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strongest evidence of an association was obtained for nSNP 
rs1880924 in MGAM and mtSNP rs3088309 in CytB (pjoint =  
8.2 × 10–8, pint = 1.4 × 10–4). Our results also suggest that the 
minor allele of the nSNP rs583990 in CTNNA2 increases the 
risk of EOBD among carriers of the mtSNP rs3088309 minor 
allele, while the nSNP has no effect among those carrying the 
mtSNP major allele (OR = 4.53 vs. 1.05, pjoint = 2.1 × 10–7,  
pint = 1.16 × 10–6). While our results are not statistically sig-
nificant after multiple testing correction and a large-sample 
replication is required, our exploratory study demonstrates 
the potential importance of considering the mitochondrial 
genome for identifying genetic factors associated with BD.
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Abstract
Mitochondrial DNA mutations have been reported to be as-
sociated with bipolar disorder (BD). In this study, we per-
formed genome-wide analyses to assess mitochondrial sin-
gle-nucleotide polymorphism (mtSNP) effects on BD risk and 
early-onset BD (EOBD) among BD patients, focusing on inter-
action effects between nuclear SNPs (nSNPs) and mtSNPs. 
Common nSNP and mtSNP data from European American 
BD cases (n = 1,001) and controls (n = 1,034) from the Ge-
netic Association Information Network BD study were ana-
lyzed to assess the joint effect of nSNP and nSNP-mtSNP in-
teraction on the risk of BD and EOBD. The effect of nSNP-
mtSNP interactions was also assessed. For BD risk, the 
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Introduction

Bipolar disorder (BD) is a serious and persistent men-
tal illness characterized by recurrent episodes of mania/
hypomania and depression [1, 2]. Among all mental and 
neurological disorders, BD was ranked fourth as a cause 
of global burden based on disability-adjusted life years 
[3]. Many genetic studies, including both candidate gene 
studies and genome-wide association studies (GWAS), 
have been performed to identify BD susceptibility genes. 
By searching the nuclear genome, GWAS of large samples 
have identified multiple loci associated with the risk of 
BD, including CACNA1C, ANK3, ODZ4, SYNE1, and 
TRANK1 [4, 5]. However, genetic variants from these loci 
only explain a small portion of BD heritability [6]. 

Mitochondrial dysfunction has been implicated in BD 
[7–10]. The energy dysregulation has been characterized 
by increased reactive oxygen species production, de-
creased mitochondrial complex subunits in the brain, 
ATP-dependent proteasome degradation, and an in-
crease in lactate with a corresponding decreased intracel-
lular pH [11–16]. Because mitochondrial DNA (mtDNA) 
encodes a number of mitochondrial proteins, it has been 
hypothesized that inherited variation in the mitochon-
drial genome may affect mitochondrial dysfunction and 
thus BD risk. Consistent with this hypothesis, clinical 
studies have found that subjects with maternal relatives 
with BD have a higher disease risk than those with pater-
nal relatives with BD, supporting a potential maternal 
mtDNA transmission of risk [17]. In addition, a recent 
study based on induced pluripotent stem cell lines showed 
that mtDNA genes were differently expressed in young 
BD hippocampal neurons compared to normal neurons 
and in lithium-responsive BD neurons with and without 
lithium treatment [18]. Research on the role of the mito-
chondrial genome in BD risk has revealed candidate as-
sociations with mitochondrial point mutations, dele-
tions, haplogroups (subjects sharing the same maternal 
ancestral haplotypes), and copy number variations [19–
22]. For instance, the rare mtDNA mutation 3644T>C 
was found to be associated with BD [7, 19]. In addition, 
various mitochondrial single-nucleotide polymorphisms 
(mtSNPs) have been proposed to be associated with BD 
[19, 22–24]. For example, the 10398A variant was signifi-
cantly associated with the risk of BD and a better response 
to lithium, as well as impaired prefrontal glucose utiliza-
tions [23, 25, 26]. MtDNA deletion (4,977-bp deletion), 
known as “the common deletion,” was shown to be over-
represented in BD brain tissue compared to controls, in 
particular in the dorsolateral prefrontal cortex [21]. With 

regard to mitochondrial haplogroups, overrepresenta-
tion of N9a in BD patients has been reported [22]. In ad-
dition, some haplogroups (U, K, and Uk) showed signifi-
cantly lower cerebellar pH, leading to speculation that pH 
variation in the brain could be inherited through mtDNA 
and constitute a risk factor for BD. A decrease in mtDNA 
copy numbers has also been observed in brains of BD sub-
jects [27]. These studies suggest that mitochondrial ge-
nome variation plays a role in BD; however, they are 
mainly small studies without adequate multiple testing 
correction and no replication, and thus further research 
is needed to determine the impact of mtDNA variation 
on the risk of BD and related phenotypes. 

It is also important to note that mitochondrial proteins 
are encoded by both nuclear and mtDNA, with the vast 
majority of genes encoding mitochondrial proteins being 
products of nuclear DNA (nDNA). In fact, MitoCarta, 
which is an inventory of genes encoding proteins with 
strong support of mitochondrial localization, includes 
more than 1,000 genes encoded by the human nuclear ge-
nome [28]. The products of these nuclear and mitochon-
drial genes work together to control transcription and 
translation of mitochondrial genes and to form the com-
plexes of the respiratory chain that carry out oxidative 
phosphorylation and energy production. Therefore, ge-
netic variations from both mtDNA and nDNA may affect 
BD risk by influencing mitochondrial function. While fur-
ther investigation of the role of mitochondrion-related 
genes in BD is needed, variation in certain mitochondrion-
related nDNA genes has been reported to be associated 
with BD. For example, DISC-1, which encodes a protein 
involved in mitochondrial dynamics and trafficking, was 
identified as a potential susceptibility gene for schizophre-
nia and BD in a large Scottish pedigree [29, 30]. Studies 
have also suggested that genetic variation in the promoter 
region of NDUFV2, a mitochondrial complex I gene, is as-
sociated with BD [31, 32]. A potential role of this gene in 
BD was also supported by the observed downregulation of 
NDUFV2 in lymphoblastoid cell lines from patients with 
BD type I but not BD type II [33]. While the association of 
BD with nDNA-encoded mitochondrial genes is not yet 
well established, it warrants further investigation.

Many commonly used genome-wide genotyping plat-
forms include mtSNP content and thus many existing 
GWAS datasets contain mtSNP data. However, mtSNPs 
have typically been excluded from complex-trait genetic 
risk discovery efforts, and studies incorporating both nu-
clear and mitochondrial genome data are extremely rare 
[34]. Exceptions include a study of outcomes following 
traumatic brain injury (interaction between nuclear gene 
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APOE and mitochondrial haplogroup K), a study of late-
onset Alzheimer’s disease (interaction between nuclear 
variant APOE4+ status and mitochondrial subhap-
logroup H5), and an ulcerative colitis study (mtSNP 
A10550G being an independent risk factor from nucleus-
encoded susceptibility loci) [34–36].

In BD, a recent GWAS using the Genetic Association 
Information Network (GAIN) BD dataset reported that 2 
mtSNPs in ND1 (rs28357968) and CytB (rs28357375) 
showed a nominal association (without correcting for 
multiple testing) with the risk of BD [37]. However, no 
prior studies in BD have investigated potential interac-
tion effects of genetic variations from both genomes de-
spite the fact that mitochondrial proteins are encoded by 
both genomes.

In this study, we performed genome-wide analyses to 
assess mtSNP effects on BD risk, focusing on interaction 
effects between nuclear SNPs (nSNPs) and mtSNPs. We 
hypothesized that the impact of nuclear genetic variation 
on BD risk could be modified by the mtDNA that a per-
son carries and perhaps more nuclear BD risk loci would 
be uncovered by incorporating mitochondrial interac-
tions into the risk model. In addition, we also investigated 
a potential role of mtSNP-nSNP interactions for early-
onset BD (EOBD) compared to later-onset cases. Given 
previous studies showing the significance of age of onset 
of BD as a predictor of familial risk (relatives of EOBD 
patients had significantly greater risks of BD than those 
of later-onset BD patients) [38], we hypothesized that by 
considering both the nuclear and the mitochondrial ge-
nomes additional genetic risk loci could be uncovered 
that influence age at BD onset.

Methods and Materials

Study Description
This study utilized publically available GWAS data from the 

GAIN BD study, which included 2,035 European American sub-
jects (i.e., 1,001 BD cases [EOBD, n = 419] and 1,034 controls) [39]. 
All BD cases met criteria for DSM-IV-defined bipolar I disorder, 
and controls were matched on age, sex, and ethnicity [39, 40]. The 
age at BD onset (in years) was obtained from diagnostic interviews 
for the BD cases; EOBD was defined as a BD onset age of 19 years 
or younger [41]. Genotyping was performed using the Affymetrix 
6.0 array that included nSNPs and mtSNPs. Basic quality control 
criteria were applied to exclude SNPs with a low minor allele fre-
quency (MAF; <10%) and low call rates (<95%), resulting in 
544,209 nSNPs and 15 mtSNPs [42]. We chose a higher cutoff for 
MAF (i.e., 10% rather than a standard cutoff of 1–5%), because this 
study focused on nSNP-mtSNP interaction effects, and the power 
to detect interactions declines more rapidly with decreasing MAF 
than does the power to detect main effects. A list of the 15 mtSNPs 

included in our analyses with detailed annotation information is 
presented in online supplementary Table 1 (for all online suppl. 
material, see www.karger.com/doi/10.1159/000464444).

Statistical Analysis
For the nuclear genome, the effective number of independent 

SNPs was calculated to be used for Bonferroni multiple testing cor-
rection [43]. For the mitochondrial genome, the number of prin-
cipal components (PCs) explaining at least 95% of the variability 
in mitochondrial genotypes was calculated. The total number of 
tests to be corrected for this study was then set to the effective num-
ber of independent nSNPs (n = 273,063) multiplied by the number 
of PCs from the mitochondrial genome (5 PCs). Therefore, asso-
ciation results with p < 3.7 × 10–8 (=273,063 × 5) were considered 
statistically significant after multiple testing correction. 

For each outcome (BD risk and EOBD among BD cases), logis-
tic regression models were used to assess the joint effects of the 
nSNP main effect and the interaction effect between nSNP and 
mtSNP, for each pair of mtSNP and nSNP, using 2df likelihood 
ratio tests. The 2df test jointly evaluates the effect of the last 2 terms 
(i.e., the nSNP effect and the nSNP × mtSNP interaction effect) 
from the following logistic regression model:

Logit (p) = a0 + a1 × mtSNP + a2 × nSNP + a3 × nSNP × mtSNP,

where p is the probability of the outcome (e.g., BD vs. control), and 
a0/a1/a2/a3 are regression parameters for terms included in the mod-
el. The rationale for this analysis is to jointly assess the effect of the 
nSNP main effect and/or the nSNP × mtSNP interaction term (i.e., 
testing if both a2 = 0 and a3 = 0), thereby testing the nSNP effect while 
allowing for modification of the effect by the mtSNP genotype. In 
addition, 1df likelihood ratio tests of the nSNP × mtSNP interaction 
terms were also performed (i.e., test assessing whether a3 = 0). 

All models were further adjusted for the first PC from the nu-
clear genome (nPC1), and the interaction between nPC1 and 
mtSNP to prevent potential confounding by population stratifica-
tion. For mtSNPs showing the strongest associations based on the 
joint tests, genome-wide analyses were repeated using imputed 
SNP data to generate Manhattan plots and locus zoom plots. Ge-
nome-wide imputation for the GAIN BD data was conducted us-
ing the 1,000 Genome Project cosmopolitan reference panel, and 
the detailed procedures have been previously described [44]. 

In addition to SNP level analysis, gene set analyses were con-
ducted using a competitive method implemented in MAGENTA 
[45] to test whether nSNPs in mitochondrion-related genes were 
more enriched for interactions with individual mtSNPs compared 
to those not related to mitochondria. A gene set analysis was per-
formed for each outcome (risk of BD and EOBD), comparing the 
mtSNP interaction results for nSNPs in 967 autosomal mitochon-
drial genes described in MitoCarta [28], with mtSNP interaction 
results for autosomal nSNPs outside of this set of 967 genes. Since 
both outcomes are considered highly polygenic, a gene set enrich-
ment analysis (GSEA) cutoff using the top 25% of gene level statis-
tics, recommended by the authors of MAGENTA, was used for 
comparison between the 967 genes in MitoCarta and those not in 
the MitoCarta list. Gene boundaries were based on the provided 
build 37 locations in the MAGENTA software with a 40-kb down-
stream and 110-kb upstream buffer for each gene. The HLA genes 
were removed as suggested by the authors of MAGENTA. GSEA 
p values were computed via permutation, with a minimum of 
10,000 and a maximum of 1,000,000 permutations. 
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Results

None of the association results from the 2df tests or the 
1df interaction tests passed the stringent significance 
threshold corrected for multiple testing (p < 3.7 × 10–8). 
Tables 1 and 2 present the top 3 association signals based 
on the 2df test for the analyses of BD risk and EOBD, re-
spectively; Tables 1 and 2 also include 2 subsequent as-
sociation results for each of the 3 top mtSNPs. In Tables 
1 and 2 we report top findings based on the joint effect 

(2df test), while not including any results with p > 0.001 
for the nSNP × mtSNP interaction effect. We only present 
joint effect test results for pairs of SNP with at least “mar-
ginal” evidence of an interaction effect (defined as pint ≤ 
0.001), because the association results for nSNP-mtSNP 
pairs with little evidence for an interaction effect (pint > 
0.001) are mainly driven by the nSNP main effects that 
have been extensively tested in prior GWAS studies and 
are not the focus of this study. 

Table 1. Top 3 association results based on 2df tests for risk of bipolar disorder, and 2 subsequent association results for each of the top 
mtSNPs

mtSNP nSNP Association results

SNP BP gene MA MAF SNP Chr: BP closest gene MA MAF 2df 
p value

interaction
p value 

OR1 OR2 

rs3088309 15,452 CytB T 0.21 rs1880924 7: 141717225 MGAM A 0.14 8.2 × 10 
–

 
8 1.4 × 10 

–
 
4 1.27 3.42

rs12733666 1: 77927820 AK5 C 0.18 2.9 × 10 
–

 
6 7.1 × 10 

–
 
7 1.14 0.38

rs7782502 7: 105695500 CDHR3 G 0.40 6.6 × 10 
–

 
6 3.6 × 10 

–
 
5 0.72 1.45

rs3915952 11,251 ND4 C 0.22 rs1880924 7: 141717225 MGAM A 0.14 4.1 × 10 
–

 
7 6.9 × 10 

–
 
4 1.29 3.10

rs7782502 7: 105695500 CDHR3 G 0.40 2.6 × 10 
–

 
6 1.2 × 10 

–
 
5 0.71 1.48

rs10948994 6: 56184046 COL21A1 G 0.35 2.6 × 10 
–

 
6 4.7 × 10 

–
 
4 1.50 0.93

rs28358279 10,463 tRNA G 0.11 rs1124376 3: 20108546 PCAF/KAT2B A 0.22 2.8 × 10 
–

 
6 5.0 × 10 

–
 
5 0.87 0.26

rs10000984 4: 175644564 GLRA3 G 0.44 2.8 × 10 
–

 
6 9.8 × 10 

–
 
7 0.97 3.06

rs11764581 7: 141712467 MGAM C 0.13 7.0 × 10 
–

 
6 6.7 × 10 

–
 
4 1.25 3.85

MtSNP-nSNP interaction test results are also shown for the same SNP pairs. mtSNP, mitochondrial single-nucleotide polymorphism; nSNP, nuclear 
single-nucleotide polymorphism; SNP, single-nucleotide polymorphism; BP, base pair; MA, minor allele; MAF, minor allele frequency; Chr, chromosome. 
1 In the presence of a major mtSNP allele, OR for adding 1 copy of an nSNP minor allele based on the interaction analysis. 2 In the presence of a minor mtSNP 
allele, OR for adding 1 copy of an nSNP minor allele based on the interaction analysis. 

Table 2. Top 3 association results based on 2df tests for risk of early-onset bipolar disorder, and 2 subsequent association results for each 
of the top mtSNPs

mtSNP nSNP Association results

SNP BP gene MA MAF SNP Chr: BP closest gene MA MAF 2df 
p value

interaction
p value 

OR1 OR2 

rs3088309 15,452 CytB T 0.21 rs583990 2: 80213652 CTNNA2 A 0.25 2.1 × 10 
–

 
7 1.6 × 10 

–
 
6 1.05 4.53

rs9933834 16: 70683178 IL34 C 0.34 1.1 × 10 
–

 
6 4.7 × 10 

–
 
5 1.69 0.60

rs11122534 1: 230688466 LOC729257 C 0.17 1.4 × 10 
–

 
5 2.7 × 10 

–
 
4 0.82 0.19

rs3915952 11,251 ND4 C 0.22 rs9933834 16: 70683178 IL34 C 0.34 2.9 × 10 
–

 
7 1.1 × 10 

–
 
5 1.74 0.58

rs556003 2: 80216399 CTNNA2 G 0.38 3.1 × 10 
–

 
7 3.2 × 10 

–
 
7 0.95 3.75

rs1975145 18: 55931179 NEDD4L T 0.21 5.4 × 10 
–

 
6 1.4 × 10 

–
 
6 1.49 0.32

rs3928306 3,010 RNR2 A 0.24 rs2420932 10: 123118218 FGFR2 G 0.18 4.5 × 10 
–

 
7 9.4 × 10 

–
 
8 1.29 0.20

rs6597183 6: 6042429 NRN1 T 0.22 1.4 × 10 
–

 
6 2.1 × 10 

–
 
5 1.07 1.07

rs7987059 13: 27541625 LOC100129306 T 0.19 1.2 × 10 
–

 
5 2.5 × 10 

–
 
6 0.66 0.65

MtSNP-nSNP interaction test results are also shown for the same SNP pairs. mtSNP, mitochondrial single-nucleotide polymorphism; nSNP, nuclear 
single-nucleotide polymorphism; SNP, single-nucleotide polymorphism; BP, base pair; MA, minor allele; MAF, minor allele frequency; Chr, chromosome.  
1 In the presence of a major mtSNP allele, OR for adding 1 copy of an nSNP minor allele. 2 In the presence of a minor mtSNP allele, OR for adding 1 copy 
of an nSNP minor allele.
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The strongest evidence of an association with BD risk 
was observed for mtSNP rs3088309 (MAF = 0.21 for al-
lele T) located in the mitochondrial encoded cytochrome 
B (CytB) gene and the nSNP rs1880924 (MAF = 0.14 for 
allele A) located in the maltase-glucoamylase (MGAM) 
on chromosome 7, a gene involved in glycosaminogly-
can metabolism pathways (p2df = 8.2 × 10–8; Table  1; 
Fig.  1; online suppl. Fig.  1). The interaction between 
these variants showed a moderate level of association 
with BD risk (Table 1; pint = 1.4 × 10–4), implying the 
joint test signal is partially due to the nSNP main effect 

and partially due to the nSNP-mtSNP interaction effect 
supporting the epistatic interaction between the nuclear 
and mitochondrial genes. The odds ratio (OR) for one 
copy of the minor nSNP allele was 3.42 among carriers 
of the minor allele A of the mtSNP and 1.27 among car-
riers of the common allele G of the mtSNP (Fig.  3a). 
Among other top association results involving the same 
mtSNP (rs3088309), the joint effect with rs12733666 lo-
cated in adenylate kinase 5 (AK5) showed a trend for 
significance (p2df = 2.9 × 10–6), with this joint test result 
being entirely driven by the nSNP-mtSNP interaction 
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(pint = 7.1 × 10–7). The second most significant associa-
tion was observed with rs3915952 located in Mt-ND4 
and nSNP rs1880924, the same MGAM SNP from the 
top association result discussed above. Rs3915952 is 
highly correlated with the top mtSNP rs3088309 (r2 = 
0.95), implying that the second association signal is not 
independent of the top hit. In fact, both mtSNPs 
rs3088309 and rs3915952 are part of mitochondrial hap-
logroup JT defining SNP. 

For EOBD risk among BD patients, the top association 
signal was with the mtSNP rs3088309 in CytB (the same 

mtSNP that is involved in the top BD risk association), 
and the nSNP rs583990 (MAF = 0.25 for allele A) located 
in the Cadherin-associated protein, Alpha2 (CTNNA2) 
on chromosome 2 (p2df = 2.1 × 10–7 and pint = 1.6 × 10–6). 
The results suggest that among BD patients the minor al-
lele A of nSNP rs583990 is associated with a greater risk 
of EOBD (i.e., a higher risk of developing BD by the age 
of 19 years), and the effect of the nSNP is greater for car-
riers of the minor mtSNP rs3088309 T allele, compared 
to those with the major mtSNP allele (OR = 4.53 vs. 1.05; 
Fig. 3b). The mtSNP rs3088309 also has suggestive evi-
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risk of early-onset bipolar disorder. a, c p values from 2df tests. b, d Interaction test p values. chr2, chromosome 
2; chr16, chromosome 16; SNP, single-nucleotide polymorphism.
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dence for interacting with nSNP rs9933834 located in in-
terleukin 34 (IL34; pjoint = 1.1 × 10–6; interaction pint = 1.6 
× 10–5) for the risk of EOBD (Table 2; Fig. 2b, 3b). The 
second highest association signal involved the mtSNP 
rs3915952 in ND4 and rs9933834 in IL34 on chromosome 
16 (Table 2; Fig. 2; online suppl. Fig. 2).

When testing for enrichment of nSNP-mtSNP interac-
tion association, no significant enrichment was found for 
the 967 mitochondrial-related genes (online suppl. Ta-
ble 2). The highest evidence of enrichment was observed 
for mtSNP rs28359178 located in ND5 for risk of BD (240 
for the observed number of genes above the cutoff com-
pared to 217 expected genes; GSEA p = 0.05), and with 
rs3899498 (located in ND5; GSEA p = 0.05) and rs28357682 
(located in CytB; GSEA p = 0.05) for risk of EOBD. These 
gene set analysis results are not significant after correc-
tion for multiple testing incurred by performing an en-
richment analysis for each of 15 mtSNPs with an MAF 
>0.10.

Discussion

To our knowledge, this is the first GWAS to investigate 
mtSNP contribution in BD, focusing on nSNP-mtSNP ep-
istatic interaction and the risk of BD as well as EOBD (a 
BD subphenotype). Although no association results were 
genome-wide significant, some highly notable associa-
tions were detected when accounting for mtSNP interac-
tion effects, including nuclear genes that were previously 
reported BD susceptibility genes or have been implicated 
in neuropathology. This proof-of-concept study suggests 
the potential importance of investigating both nuclear and 
mitochondrial genomes in studying the complex genetic 
predisposition for BD as well as the age of disease onset. 
By modeling the modifying effects of mtSNPs on the con-
tribution of nSNPs to BD risk and age of disease onset, 
additional genetic factors may be identified. 

Mt-CytB SNP rs3088309 (and the highly correlated 
mtSNP rs3915952 in ND4) variants were the top mtSNP 
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Fig. 3. OR for each combination of mtSNP 
rs3088309 (0/1 for the minor allele) and 
nSNP (0/1/2 for the number of minor al-
leles) genotypes for top 2 association re-
sults from 2df tests for the risk of bipolar 
disorder (a) and early-onset bipolar disor-
der (b). The pair (mtSNP = 0 and nSNP = 
0) was used as the reference category (i.e., 
OR = 1). mtSNP, mitochondrial single-nu-
cleotide polymorphism; nSNP, nuclear sin-
gle-nucleotide polymorphism.
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with suggestive evidence of interaction with nSNPs in 
contributing to BD risk and EOBD. The Mt-CytB gene is 
responsible for making cytochrome B, which is a key pro-
tein for transferring the electrons (carrier), and cyto-
chrome B is the only component of complex III that  
is produced by mtDNA [46]. The mtSNP rs3088309 
(merged into rs527236209) located in the Mt-CytB gene, 
is a missense variant that causes an amino acid change 
from leucine (major allele) to isoleucine (minor allele) at 
position 236. Given the relevance of the Mt-CytB gene to 
the electron transport chain, any mutation in this gene 
potentially contributes reactive oxygen species, which has 
been shown to be elevated in BD [14, 15]. Being essen- 
tial for electron transport chain, the mutations in CytB 
rs3088309 and ND4 rs3915952 might leave neurons more 
vulnerable to genetic and environmental risk factors. In 
addition, mitochondrial haplogroup JT (the top mtSNPs 
rs3088309 and rs3915952 are part of the haplogroup-de-
fining SNP) has been implicated in early-onset schizo-
phrenia, though the mechanism underlying this associa-
tion is still unknown [47].

The results of this study suggest that for the risk of BD 
the effects of nuclear genes MGAM and AK5 are modu-
lated by variants in mitochondrial genes. AK5 is main- 
ly expressed in the brain and it has been implicated in 
temporal lobe epilepsy, autoimmune limbic encephalitis, 
and Parkinson’s and Alzheimer’s diseases [48–51]. Our 
results suggest that carrying the minor allele of AK5 
rs12733666 may have a protective effect for BD in those 
carrying the minor mtSNP allele. The MGAM gene, re-
lated to starch metabolism, has been shown to be down-
regulated by ZNF804A overexpression (a gene implicated 
in susceptibility to schizophrenia) [52]. In addition, sub-
jects with autism have dysregulated mRNA expression of 
MGAM [53]. Considering its central role in starch me-
tabolism [54], it is plausible that genetic variation in 
MGAM coupled with particular mutations in the mito-
chondrial genome may result in mitochondrial dysfunc-
tion, which may have significant implications for BD 
pathophysiology. 

Our results also suggest that nuclear genes CTNNA2 
and IL34 may interact with mitochondrial variants in 
modulating the risk of EOBD. CTNNA2 is highly ex-
pressed in the brain and encodes an α-catenin important 
for synaptic contact and neuronal plasticity. A CTNNA2 
polymorphism has been implicated in a highly heritable 
excitement-seeking trait, a common trait in BD [55]. 
CTNNA2 knockout mice show axon migration defects as 
well as hippocampal and cerebellar lamination defects 
that are associated with impairments in startle responses 

and fear conditioning [56, 57]. Furthermore, a CTNNA2 
SNP was associated with BD in a GWAS study [58]. IL34 
is a cytokine that is implicated in immune response and 
might play an important role in inflammatory mecha-
nisms in mood disorders [59, 60]. For instance, IL34 cy-
tokine is important for the survival of microglia, the mac-
rophages of the brain that determine the levels of inflam-
mation in the cellular environments [61]. It has been 
suggested that mitochondrial dysfunction may be in-
duced by excessive reactive oxygen species produced by 
activated microglia [62]. 

This work demonstrates a novel approach to studying 
genetic effects on BD; however, the results must be inter-
preted in light of the limitations of this study. Detection 
of interaction effects requires a significantly larger sample 
size compared to standard main-effect genetic analysis. 
This study was based on a small sample, which limited the 
power to detect genome-wide significant associations; to 
partially overcome challenges related to power in this 
study we limited the analyses to common SNPs with an 
MAF >0.1. While none of the mtSNP-nSNP interactions 
were significant after multiple testing correction, replica-
tion of the top interaction signals would strengthen the 
presented findings. A further limitation is that this study 
used mtSNP genotypes from blood samples, not from 
brain samples. However, although mtDNA accumulates 
different mutations in different tissues leading to hetero-
plasmy differences between tissues, previous research has 
demonstrated perfect concordance between homoplas-
mic variants (such as mtSNPs used in this study) in 11 
brain regions and blood, suggesting that blood is suitable 
for the study of homoplasmic mtDNA variation [37]. 

Although none of the associations were statistically 
significant after multiple testing correction, this study is 
the first GWAS investigating the effects of mitochondrial 
genome variation on the risk of BD and a BD subpheno-
type (early onset vs. adult onset), while considering the 
combined effects of nuclear and mitochondrial genetic 
variants. Our novel approach of investigating mtSNP 
modulation of the nSNP contribution to the risk of BD 
found suggestive evidence of the joint effect of mtSNPs 
and several candidate genes with biological relevance to 
BD and its onset. This concept of analyzing nSNP effects 
while accounting for interactions with mtSNPs warrants 
further investigation in larger samples.

In conclusion, our study demonstrated the potential 
importance of considering the mitochondrial genome for 
uncovering additional genetic factors in BD, especially for 
nuclear genes that do not have a strong signal alone but 
whose effects depend on mitochondrial genetic variants. 
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