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Abstract. Nuclear factor κB (NF‑κB) exhibits an important role 
in inflammation and tumorigenesis. The key regulatory protein 
of the pathway, RELB Proto‑Oncogene, NF‑KB Subunit (relB), 
is overexpressed and associated with the pathogenesis of a 
variety of malignant tumors. However, the molecular features 
and clinical signature of relB expression in gliomas remains to 
be elucidated. The present study obtained the raw sequencing 
data of 325 glioma samples of all grades from the Chinese 
Glioma Genome Atlas (CGGA) database and human glioma 
cell line (LN229) from the Chinese Academy of Sciences cell 
bank. Cell proliferation, invasion and wound healing assays 
were used for functional annotation of relB. Western blot 
analysis was used for validating the protein expression of relB, 
matrix metalloproteinase (MMP)‑2 and MMP‑9 in a further 
77 glioma samples. In Diffuse Glioma data, relB expression 
was associated with glioma grade, demonstrated a mesen-
chymal subtype preference and cell development association. 
The downregulation of relB expression inhibited glioma cell 
migration and invasion by regulating the MMPs in vitro. relB 
expression was independently associated with grade and prog-
nosis of grade III and grade IV gliomas, suggesting that relB 
is a novel biomarker with therapeutic potential for predicting 
prognosis in glioma.

Introduction

High‑grade gliomas (HGGs), including glioblastoma (GBM, 
World Health Organization, WHO, grade IV) and anaplastic 
glioma (WHO grade III), are the most frequently primary 

brain tumors  (1). Current therapeutic approaches include 
surgery, chemotherapy, radiotherapy, and molecular targeted 
therapy, however, the overall prognosis of the disease remains 
poor (2,3). Therefore, it is critical for developing novel and 
effective molecular makers to assist early diagnosis and 
accurate prediction of prognosis in patients with glioma.

Microarray and sequencing techniques have provided 
better approaches for screening effective prognostic markers 
for human cancers (4,5). It is well known that nuclear factor κB 
(NF‑κB) plays a significant role in inflammatory reaction and 
tumorigenesis (6‑8). Recently, their key regulatory protein, 
relB, has been reported to overexpressed and associated with 
pathogenesis of malignancies  (9). However, the molecular 
features and clinical signature of gliomas with relB expression 
remain poorly understood.

In this study, we evaluated the relB expression in the RNA 
sequencing of Diffuse Gliomas data and found the expres-
sion of relB was associated with glioma grade and showed 
a mesenchymal subtype preference. In  vitro experiments 
demonstrated that relB reduction inhibited glioma cell migra-
tion and invasion by regulating MMPs, MMP2 and MMP9 
especially (10,11). Further more, some researchers find that 
relB/NF‑κB links cell cycle transition and proliferation to 
tumorigenesis  (12‑14). These data demonstrate that relB 
drives malignant behavior of gliomas, and it may be a novel 
prognostic biomarker in glioma.

Materials and methods

Human glioma tissues and cell lines. The raw sequencing data for 
325 gliomas was downloaded from the Chinese Glioma Genome 
Atlas (CGGA) data portal (http://www.cgga.org.cn/portal.php). 
Human LN229 glioma cell line was obtained from the Chinese 
Academy of Sciences cell bank. Glioma cell line was cultured in 
Dulbecco's modified Eagle's medium (DMEM) (Thermo Fisher 
Scientific, Inc., Waltham, MA, USA), which was supplemented 
with 10% fetal bovine serum (Thermo Fisher Scientific, Inc.), 
100 units/ml penicillin, and 100 ng/ml streptomycin (Abcam, 
Shanghai, China). All cells were incubated at 37˚C in an atmo-
sphere of 5% CO2.

Oligonucleotides and cell transfection. The relB‑siRNA, 
MMP9‑siRNA, and MMP2‑siRNA oligonucleotides were 
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designed and synthesized by GenePharma and Gene chem 
(Shanghai, China). An siRNA that was unrelated to any human 
sequence was used as a negative control (NC). The plasmid 
containing the ORF of relB, was generated from Abcam, 
Shanghai, China. Blank vector was used as an NC. Then trans-
fection complexes were formed from oligonucleotides using 
Lipofectamine 2000 (Thermo Fisher Scientific, Inc., Waltham, 
MA, USA). Transfection complexes have been added to glioma 
cells and incubated for 6‑8 h before the medium was changed.

Cell proliferation assay. Cells in the logarithmic phase of 
growth were seeded at 3,000 per well in 96‑well plates and 
cultured. Cell proliferation was assayed at the indicated time 
points using a CCK8 kit (Beyotime Institute of Biotechnology, 
Haimen, China) according to the manufacturer's instructions.

Invasion assay. Cell invasion assays were performed using 
transwell membranes coated with Matrigel (BD Biosciences, 
Franklin Lakes, NJ, USA). Transfected cells were plated at a 
density of 3x104 cells per well in the upper chamber and in 
serum‑free medium. The lower chamber was filled with 20% 
FBS as a chemo‑attractant. After 24 h of incubation, cells 
remaining in the upper chamber of each well were carefully 
removed with cotton swabs, and invading cells were fixed with 
3% paraformaldehyde (Abcam, Shanghai, China), stained with 
crystal violet (Abcam, Shanghai, China), and counted from 
three independent fields (x100 magnification).

Wound healing assay. Cells were cultured until reached 90% 
confluence in 6‑well plates. Cell layers were scratched using 
a 20‑µl tip to form wound gaps, washed twice with PBS and 
cultured. The wound healing was photographed at different 
time points and wounded gaps were analyzed by measuring 
the distance of migrating cells for three different areas for 
each wound.

Western blot analysis. Equal amounts of protein per lane 
were separated by 8% SDS‑polyacrylamide gel and trans-
ferred to Polyvinylidene difluoride (PVDF) membrane. The 
membrane was blocked in 5% skim milk for 2 h and then 
incubated with diluted primary antibody in 5% w/v BSA, 1X 
TBS, 0.1% Tween20 at 4˚C with gentle shaking, overnight.
The antibodies used in this study were: relB (1:1,000; 10544, 
Cell Signaling Technology, Danvers, MA, USA), MMP2 
(1:1,000; 87809, Cell Signaling Technology, Danvers, MA, 
USA), MMP9 (1:1,000; 13667, Cell Signaling Technology, 
Danvers, MA, USA) and cyclin A (1:1,000; 554175, BD 
Pharmingen, San Diego, CA, USA). The antibody against 
GAPDH (glyceraldehyde‑3‑phosphate dehydrogenase) 
(Abcam, Shanghai, China) was used as a control. The specific 
protein was detected by using a SuperSignal protein detection 
kit (Abcam, Shanghai, China). The band densities of specific 
proteins were quantified after normalization with the density 
of GAPDH. Secondary antibody is HRP Goat Anti‑rabbit 
Ig (1:1,000; 7074, Cell Signaling Technology, Danvers, MA, 
USA) and HRP Goat Anti‑Mouse Ig (1:1,000; 554002, BD 
Pharmingen, San Diego, CA, USA).

Statistical analysis. Each value was obtained from at least 
three independent experiments and presented as means ± SD. 

Significant differences were calculated using one‑way ANOVA 
followed by S‑N‑K method for three‑group comparisons and 
t‑test for two‑group comparisons. The SPSS 22.0 software 
package was employed (SPSS, Inc., Chicago, IL, USA). Pearson 
correlation analysis was performed using MATLAB software 
(The MathWorks, Inc., Natick, Massachusetts, USA). A prob-
ability value of <0.05 was considered statistically significant.

Results

RelB expression was associated with glioma grade and 
showed a mesenchymal subtype preference. Using the RNA 
sequencing of Diffuse Gliomas data, we initially explored 
relB expression patterns in different grades of glioma tissues 
and found that the level of relB mRNA increased markedly in 
gliomas of increasing malignancy grades (Fig. 1A). Moreover, 
we evaluated relB expression in TCGA molecular subtypes of 
gliomas and found that relB showed a mesenchymal subtype 
preference (Fig. 1B). We further validated the protein expres-
sion level of relB in an independent group of 32 glioma 
patients by Immunohistochemistry (IHC) (Fig. 1C). Similar 
to the findings above, relB were up‑regulated with ascending 
malignancy grades.

Low expression of relB was a better prognostic marker in 
anaplastic gliomas and glioblastomas. Next we investigated 
the correlation between relB expression and overall survival 
using Kaplan‑Meier survival curve analysis. We found that 
expressing higher than mean levels of relB were associated 
with decreased survival relative to those with relB levels lower 
than the mean in anaplastic glioma and GBM patients (Fig. 2). 
Therefore, Low expression of relB was a better prognostic 
marker in anaplastic gliomas and glioblastomas.

relB‑associated genes were mainly involved in cell‑cycle and 
migration biological process. After Pearson correlation anal-
ysis of the RNA sequencing data, the significantly positively 
correlated genes were used for GO analysis. Gene set variation 
analysis with relB expression was analyzed by GSVA package 
of R.Gene list was obtained from GSVA date package (15).
As illustrated in Fig. 3A and B, function annotation of relB 
which was performed by GO analysis and GSVA revealed its 
correlation with cell‑cycle and migration biological process.
Furthermore, With the increase of relB expression, the 
expression of MMP family genes increased (P<0.05). MMP 
family genes were found to positively correlate with relB 
expression (Fig. 4). In particular, MMP2 and MMP9 were 
known to promote cell invasion and migration in cancers. 
Overall, relB may involves in glioma invasion, migration, and 
cell‑cycle biological process.

Repression of relB induces glioma cell cycle arrest. We 
then constructed a lentivirus containing a siRNA sequence 
targeting relB to verify whether relB plays a potentially func-
tional role in glioma. After 48 h of infection, relB protein 
expression levels in LN229 were decreased (Fig. 5A). To 
investigate the biological implication of relB in glioma, we 
performed functional assays to determine the influence of 
relB on glioma cell proliferation. Decreased relB expression 
in LN229 inhibited the proliferation of cell line (Fig. 5B). 
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Moreover, flow cytometry analysis showed that the cell cycle 
was blocked in the G0‑G1 phase as a result of decreased relB 
(Fig. 5C and D). A significant decrease of cyclin A protein 
expression level in the LN229 cells was observed after relB 
knockdown compared with the control group (Fig. 5E).

The down‑regulation of relB expression inhibits glioma cell 
migration and invasion by regulating the MMPs in vitro. To 
explore the potential role of relB on the invasiveness of glioma 
cells, wound healing and transwell assay were employed 
in  vitro. As shown in Fig.  6A and B, relB knockdown 
resulted in a marked decrease in cell invasion compared to 
the control group. Subsequently, the percentage of migrating 

cells in relB knockdown group was significantly lower than 
that of the control group (Fig.  6C and D). MMPs family 
genes were critical for cancer cell migration and invasion. 
Our bioinformatics analysis implied that MMP family genes 
were positively correlated with relB. In particular, MMP2 and 
MMP9 were known to promote cell invasion and migration 
in cancer cells (16‑18). Therefore, we further tested MMP2 
and MMP9 expression in relB knockdown and control cells 
by western blotting. Compared with the control cells, relB 
knockdown cells showed decreased MMP9 and MMP2 
expression (Fig.  6E). Furthermore, transwell and wound 
healing assays showed that overexpression of relB promoted 
glioma cell invasion and migration whereas introduction of 

Figure 1. The expression difference of relB in different grade and pathologcal type gliomas. (A, B) A single spot was the expression value of relB of an 
individual patient. Lines in the middle were the mean expression value (A and B). Immunocytochemical staining of relB in different grade tumor tissues 
(mgnification, x200) (C) low grade gliomas, (D) anaplastic gliomas and (E) glioblastomas.

Figure 2. The prognostic value of relB in CGGA. According to relB expression level, patients with anaplastic or GBM could be divided into two groups with 
significantly different prognosis.
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si‑MMP9 or si‑MMP2 abrogated relB overexpression induced 
cellular invasion and migration. These results suggest that 

relB modulates malignant progression at least partially through 
MMP9 and MMP2.

Figure 4. relB expression showed a MMPs preference. For each patient, MMPs preference were annotated and listed in the lower part, which was obtained from 
CGGA database. It was showed that MMPs preference positively correlated with relB expression (P<0.05).

Figure 3. (A) Using GO analysis. It was showed that genes positively correlated with relB expression consist in cell‑cycle process. (B) Though GO analysis. It 
was showed that genes positively correlated with relB expression consist in migration biological process.
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Discussion

Glioma is the most common lethal intracranial tumor in adults. 
Despite of tremendous efforts work on developing multimodal 
treatments and mechanisms, the overall prognosis of glioma 
remains poor (1‑3). It is a matter of great urgency to identified 
novel biomarkers for patients of particular High‑grade gliomas 
(HGGs).

RelB is originally found as a key transcription factors 
of Nuclear factor kB (NF‑kB) which regulates a wide range 
of biological processes, such as cell survival, immune and 
inflammatory responses (19‑21). Emerging evidences have 
implicated that relB plays an important role in the progres-
sion in different types of cancers. In prostate cancer, relB 
promotes cancer cell growth and decreases the radiosensi-
tivity of cancer cells (22,23). In breast tumor, relB enhances 

cellular survival and shows a highly invasive phenotypes 
preference  (24). In chronic lymphocytic leukemia (CLL) 
cells, overexpression relB increases the sensitivity of CLL 
cells to the proteasome inhibitor, bortezomib (25). In the 
present study, we demonstrate that relB expression is associ-
ated with glioma grade and shows a mesenchymal subtype 
preference. Besides, low expression of relB is a better 
prognostic marker in anaplastic gliomas and glioblastomas. 
Therefore, our results suggest that relB may be associated 
with glioma progression.

To further clarify the role of relB in the development 
and progression of glioma, bioinformatics and experiment 
in vitro were applied to analyze the molecular function of 
relB. Through bioinformatics analysis, relB‑associated genes 
were mainly involved in cell‑cycle and migration biological 
process. To further verify the biological behavior of relB 

Figure 5. relB might regulates cell proliferation by influencing the cell‑cycle distribution. (A) relB protein expression was detected with weston‑blot after 
transfection with siRNA‑1, siRNA‑2. (B) cell viability was detected with a CCK8 assay after transfection with siRNA‑1, siRNA‑2 for 24, 48, 72 and 96 h. 
(C, D) The distribution of the G0/G1, S, and G2/M phases after relB knockdown by siRNA. (E) The expression of cell‑cycle associated protein Cyclin A was 
detected with weston‑blot after relB knockdown by siRNA.
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in gliomas, we constructed lentiviral vectors expressing 
nonsense control or relB siRNA, and subsequently infected 
the LN229 glioma cells. In vitro assay, Repression of relB 
induces cell cycle arrest and inhibits glioma cell migration 
and invasion of glioma cells. The basement membrane consist 
of a network of extracellular matrix (ECM) proteins which 
participate in tumor growth, invasion , migration and tumor 
angiogenesis (26). MMPs are a large family of Ca2+ and Zn+ 
dependent endopeptidases, especially among members MMP2 
and MMP9 , possessing to hydrolyze components of the base-
ment membrane (27,28). Furthermore, our results suggest 
that relB modulates malignant progression at least partially 
through MMP9 and MMP2.

In summary, our results reveal that relB is upregulated 
in glioma and exhibit pro‑oncogenic activity partially 
through MMP9 and MMP2. Importantly, relB can be 
used as a potential diagnostic and prognostic marker 
for some HGGs, especially for mesenchymal subtype 
glioblastoma.
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