described above)
divided by the number of prediction positives (pairs where 16S rRNA gene identity is greater than or
equal to the test threshold). Accuracy is defined as the sum of true negatives (pairs where ANI is �95%
and 16S rRNA gene identity is less than the test threshold) and true positives, divided by the total
population (number of pairs in the collection).

OTU construction. Operational taxonomic units (OTUs) were identified from sparse identity matrices
of ANI (filtered at 95%) or 16S rRNA (filtered at different thresholds) using the Markov clustering
algorithm (MCL) (see https://micans.org/mcl/) with ogs.mcl.rb from the Enveomics Collection (33). The
OTU ratio was defined as the number of OTUs formed by ANI divided by the number of OTUs formed
by 16S rRNA gene identities. To provide a reference of the dispersion derived from count statistics alone,
the OTU ratios for particular genera were compared against the statistic (n � x)/(x � 1) as a null model,
where n is the number of genomes in the comparison and x is a random variable following the binomial
distribution with n � 1 trials and 0.5 probability of success. OTU clustering from 16S rRNA gene identities
was compared to that from 95% ANI using the raw and adjusted Rand index values (36, 37), as
implemented by clust.rand.rb from the Enveomics collection (33). The Rand index (RI) measures the
similarity of two clusterings of the same data set by evaluating the numbers of pairs cooccurring on each
clustering. The adjusted Rand index (ARI) adjusts this measure by the probability of clustering by chance,
assuming a generalized hypergeometric distribution.
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