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ABSTRACT Aerobic methanotrophs have long been known to play a critical role in
the global carbon cycle, being capable of converting methane to biomass and car-
bon dioxide. Interestingly, these microbes exhibit great sensitivity to copper and
rare-earth elements, with the expression of key genes involved in the central path-
way of methane oxidation controlled by the availability of these metals. That is,
these microbes have a “copper switch” that controls the expression of alternative
methane monooxygenases and a “rare-earth element switch” that controls the ex-
pression of alternative methanol dehydrogenases. Further, it has been recently
shown that some methanotrophs can detoxify inorganic mercury and demethylate
methylmercury; this finding is remarkable, as the canonical organomercurial lyase
does not exist in these methanotrophs, indicating that a novel mechanism is in-
volved in methylmercury demethylation. Here, we review recent findings on metha-
notrophic interactions with metals, with a particular focus on these metal switches
and the mechanisms used by methanotrophs to bind and sequester metals.
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Aerobic methane-oxidizing bacteria, i.e., methanotrophs, are an intriguing group of
microorganisms that utilize methane as their sole source of carbon and energy.

There is great interest in these microbes, as they (i) are found wherever methane-air
interfaces develop, (ii) are phylogenetically diverse, (iii) play important roles in the
global carbon cycle, (iv) have been extensively used for the biodegradation of haloge-
nated hydrocarbons, and (v) have great potential in promoting sustainability by
valorizing methane to biofuels, bioplastics, and osmoprotectants, among other prod-
ucts (1–5).

Remarkably, aerobic methanotrophs exhibit multiple “metal switches,” where gene
expression is controlled by the availability of metals, particularly copper and rare-earth
elements. Further, methanotrophs have been recently shown, via the involvement of
the chalkophore methanobactin, to alter the speciation and availability of other metals,
including mercury. In this minireview, we provide an overview of how metals affect
aerobic methanotrophy, as well as the potential applications of methanotrophy.

OVERVIEW OF METHANOTROPHY

Aerobic methanotrophs are commonly found at oxic-anoxic interfaces of terrestrial,
marine, and freshwater environments where they feed on methane produced by
methanogens in anoxic zones (6). Methanotrophs can also thrive in extreme environ-
ments, including those that are acidophilic, alkaliphilic, thermophilic, or psychrophilic
(2, 7–14). Finally, methanotrophs have been isolated from the phyllosphere (15–18),
indicating that they are widespread in nature.

Most aerobic methanotrophs group with either the Alphaproteobacteria or Gamma-
proteobacteria, now with more than 20 genera combined in the two classes (Fig. 1).
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Recently, however, the isolation of thermoacidophilic methanotrophs that represented
distinct lineages within the Verrucomicrobia phylum has been reported, i.e., the Methy-
lacidiphilum and Methylacidimicrobium genera (2, 7, 8, 11, 14, 19). Another novel
methanotroph is “Candidatus Methylomirabilis oxyfera” (belonging to the bacterial
NC10 phylum), which has the unique ability to couple methane oxidation to nitrite
reduction, and in so doing generate dioxygen required for the initial turnover of
methane to methanol (20).

Despite the broad phylogenetic and environmental distribution of aerobic metha-
notrophs, the pathways employed by these microbes are remarkably similar, with four
general steps, as shown in Fig. 2. Methane is first converted to methanol by methane
monooxygenase (MMO), which is then oxidized to formaldehyde by methanol dehy-
drogenase (MeDH). Formaldehyde can then be converted to formate via either the
tetrahydrofolate or tetrahydromethanopterin pathway and then can be oxidized to
carbon dioxide by formate dehydrogenase. Most aerobic methanotrophs take up
carbon at the level of formaldehyde via either the ribulose monophosphate or serine
cycle (5). Some methanotrophs, however, do not utilize either pathway for carbon
assimilation. Rather, some methanotrophs fix carbon dioxide via the Calvin-Benson-
Bassham (CBB) cycle, i.e., Methyloacidiphilum fumariolicum SolV, Methylacidimicrobium
spp., and “Candidatus Methylomirabilis oxyfera” (19, 21, 22). Interestingly, genomes of
some Proteobacteria methanotrophs have been found to encode the complete CBB
cycle, e.g., Methylococcus capsulatus Bath, Methylocapsa palsarum, and Methyloferula
stellata (23–25). These microbes, however, apparently cannot solely utilize the CBB
pathway for carbon assimilation.

ELUCIDATION OF THE COPPER SWITCH IN METHANOTROPHS AND MECHANISM
OF COPPER UPTAKE

Two distinct forms of MMO have been characterized: a cytoplasmic or soluble
methane monooxygenase (sMMO) and a membrane-bound or particulate methane

FIG 1 Phylogenetic distribution of aerobic methanotrophic genera. 16S rRNA sequence alignment was generated
using the SILVA aligner (164) and used to construct a maximum likelihood tree based on the Tamura-Nei model
in MEGA7 (165). For the sake of brevity, methanotrophic species are not listed. For a thorough list/description of
validated aerobic methanotrophic species, the reader is directed to reference 6. It should be noted that to date, no
type strains have been isolated/purified from the Clonothrix, Crenothrix, or Methylomirabilis genus.
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monooxygenase (pMMO). Some methanotrophs can express both forms of MMO, while
others can only express pMMO, and some only have sMMO (Table 1). For those
methanotrophs that can express both sMMO and pMMO, the expression of these forms
is controlled by the availability of copper, i.e., the canonical “copper switch” (26). Under
copper-deficient conditions, these methanotrophs will express sMMO, but as copper-
to-biomass ratios increase, sMMO expression decreases substantially and pMMO ex-
pression increases. sMMO and pMMO have very different substrate ranges and kinetics;
thus, it is important to understand the basis of the copper switch to exert greater
control over methanotrophic activity. For example, pMMO has higher affinity for CH4,

FIG 2 General pathway of methane oxidation by aerobic methanotrophs. Enzymes are noted in red. pMMO,
particulate methane monooxygenase; sMMO, soluble methane monooxygenase; Xox-MeDH, Xox-methanol dehy-
drogenase; Mxa-MeDH, Mxa-methanol dehydrogenase; Fae, formaldehyde-activating enzyme; H4MPT, tetrahydro-
methanopterin; MtdB, NADP-dependent methylene-H4MPT dehydrogenase; Mch, methenyl-H4MPT cyclohydrolase;
Fhc, formyltransferase-hydrolase complex; H4F, tetrahydrofolate; MtdA, NADP-dependent methylene-H4F–
methylene-H4F dehydrogenase; FchA, methenyl H4F-cyclohydrolase; FtfL, formate tetrahydrofolate ligase; FaDH,
formate dehydrogenase; CBB, Calvin-Benson-Bassham; RuMP, ribulose monophosphate.

TABLE 1 Distribution of methane monooxygenases, methanol dehydrogenases, and methanobactin in select methanotrophs as
determined via genomic interrogation for pmoA, mmoX, mxaFI, xoxF, and mbnBC

Phylum or class Family Strain (GenBank accession no.) pMMO sMMO Mxa-MeDH Xox-MeDH MB

Gammaproteobacteria Methylococcaceae Methylobacter tundripaludum SV96 (NZ_AEGW00000000) Yes No Yes Yes No
Methylocaldum szegediense O-12 (NZ_ATXX00000000.1) Yes No Yes Yes No
Methylococcus capsulatus Bath (NC_002977.6) Yes Yes Yes Yes No
Methylogaea oryzae JCM 16910 (NZ_BBDL00000000.1) Yes No Yes Yes No
Methyloglobulus morosus KoM1 (NZ_AYLO00000000.1) Yes No Yes Yes No
Methylomarinum vadi strain IT-4 (JPON01000001.1) Yes No Yes Yes No
Methylomagnum ishizawai strain 175 (FXAM00000000.1) Yes Yes Yes Yes No
Methylomicrobium album BG8 (AFJF00000000.2) Yes No Yes Yes No
Methylomicrobium buryatense 5G (AOTL00000000.1) Yes Yes Yes Yes No
Methylomonas sp. LW13 (JNLB00000000.1) Yes Yes Yes Yes No
Methylomonas denitrificans FJG1 (CP014476.1) Yes No Yes Yes No
Methylosarcina fibrata AML-C10 (ARCU00000000.1) Yes No Yes Yes No
Methyloprofundus sedimenti strain WF1 (LPUF00000000.1) Yes No Yes Yes No
Methyloterricola oryzae strain 73a (JYNS00000000.1) Yes No Yes Yes No
Methylovulum miyakonense HT12 (AQZU00000000.1) Yes Yes Yes Yes No

Methylothermaceae Methylohalobius crimeensis 10Ki (ATXB00000000.1) Yes No Yes Yes No

Alphaproteobacteria Beijerinckiaceae Methylocapsa acidiphila B2 (ATYA00000000.1) Yes No Yes Yes No
Methylocella silvestris BL2 (NC_011666.1) No Yes Yes Yes No
Methyloferula stellata AR4 strain AR4T (ARWA00000000.1) No Yes Yes Yes No

Methylocystaceae Methylocystis sp. strain SC2 (NC_018485.1) Yes No Yes Yes Yes
Methylocystis sp. strain LW5 (JMKQ00000000.1) Yes Yes Yes Yes Yes
Methylosinus trichosporium OB3b (ADVE00000000.2) Yes Yes Yes Yes Yes

NC10 Unclassified “Candidatus Methylomirabilis oxyfera” (NSJN00000000.1) Yes No Yes Yes No

Verrucomicrobia Methylacidiphilaceae Methylacidiphilum fumariolicum SolV (CAHT00000000.1) Yes No No Yes No
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while sMMO has a higher maximum CH4 turnover rate (27). sMMO also has a wider
substrate range, being able to oxidize alkanes up to C8, as well as ethers, cyclic alkanes,
and aromatic hydrocarbons (28, 29). pMMO can oxidize alkanes up to C5 but not
aromatic compounds (29). Thus, when applying methanotrophs for the bioremediation
of organic pollutants, one must carefully consider what compound(s) is (are) to be
degraded. One must also consider long-term methanotrophic viability, as these pol-
lutants typically cannot support methanotrophic growth. Methanotrophs expressing
pMMO can be more advantageous than those expressing sMMO for pollutant degra-
dation, i.e., as pMMO has greater specificity for CH4, it is more effective at turning over
the growth substrate (methane) in the presence of nongrowth substrates (i.e., pollut-
ants). These nongrowth substrates are still oxidized, albeit at a lower rate (27, 30). As
such, for some pollutants, it is more appropriate to utilize pMMO-expressing metha-
notrophs, as these cultures have greater activity over time due to the continued
turnover of the growth substrate, methane. Therefore, long-term bioremediation strat-
egies using methanotrophs should carefully consider what pollutant(s) is (are) to be
targeted and provide growth conditions to ensure that the appropriate MMO is being
expressed.

The copper switch can be explained in part from the metal composition of the two
forms of MMO. sMMO is a soluble di-iron monooxygenase and is composed of a
hydroxylase, reductase, and a regulatory subunit encoded by the mmo operon. Meth-
ane oxidation occurs at a bis-�-hydroxo-bridged di-iron center within the hydroxylase
(31). pMMO, on the other hand, is an integral membrane metalloenzyme composed of
three polypeptides arranged in an �3�3�3 trimer (32–35) and is encoded by the pmo
operon. There is some argument as to the active site of pMMO, with several competing
models. One model proposes that methane oxidation occurs at a di-copper site in
PmoB (the � subunit of pMMO [36]). Abiotic synthesis of a high-valent bis(�-oxide)
di-copper (III) complex structurally similar to the proposed di-copper site indicates that
it may indeed be capable of oxidizing C-H bonds, with bond dissociation energies on
the order of 75 kcal · mol�1 (37), but this is less than the bond dissociation energy of
the C-H bond in methane (104 kcal · mol�1). Alternatively, density functional theory
(DFT) and quantum mechanic/molecular mechanic (QM/MM) analyses suggest that
mixed-valent bis(�-oxo)Cu(II)Cu(III) and (�-oxo)(�-hydroxo)Cu(II)Cu(III) complexes
could abstract a hydrogen from methane (38). Although Cu(III) has yet to be observed
in a metalloenzyme, Cu(III)O2 complexes are common in synthetic chemistry (39)
suggesting that it may be biologically possible. Residues for the di-copper site model,
however, are not found in some pMMO sequences, e.g., verrucomicrobial pMMOs (40),
and acetylene, a well-known suicide inhibitor of pMMO labels PmoA, not PmoB (41),
suggesting that methane oxidation may not occur at this site. Another model proposes
that the active site in pMMO is a tricopper Cu(II)Cu(II)(�-O)2Cu(III) complex site coor-
dinated by residues from PmoA and PmoC (the �- and �-subunits, respectively [42]). In
support of this hypothesis, the proponents of this model show that model tricopper
complexes can oxidize methane to methanol (43). A third model, based on Mössbauer
spectroscopy coupled with activity measurements and metal analyses of purified
pMMO, suggests that a di-iron site, similar to that found in sMMO and coordinated by
residues from PmoA and PmoC, is responsible for methane oxidation (44). In support of
this argument, it has been found that mutations of the predicted ligands of this site in
the very similar membrane-bound hydrocarbon monooxygenase of Mycobacterium
NBB4 abolished its activity (40).

Despite the dispute as to the exact composition of the active site of pMMO, it is
generally agreed that copper is an essential component of the enzyme, as there is an
additional metal-binding site in PmoB that contains a single copper (45–52). In fact,
some evidence suggests that this may play an important role in methane oxidation,
e.g., DFT and QM/MM studies indicate that dioxygen could be incorporated with Cu(I)
to ultimately create a Cu(III)-oxo species that could convert methane to methanol (53).
Further, single copper sites have been shown capable of oxidatively cleaving glycosidic
bonds (54, 55), suggesting that a similar mechanism could be used to oxidize methane.
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Given the potential widespread industrial application of a biomimetic catalyst capable
of converting methane to methanol under ambient pressures and temperatures, there
is a great deal of interest in delineating how pMMO oxidizes methane. It is clear,
however, that more work must be pursued in characterizing this intriguing enzyme to
achieve that goal.

Characterization of methanobactin, a novel copper binding molecule, or chalko-
phore. Methanotrophs clearly respond to copper, and as such, these microbes must
have some mechanism to sense and collect copper from the environment. Initial
evidence for such machinery came from the characterization of constitutive sMMO
mutants (sMMOC) of Methylosinus trichosporium OB3b constructed using random chem-
ical mutagenesis (56, 57). These mutants had impaired copper uptake compared to the
M. trichosporium OB3b wild type, suggesting that methanotrophs can synthesize a
copper-complexing agent, or chalkophore (“chalko” is Greek for “copper”). Subse-
quently, this chalkophore was isolated, purified, and characterized from M. trichospo-
rium OB3b (58). This chalkophore, called methanobactin (MB), was found to be a
modified polypeptide containing two oxazolone rings with associated thioamide
groups that collectively are responsible for copper binding with extremely high affinity
(reported binding constants range from 1018 to 1058 M�1 and vary depending on the
solution conditions and method used to determine affinity [59–64]). Subsequently, MBs
have been characterized from five other methanotrophs, all grouping in the Alphapro-
teobacteria (59, 65, 66). All these forms are small (�1,300 Da) but can be divided into
two general groups (Fig. 3). Group I MBs have two oxazolone groups, while those in
group II have a C-terminal oxazolone ring, with the other ring being either an imida-
zolone or a pyrazinedione moiety. Group I MBs contain Cys residues in the mature
peptide, while those in group II do not. Additionally, a sulfate group is not found in
group I MBs but is present in all structurally characterized group II MBs (59, 64, 65).

Biosynthesis and genetics of methanobactin. Given the unique structure of MB,
it was initially speculated that it was synthesized via a nonribosomal peptide synthase
(67). However, our subsequent work showed that it was a ribosomally synthesized and
posttranslationally modified peptide, with the gene encoding the precursor polypep-
tide, mbnA, part of a cluster that includes genes either known or suspected to be
involved in MB regulation, synthesis, secretion or uptake (Fig. 4). Upstream of mbnA is

FIG 3 Representative primary structures of group I (A) and group II (B) MBs. MBs from M. trichosporium OB3b (A) and Methylocystis
strain SB2 (B) are shown (65, 166). *, Met7 and Thr5 are absent in a fraction of MB from M. trichosporium OB3b and Methylocystis strain
SB2, respectively (59, 167). Loss of these amino acids does not change metal-binding affinity.
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mbnT, encoding a TonB-dependent transporter that we have shown is responsible for
MB uptake (68). Further upstream are mbnR and mbnI, encoding a putative membrane
sensor and an extracytoplasmic function sigma factor, respectively, that might play a
regulatory role in MB biosynthesis. Downstream of mbnA in M. trichosporium OB3b are
several other genes (mbnBCMNPH) that are known or suspected to be involved in the
biosynthesis of MB from the precursor peptide or in MB secretion.

The sequence of mbnB suggests both an S-adenosyl-L-methionine-dependent meth-
yltransferase and a triphosphate isomerase (TIM)-barrel domain (as predicted by Phyre2
[69]). This suggests that MbnB may have lyase, hydrolase, methyltransferase, and/or
isomerase activity (70, 71). The sequence of mbnC includes the ligase domain of
phosphoribosylformylglycinamidine synthase, as well as a flavodoxin-like fold (72).
Consistent with this homology, mbnC may be required for the formation of one or both
of the heterocyclic rings. mbnM encodes a multidrug and toxin extrusion (MATE)
protein and may be responsible for MB secretion (64, 65, 73, 74). mbnN is annotated as
an aminotransferase that we have shown is critical for the formation of one of the two
oxazolone rings in MB of M. trichosporium OB3b (75). mbnH encodes a MauG type
di-heme cytochrome c peroxidase. In methylotrophic bacteria capable of growth on
methylamine, MauG is required for the oxidative modification of two tryptophans into
the cofactor tryptophan tryptophylquinone found in methylamine dehydrogenase
(76–80). No methylamine dehydrogenase-like gene is present in the M. trichosporium
OB3b genome (data not shown). Given this and the location of MbnH in the MB-OB3b
operon, it appears that MbnH may be involved in oxidative step(s) required for ring
formation (64). Its partner protein, MbnP, is a metallo-mystery 4-Cys motif protein.

It is difficult to predict using mbnA sequences if any particular microbe has the
potential to produce MB; rather, interrogation of genomes for mbnBC is much more
informative. Using these genes as markers (although, to date, only five forms of MB
have been structurally characterized), bioinformatic analyses indicate that other metha-
notrophs in the Alphaproteobacteria as well as some nonmethanotrophs have genes for
MB biosynthesis (Table 1) (65, 73, 74, 81). Such findings suggest that MB production
may be more extensive than currently known.

Genetic basis for the copper switch. The mmo operon is composed of six genes,
mmoXYBZDC. Of these genes, mmoXYBZC are known to encode peptides of hydroxy-
lase, reductase, and regulatory protein, but the function of mmoD was unknown for
many years. Characterization of the sMMO minus deletion mutant (SMDM), where the
mmoXYBZDC genes were knocked out in M. trichosporium OB3b (82), found that the
copper switch was inverted compared to the wild type (74). It was thus proposed that
MmoD plays a critical role in the copper switch. This conclusion was further supported
by others that found an mmoD deletion mutant in Methylomicrobium buryatense had no
sMMO activity in the absence of copper (83). It should be stressed, however, that
although MmoD plays an important role in the copper switch, it is likely that additional
elements exist (64, 74). For example, it appears that MB serves to amplify the magni-
tude of the copper switch (74). Further, two genes, mmoR and mmoG, have been shown
to play key roles in the regulation of expression of the mmo operon and that some sort

FIG 4 Methanobactin gene cluster from M. trichosporium OB3b. ECF, extracytoplasmic function.
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of complex may be formed between the products of these genes with methanobactin
and/or MmoD. It is also possible that the putative regulatory genes associated with
methanobactin, mbnI and mbnR, may play a role in the copper switch. These hypoth-
eses must be treated cautiously, however, as no experimental data have been pre-
sented to support them.

Whole-cell transcriptome response to copper. Recently, the transcriptome of M.

trichosporium OB3b was characterized in the presence and absence of copper with the
objective of determining how broadly copper affected gene expression in metha-
notrophs, and of identifying additional elements of the copper switch (84). When M.
trichosporium OB3b was grown in the presence of 10 �M copper, approximately 100
genes were found to be either significantly up- or downregulated compared to when
no copper was added. As expected, this included genes encoding polypeptides of
sMMO and pMMO, as well as several putative transcriptional regulators that were
significantly repressed in the presence of copper. We speculate that these putative
regulatory elements may be involved in the copper switch, but this has yet to be
shown.

Other genes were also found to be differentially expressed with respect to copper,
including many genes involved in copper homeostasis, indicating that methanotrophs
must carefully control copper speciation and distribution to limit the toxicity of copper.
For example, it was found that in M. trichosporium OB3b, the expression of genes
involved in MB transport and synthesis were repressed when copper was present (84).
Additionally, two genes encoding recently identified copper storage proteins, Csp1 and
Csp2 (85, 86), as well as cusA, encoding a copper efflux system (87), were significantly
upregulated in the presence of copper. Such findings indicate careful regulation of
copper uptake by M. trichosporium OB3b (84). Similar results have been reported for M.
capsulatus Bath, with differential expression of c-type cytochromes associated with the
cell surface observed, suggesting that these may play a role in copper homeostasis for
this methanotroph (88, 89). Thus, although copper is very important in methanotrophic
metabolism, its speciation and distribution must be carefully controlled to limit its
inherent toxicity, e.g., its high redox activity and binding to iron-sulfur cluster sites
(90, 91).

IMPLICATIONS OF METHANOBACTIN-METAL INTERACTIONS
Microbial competition for copper is regulated by methanobactin. Given that

methanobactin binds copper with extraordinarily high affinity, Chang et al. (92) hy-
pothesized that methanotrophs, through the production of methanobactin, could
effectively “starve” other microbes for copper. Specifically, denitrifying microbes also
require substantial amounts of copper for the activity of the nitrous oxide reductase
NosZ (93). If this hypothesis is correct, denitrifiers when incubated in the presence of
MB would not completely reduce nitrate to dinitrogen; rather, nitrous oxide would be
the terminal product. Indeed, when axenic cultures of the denitrifier Pseudomonas stutzeri
DCP-Ps1 were examined, very small and transient amounts of N2O were observed (�0.01%
of added NO3

�). When P. stutzeri DCP-Ps1 was incubated either in the presence of M.
trichosporium OB3b or purified MB from this methanotroph (MB-OB3b), all added NO3

�

was converted to N2O, with no further reduction (92). Further, when P. stutzeri DCP-Ps1
was incubated in the presence of a mutant of M. trichosporium OB3b incapable of
expressing MB, N2O production trends were identical to those of axenic cultures of P.
stutzeri DCP-Ps1. Similar findings were found with three other denitrifiers that express
NosZ (92). As methanotrophs and denitrifiers can and do spatially overlap in the
environment, these findings indicate that competition for copper may significantly affect
net greenhouse gas emissions in situ. That is, the substrates for aerobic methanotrophs
are CH4 and O2 that diffuse toward the oxic-anoxic interface from opposite ends of the
oxygen gradient. As a result, the largest abundance of methanotrophs is often found at
the oxic-anoxic interfaces in subsurface environments (94, 95) that are also often a “hot
spot” for soil denitrification (96).
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In addition, copper competition between methanotrophs and other microbes may
limit the activity of other copper-dependent enzymes, e.g., the nitrite reductase NirK
and ammonia monooxygenase (93, 97). Indeed, it has been found that methanobactin
can inhibit the activity of NirK in Shewanella loihica (92). Additional work in this area is
clearly warranted.

Methanobactin can bind and detoxify mercury. Methanobactin from M. tricho-
sporium OB3b (MB-OB3b) and Methylocystis strain SB2 (MB-SB2) will bind, in addition to
Cu(II), Hg(II), and do so irreversibly, even in the presence of copper (98, 99). Such
irreversible binding appears to be due to the rapid binding of Hg(II), i.e., when we
attempted to measure the kinetics of Hg(II) binding by MB-OB3b, over 90% of the Hg(II)
added was bound during the 1.8-ms dead time of the stopped flow reactor, and the
remaining 10% had an observed binding rate of 640 � 43 · s�1 (98). Not only was Hg(II)
found to be quickly and irreversibly bound by MB-OB3b, it substantially reduced the
toxicity of Hg(II) to M. trichosporium OB3b, as well as to other methanotrophs; i.e.,
methanobactin can act as a general prophylactic and protect the broader microbial
community from the toxic effects of mercury. In the case of MB-SB2, Hg(II) binding rates
were �2,000 · s�1, and Hg(II) could displace Cu(I) from the MB-SB2-Cu complex (99).

We have also shown methanobactin can bind methylmercury (99), suggesting that
methanobactin can also control its bioavailability. Indeed, we have found that M.
trichosporium OB3b takes up and degrades methylmercury (100). This is surprising, as
merB, encoding organomercurial lyase, is not present in the genome of M. trichosporium
OB3b, indicating that this strain uses another mechanism to demethylate methylmer-
cury. It should also be noted that M. trichosporium OB3b degraded methylmercury at
concentrations commonly found in the environment, e.g., nanomolar concentrations
(100). MerB has a much weaker affinity for methylmercury (Km of 500 �M) (101), and as
a result, methanotroph-mediated methylmercury degradation may have great environ-
mental significance.

Not all methanotrophs, however, can degrade methylmercury. Specifically, Methy-
lococcus capsulatus Bath was found to sorb substantial amounts of methylmercury, but
it did not degrade it. Genes encoding methanobactin biosynthesis are not found in M.
capsulatus Bath. Rather, M. capsulatus Bath relies on a surface-bound protein with a
tryptophan converted to a kynurenine (MopE) and a secreted form of it (MopE*) for
copper binding (102–105). It thus appears that methylmercury degradation by metha-
notrophs requires that the cells first express methanobactin. This hypothesis was tested
by examining methylmercury degradation by Methylocystis strain SB2 (capable of
expressing MB) as well as two mutant strains of M. trichosporium OB3b defective in
methanobactin production. Methylocystis strain SB2 degraded methylmercury, whereas
MB-defective strains did not, showing that MB is required for methanotrophic-mediated
methylmercury degradation. Methanobactin, although necessary, is not sufficient for
methylmercury degradation by methanotrophs. When methylmercury was incubated
with purified MB-OB3b, no appreciable methylmercury degradation was observed
(100). This suggests that methanobactin served as a means of bringing methylmercury
into the cell, where it is degraded by an as-yet-unknown mechanism.

FUNCTION OF RARE-EARTH ELEMENTS IN METHANOTROPHS

It is well known that microbial physiology requires a broad suite of metals, but some
metals historically have been viewed as having little if any biological relevance. Prime
examples of such metals are the rare-earth elements. These metals, despite being
characterized as rare, are actually quite abundant in Earth’s crust, e.g., the average
abundance of cerium is 66 �g · g�1, similar to that for zinc and copper (106). These
elements, however, are typically found in extremely insoluble forms, e.g., oxides, sulfides,
carbonates, and phosphates (107). Given their poor solubility, the lack of any identified
biological mechanisms for uptake, and the fact that they had no established biological
function, it was commonly presumed that these elements were nonessential. Despite this
prevailing dogma, studies from as early as 1961 showed that some microbes could
sequester large amounts of some of these metals (108). Further, it was speculated over
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10 years ago that enzymes containing rare-earth elements would be catalytically
superior to enzymes containing chemically similar calcium, as rare-earth elements are
much stronger Lewis acids than calcium and thus are likely much more efficient
catalysts for hydrolysis (109).

REEs and methanol dehydrogenase. Methanol oxidation is carried out by meth-
anol dehydrogenase (MeDH). Initial characterization of MeDH found it to be a hetero-
tetramer composed of two subunits, the large subunit MxaF (65 kDa) and the small
subunit MxaI (8.5 kDa). MxaF contains pyrroloquinoline quinone (PQQ) and Ca2� as
catalytic cofactors (110–113). Subsequently, a homolog to mxaF, termed xoxF, was
found in the methylotrophs Paracoccus denitrificans and Methylobacterium extorquens
AM1 (114, 115). A sequence comparison revealed that most amino acid residues
involved in PQQ and calcium binding in mxaF were conserved in xoxF, indicating that
it was likely involved in methanol oxidation (114, 116). Early mutagenesis studies of
xoxF in methylotrophs, however, showed either no effect or some reduction in growth
on methanol (115, 116), presumably due to the coexistence of mxaF in the microbes
examined. The deletion of xoxF in Rhodobacter sphaeroides, however, caused the resulting
mutant to be unable to grow on methanol, as R. sphaeroides does not have mxaF, showing
that Xox-MeDH is a true MeDH (117).

Despite this clear finding, characterization of Xox-MeDH was initially quite challeng-
ing, as its expression was typically very low, and active preparations were difficult,
if not impossible, to create (118, 119). A critical breakthrough in the characterization of
Xox-MeDH came from the observation that its activity was dependent on the presence
of REEs (120–123). Specifically, Xox-MeDH activity increased �5- to 10-fold with addi-
tion of lanthanum in the growth medium of the methylotrophs Methylobacterium
radiotolerans and Methylobacterium extorquens AM1 (120, 122). Further, purified Xox-
MeDH from M. extorquens AM1 was found to predominantly contain lanthanum (122).
Subsequently, it was discovered that growth of the acidophilic methanotroph Methy-
lacidiphilum fumariolicum SolV, which can express Xox-MeDH but not Mxa-MeDH, was
strictly dependent on the addition of REEs, with growth stimulated the greatest with
“light” REEs (i.e., lanthanum, cerium, praseodymium, and neodymium). As found in
M. extorquens AM1, purified Xox-MeDH from M. fumariolicum SolV also contained a
rare-earth element (123).

In rapid succession, a number of papers documented that the expression of Mxa-
MeDH and Xox-MeDH in a variety of methanotrophs and methylotrophs was strongly
dependent on the availability of REEs, primarily light REEs (124–128). In the absence of
REEs, little expression of xox genes was observed, while the expression of mxa genes
was high. In the presence of REEs, however, the expression of xox genes increased
significantly, while the expression of mxa genes decreased. That is, in addition to the
copper switch controlling the expression of pMMO/sMMO, there is an “REE switch”
regulating the expression of Mxa-MeDH/Xox-MeDH. These switches appear to have
some overlap, with the copper switch capable of “overriding” part of the REE switch in
at least one methanotroph. Specifically, when M. trichosporium OB3b was grown in the
presence of copper, little repression of mxaF expression by REEs was observed, al-
though substantial (�2 orders of magnitude) repression was observed when REEs were
added in the absence of copper. The expression of xoxF, however, was not significantly
different when REEs were added in the absence or presence of copper (125).

Microbial uptake of REEs. Although REEs clearly are taken up (as evidenced by the
response of many methanotrophs and methylotrophs to these metals), the mecha-
nism(s) is (are) unknown. Such uptake is particularly challenging, for as noted earlier,
REEs are noted by their very low dissolution in water, e.g., CePO4 has a solubility of
10�23 g per 100 g of water (129). Nonetheless, there are several possibilities as to how
REEs are collected: (i) adventitious leaching of REEs via secretion of low-molecular-
weight organic acids, inorganic acids, and/or metal-binding compounds, such as
siderophores or chalkophores that dissolve cerium-containing minerals (130–137); (ii)
secretion of a specific REE-binding compound; and/or (iii) uptake of rare-earth elements
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as REE-phosphates via systems, such as the Pi transport system (Pit). This low-affinity
high-velocity system is used by many microbes for phosphate uptake and has been
shown to control the accumulation of metals, such as zinc (138–140). None of these
possibilities can be excluded at this time. Methanotrophs are known to produce both
chalkophores and siderophores (141), and these may be partially responsible for increasing
the bioavailability of cerium. Further, it was discovered over 40 years ago that metha-
notrophs produce a number of water-soluble pigments that may include novel metal-
binding compounds (142). Methanotrophs have also been shown to produce low-
molecular-weight organic acids under microaerobic conditions (143), suggesting that
this may play a role in the leaching of rare-earth elements. Finally, a preliminary review
of the genome of M. trichosporium OB3b indicates that this strain does indeed have the
Pi transport system (data not shown). It may be that one system or some combination
of these systems is used for rare-earth element collection by methanotrophs. As REEs
are difficult to purify, elucidation of the mechanism by which methanotrophs take up
rare-earth elements may have significant industrial application (144).

Genetic basis of the REE switch. There is a great deal yet to be learned about the
basis of the REE switch, but work from the University of Washington has begun to
address this issue, i.e., Chu et al. (145) found that a histidine kinase, MxaY, is a key part
of the REE switch. The deletion of mxaY abolishes the response of mxaF and xoxF in M.
buryatense to lanthanum. It further appears that MxaY controls the expression of the
mxa and xox genes by at least partially controlling expression of another response
regulator, MxaB, although it is still unknown if MxaY and MxaB directly interact or if
there are other components to the REE switch.

To identify what, if any, other elements make up the REE switch, the transcriptome
of M. trichosporium OB3b was characterized in the presence and absence of cerium
(84). Using stringent cutoff criteria of a �log2�-fold change of �1.5 and a Benjamini-
Hochberg-adjusted P value of �1 	 10�3, one putative sigma factor was found to be
upregulated in the presence of cerium, suggesting that it may also play a part in the
REE switch (84). Interestingly, when using these strict criteria, mxaY and mxaB expres-
sion was not found to vary with the presence of cerium. If, however, a more relaxed (but
still stringent) criteria of a �log2�-fold change of �1 and a Benjamini-Hochberg-adjusted
P value of �1 	 10�3 were used, mxaY and mxaB expression was found to be repressed
when cerium was added, supporting the conclusion of Chu et al. (145).

Interestingly, although the expression of Mxa-MeDH and Xox-MeDH in metha-
notrophs is strongly controlled by the availability of REEs, it appears that the REE switch
is limited to these forms of MeDH. That is, in a comparison of the transcriptome of M.
trichosporium OB3b grown in the presence of 25 �M cerium versus 0 �M cerium, the
expression of only a small number of genes not involved in either Mxa-MeDH or Xox-MeDH
had differential expression (84). Perhaps most interesting was that the expression of genes
involved in the conversion of formaldehyde to formate via the tetrahydromethanopterin
and tetrahydrofolate pathways was not affected by the presence or absence of cerium.
Such a finding is intriguing, as it has been shown that Xox-MeDH not only can bind
methanol with very high affinity, it can also oxidize formaldehyde, indicating that
Xox-MeDH transforms methanol directly to formate (146). For methanotrophs that rely
on the CBB cycle for carbon fixation, such a phenomenon is of little consequence, as
formate can be oxidized further to CO2. Methanotrophs that rely on the ribulose
monophosphate (RuMP) or serine cycle for carbon assimilation, however, must produce
formaldehyde for growth. For example, methanotrophs, such as M. trichosporium OB3b,
that utilize the serine cycle convert formaldehyde to methylene tetrahydrofolate that is
then inserted into the serine cycle. Methylene tetrahydrofolate, however, can also be
formed via the condensation of formate with tetrahydrofolate, followed by subsequent
reduction to methylene tetrahydrofolate (Fig. 2). In this pathway, formate is first
converted to formyl-tetrahydrofolate via the formate tetrahydrofolate ligase (Ftfl).
Formyl-tetrahydrofolate is then reduced to methylene tetrahydrofolate via a two-step
process mediated by methenyltetrahydrofolate cyclohydrolase (FchA) and methylene
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tetrahydrofolate dehydrogenase (MtdA). Genes encoding all of these steps (ftfl, fchA,
and mtdA), however, were not upregulated when M. trichosporium OB3b was grown in
the presence of cerium (84), suggesting that either these enzymes are highly active or
that formate is not the primary product of methanol oxidation by Xox-MeDH in M.
trichosporium OB3b. It has been suggested that Xox-MeDH may, depending on the
microbe, release formaldehyde rather than formate (146). Probing the metabolome of
M. trichosporium OB3b and other methanotrophs that rely on either the RuMP or serine
pathway and that are solely expressing Xox-MeDH is likely to be very informative in
resolving the product(s) of Xox-MeDH in vivo for these methanotrophs.

Environmental significance of Xox-methanol dehydrogenase. Recently, it has
been shown that not only are genes encoding Xox-MeDH common to many environ-
mental samples (e.g., see references 147–153), they exhibit much greater diversity than
Mxa-MeDHs (146). Such findings mean that REE-containing MeDHs might in fact be
more environmentally relevant than the “classical” or earlier-characterized Mxa-MeDH.
Indeed, methanotrophs have been found to possess only Xox-MDH and not Mxa-MDH
(Table 1) (154–158). Further, recent findings show that not only is xoxF widespread in
marine environments (147), it is one of the most abundant transcripts found in marine
methylotrophs (159). In addition, dissolved amounts of light REEs substantially de-
creased in the methane plume associated with the Deepwater Horizon blowout of
2010, and methane consumption correlated with light-REE depletion (160). Collectively,
these data strongly imply that Xox-MeDH may be the predominant form of MeDH
expressed in situ, suggesting that it confers a selective advantage over the Mxa-MeDH
for growth on C1 compounds. Indeed, it has been shown that when expressing
Xox-MeDH, the methanotroph Methylobacter tundripaludum did not excrete methanol,
but it did to a level of 1.24 mM when Mxa-MeDH was expressed, likely due to the poorer
affinity for methanol exhibited by the Mxa-MeDH (161). As such, the expression of
Xox-MeDH could improve methanotrophic growth yield and/or carbon conversion
efficiency by limiting the loss of methanol.

WHAT ARE THE ENVIRONMENTAL ROLES OF THE COPPER AND REE SWITCHES?

Although the copper switch is evident in the laboratory, it is less clear what
benefit(s) it might provide for methanotrophic growth in situ. One can speculate that
when methane is plentiful, methanotrophic biomass will increase, reducing the overall
copper-to-biomass ratio, thereby inducing the expression of sMMO, which has a higher
turnover rate of methane but weaker affinity than pMMO (27). Conversely, if methane
concentrations are low, methanotrophic growth would be expected to be reduced,
resulting in diminished overall biomass. Methanotrophs that express the copper switch,
however, may continue to predominate by expressing pMMO under these conditions.
A question, however, that has been largely ignored in the scientific literature is why do
so few known methanotrophs have the copper switch, particularly if one accepts the
hypothesis that it provides greater flexibility for these methanotrophs to thrive under
varied methane availabilities? This cannot be unequivocally answered at this time, but
it may be that the copper switch comes at some fitness cost, preventing metha-
notrophs exhibiting it from effectively competing with other methanotrophs that only
express one form of MMO when methane concentrations are at the extremes (i.e., very
low or very high).

For the REE switch, as mentioned earlier, there is clear evidence that the expression
of Xox-MeDH can be advantageous to methanotrophs, as it can limit the loss of
methanol (161). As such, it would appear that Xox-MeDH expression in situ would
provide methanotrophs with a competitive advantage, especially as REEs are common,
as noted earlier (106). However, in simple two-member communities where a metha-
notroph (Methylobacter tundripaludum) was incubated in the presence of a methyl-
otroph (either Methylotenera mobilis 13 or M. mobilis JW8) with methane provided as
the sole carbon source and in the presence of 30 �M lanthanum (as a representative
REE), Mxa-MeDH expression by M. tundripaludum increased and Xox-MeDH expression
decreased compared to when Methylobacter tundripaludum was grown axenically in the
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presence of lanthanum (161). It appears that the methylotroph, through the secretion
of some soluble compound(s), either limited REE uptake by methanotrophs, or that this
compound(s) acted as some signal to override the REE switch. Clearly, in these systems,
it is beneficial for the methylotroph to induce the expression of Mxa-MeDH in the
methanotrophs to increase methanol secretion and allow cross-feeding to occur. What
is less clear is what if any benefit does the methanotroph receive in kind? It has been
reported that methane oxidation by a single methanotroph (Methylomonas methanica)
increased in artificial mixed communities with increasing heterotroph richness (162),
suggesting that the heterotrophs provide some metabolite(s) that promotes metha-
notrophic growth, e.g., perhaps cobalamin that can stimulate methanotrophic growth
(163). It may be that having the flexibility to express either form of MeDH enables
methanotrophs to more positively interact with important microbial partners to the
benefit of all.

CONCLUSIONS

Methanotrophy continues to offer up surprises, and the recent findings of multiple
metal switches in these intriguing microbes provide new opportunities to manipulate
these microbes for a variety of opportunities. Despite our expanded knowledge on
metal-methanotroph interactions, there is still much we do not know, including the
following questions.

What is the complete basis of both the copper switch and REE switch in
methanotrophs? Such information could be generated via selective knockouts of
suspected regulatory genes identified via transcriptomic analyses. Can we then manip-
ulate these switches in some way to enhance methane valorization? Elucidation of
these switches could also be of use in synthetic biology by expanding the “toolbox”
available for the construction of robust genetic circuits with unique input parameters.

What genes are required for methanobactin biosynthesis from a precursor
polypeptide? A two-pronged approach could be used here. First, methanotrophic
mutants could be created where individual genes suspected to be involved in MB
biosynthesis are knocked out, followed by characterization of MB intermediates made
by these mutants. With such information, the biosynthetic pathway of MB could be
reconstructed, and indeed, work has begun using this approach (75). Second, heterol-
ogous expression of MB could be attempted where various combinations of genes
known or suspected to be involved in MB biosynthesis are inserted in hosts, such as
Escherichia coli.

How is methylmercury degraded by methanotrophs expressing methanobac-
tin? Stable isotope labeling of methylmercury to follow products of methylmercury
degradation would be very useful here, as well as knockouts of gene(s) suspected to be
involved. Once the mechanism of methanotrophic-mediated methylmercury degrada-
tion is identified, this could then be used as a signature to determine how prevalent
such an ability is in situ.

How widespread is copper competition in situ? How does this impact the
emissions of not only methane but also nitrous oxide? Future studies should consider
a combination of simple soil microcosm studies where methanotrophs and denitrifiers
are cocultured to delineate methanotroph-denitrifier competition for copper, as well as
more complex field studies where activities of these microbes are carefully monitored
and correlated to net emissions of both methane and nitrous oxide.

How do methanotrophs collect REEs that most commonly are found in ex-
tremely insoluble forms? As noted, there are several possibilities, but at this moment,
it is still unclear what the mechanism(s) may be. One strategy to begin identifying the
mechanism could be to incubate methanotrophs in the presence of different dissolved
concentrations of REEs, e.g., REEs in the presence/absence of chelating agents, such as
nitrilotriacetic acid, and then compare metal uptake as well as the transcriptome/
proteome of these cultures. Doing so may generate clues as to the putative REE uptake
system. If this is successful, it may be possible to use this information to enhance the
extraction/purification of REEs.
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Answering these questions, although likely to be challenging, is also likely to be of
great value.
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ADDENDUM IN PROOF
After revising the manuscript, L. Cao, O. Caldararu, A. C. Rosenzweig, and U. Ryde

published an article (Angew Chem Int Ed 57:162–166, 2018, https://doi.org/10.1002/
anie.201708977) concluding, using quantum refinement studies, that the proposed
di-copper active site of pMMO (36) does not exist in the crystal structure of this enzyme.
Rather, this site is best modeled as a mono-copper site. As such, we believe it important
to reiterate that much more work is required to understand the mechanism of methane
oxidation by pMMO.
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