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Abstract

Goal-directed behavior and lifelong well-being often depend on the ability to control appetitive motivations, such as crav-
ings. Cognitive reappraisal is an effective way to modulate emotional states, including cravings, but is often studied under
explicit instruction to regulate. Despite the strong prediction from Self-Determination Theory that choice should enhance
task engagement and regulation success, little is known empirically about whether and how regulation is different when
participants choose (vs are told) to exert control. To investigate how choice affects neural activity and regulation success,
participants reappraised their responses to images of personally-craved foods while undergoing functional neuroimaging.
Participants were either instructed to view or reappraise (‘no-choice’) or chose freely to view or reappraise (‘yes-choice’).
Choice increased activity in the frontoparietal control network. We expected this activity would be associated with
increased task engagement, resulting in better regulation success. However, contrary to this prediction, choice slightly
reduced regulation success. Follow-up multivariate functional neuroimaging analyses indicated that choice likely disrupted
allocation of limited cognitive resources during reappraisal. While unexpected, these results highlight the importance of
studying upstream processes such as regulation choice, as they may affect the ability to regulate cravings and other
emotional states.
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Introduction

The ability to control appetitive urges, such as cravings for food
or drugs, or impulses to engage in risky sexual behavior, is an
essential skill for health and well-being. Craving is an affective
state characterized by strong appetitive motivation and can be
regulated using various strategies (Giuliani and Berkman, 2015;
Kober and Mell, 2015), including cognitive reappraisal or the
reconstrual of a stimulus to change its affective meaning
(Gross, 1998). Recent research has shown that cognitive re-
appraisal can be used to effectively reduce cravings for a variety of
appetitive stimuli, including food (Siep et al., 2012; Giuliani et al.,
2013; Yokum and Stice, 2013; Giuliani et al., 2014), drugs (Kober

et al., 2010; Kober et al., 2010) and alcohol (Naqvi et al., 2015) and elic-
its activity in a network of regions, including dorsolateral (dlPFC),
ventrolateral prefrontal cortex and dorsomedial prefrontal cortex
(dmPFC) (for a meta-analysis, see Buhle et al., 2014). While the im-
plementation of cognitive reappraisal has been studied exten-
sively, much less is known about earlier stages in the emotion
regulation process, including the decision to engage in regulation
(Gross, 2015). As emotion regulation in the real-world typically
begins with the decision to regulate, laboratory studies focusing ex-
clusively on regulation implementation may actually misjudge indi-
viduals’ emotion regulation abilities outside the lab where they
might otherwise choose not to engage in emotion regulation in the
first place, independent of ability. Indeed, previous research has

Received: 11 July 2017; Revised: 9 January 2018; Accepted: 14 February 2018

VC The Author(s) (2018). Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
For commercial re-use, please contact journals.permissions@oup.com

300

Social Cognitive and Affective Neuroscience, 2018, 300–309

doi: 10.1093/scan/nsy010
Advance Access Publication Date: 15 February 2018
Original article

Deleted Text: , 
Deleted Text: , 
Deleted Text: work 
Deleted Text: Giuliani <italic>et<?A3B2 show $146#?>al.</italic>, 2013
Deleted Text: ; <xref ref-type=
Deleted Text: ,
Deleted Text: ), 
Deleted Text:  (vlPFC), 
Deleted Text: analysis 
https://academic.oup.com/


indicated that regulation ability and frequency are only modestly
related (McRae et al., 2012) if at all (Giuliani and Pfeifer, 2015).

Emotion regulation choice

Although this is a relatively new area, researchers have begun
to investigate the process of choosing to engage in emotion
regulation and factors affecting choice. Within the extended
process model of emotion regulation (Gross, 2015), this ante-
cedent stage is referred to as identification, and concerns the
processes of forming an emotion regulation goal that ultimately
leads to the decision to engage (or not engage) in regulation.
Initial studies indicate that when given the choice whether to
naturally view aversive images or engage in emotion regulation,
individuals choose to regulate their emotions using cognitive
reappraisal, though there are individual differences in fre-
quency, and mean frequencies across individuals are lower
than might be expected (Suri et al., 2015; Doré et al., 2017). For ex-
ample, Suri et al. (2015) showed that when individuals were
forced to make a choice between viewing aversive images and
cognitively reappraising them, individuals chose to reappraise
on approximately 40% of trials. However, when the forced
choice was removed and the default option was to view
(which may be more akin to the default in the real world),
participants chose to reappraise relatively infrequently (ap-
proximately 10% of trials), demonstrating that although individ-
uals do choose to use cognitive reappraisal to reduce negative
affect, their choices are strongly influenced by the choice
architecture.

However, whether and how choosing to regulate affects
regulation implementation remains unknown. While the ex-
tended process model does not make explicit predictions re-
garding this relationship, it does posit that the strength of the
emotion regulation goal formed during identification will affect
the efficacy of implementation, with stronger regulation goals
leading to more effective implementation. One factor that likely
affects the strength of the regulation goal and the subsequent
implementation process is the degree to which the decision to
regulate is self-determined.

Choice supports autonomous self-regulation

Self-Determination Theory (Deci and Ryan, 2000) suggests that
the degree to which a goal is autonomous will affect the level of
intrinsic motivation to regulate. Indeed, environments and
choice architectures that promote autonomy facilitate self-
regulation and improve health and well-being (Deci and Ryan,
2000; Ng et al., 2012). Although it is difficult to manipulate au-
tonomy in the laboratory, autonomy can be supported by pro-
viding individuals with choice. For example, one study showed
that choice improved self-regulation on the Stroop task, by
increasing intrinsic motivation and heightening attentional en-
gagement (Legault and Inzlicht, 2013). In the context of emotion
regulation, one functional neuroimaging (fMRI) study compared
the neural and affective consequences of freely chosen re-
appraisal of aversive images (choice condition) and instructed
reappraisal of aversive images (no choice condition; Kühn et al.,
2014). In line with the findings from Legault and Inzlicht (2013),
choice was associated with increased activity in regions associ-
ated with attention and control (e.g. dlPFC, dmPFC and posterior
parietal cortex) and enhanced regulation success. However, it is
unknown whether choice will similarly enhance emotion regu-
lation in response to appetitive stimuli.

The present study

The present study integrates the extended process model of
emotion regulation and Self-Determination Theory to investi-
gate the relationship between regulation identification and
implementation, and characterize whether choice enhances
craving regulation at the behavioral and neural levels during re-
appraisal of appetitive stimuli. Participants were presented
with images of personally craved foods and performed two
actions: they either actively viewed the foods (‘look’) or reap-
praised their cravings for them (‘regulate’). Choice was manipu-
lated by instructing participants on each trial whether to view
or reappraise (‘no-choice’) or asking them to choose whether to
view or reappraise (‘yes-choice’). We hypothesized that choice
would increase intrinsic motivation to regulate, resulting in
greater regulation success. As such, we expected an interaction
between action (look vs regulate) and choice (yes vs no) on crav-
ing ratings, such that choice would increase regulation success.
Neurally, we expected increased blood-oxygen-level-dependent
(BOLD) signal in the frontoparietal control network (e.g. dlPFC,
dmPFC and posterior parietal cortex) for the main effect of
choice. Due to the lack of previously reported effects, we did not
have strong hypotheses regarding regions involved in potential
interactions between choice and action.

Materials and methods
Participants

Participants were 33 incoming college students (16 females,
M¼ 18.12, s.d.¼ 0.34) recruited in the summer during freshman
orientation at the University of Oregon, as part of a longitudinal
study on health and well-being during the transition to college.
Three participants were excluded from all analyses for failure to
comply with instructions and one for indicating they disliked
the food images. Two additional subjects were excluded from
the univariate neural analyses because they exhibited excessive
motion or did not complete the final run of the task. As follow-
up multivariate analyses could still be performed on the partici-
pant missing the final task run, this participant was included in
these analyses. This yielded a total of 29 participants for behav-
ioral analyses, 27 for univariate neural analyses and 28 for
multivariate neural analyses. This study was approved by the
University of Oregon Institutional Review Board; all participants
gave written informed consent and were compensated for their
participation.

Procedure

Participants were presented with images of personally craved
foods and completed a craving regulation task while in the MRI
scanner. Prior to this, participants completed a structured train-
ing session to learn how to perform the craving regulation task
and selected their top three ‘most craved’ foods from a list of 14
food categories (described below). Food craving was operation-
alized as having a strong desire to eat the food even when not
hungry. To control for individual differences in hunger, partici-
pants reported their current hunger on a five-point scale
(1¼not hungry at all, 5¼ extremely hungry) and the time since
their last meal. Body mass index (weight in kg/height in m2)
was measured to control for individual differences in body
mass. Participants were then situated in the MRI scanner and
completed the craving regulation task (described below). To en-
sure task compliance, the experimenter interviewed partici-
pants after the first run of the task to help them improve their
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reappraisal strategy if they reported having difficulty and again
after scanning to assess fidelity to the reappraisal instructions.
Outside of the scanner, participants completed a short rating
task in which they rated their craving for (i.e. the desire to eat)
each of the food images they viewed while in the scanner.
Participants also completed a number of survey measures as a
part of the longitudinal study that will not be discussed further.

Stimuli

Stimuli were 84 appetizing images of food items based on par-
ticipants’ food preferences. Participants chose their top three
‘most craved’ food categories from the following menu: barbe-
que, burgers, candy, cheese, chips, chocolate, cookies, dough-
nuts, French fries, fruit, fruit desserts, pasta, pizza and roasted
vegetables. Each category contained 28 images independently
rated for desirability (stimuli available via http://dsn.uoregon.
edu/foodie).

Craving regulation task

Participants completed a craving regulation task (Giuliani et al.,
2014; Giuliani and Pfeifer, 2015) that was modified to include an
choice manipulation. Participants either actively viewed (‘look’
condition) or reappraised their craving for (‘regulate’ condition) the
food images. On half of the trials, participants freely chose whether
to look or regulate (‘yes-choice’ condition), and on the other half,
participants were instructed whether to look or regulate (‘no-
choice’ condition). Therefore, the task design was a 2� 2 within-
subjects repeated measures factorial with action (look, regulate)
and choice (yes, no) as factors. To ensure a sufficient number of ob-
servations per condition, participants were instructed to choose to
look approximately 50% of the time and to regulate the other 50%.
They were reassured, however, that it was fine if their ratio was
not exactly 50/50. They were also informed that their choices
should be spontaneous (e.g. not alternating between the two ac-
tions). Descriptive analyses confirmed that participants were gen-
erally able to follow these instructions. The average percentage of
regulation trials in the choice condition was 49.4% (s.d.¼ 5.4%;
range¼ 38.1%–61.0%). More information regarding the relationship
between percentage of regulation trials and outcome measures
can be found in the Supplementary material.

On all look trials, participants were instructed to imagine
that the food items were real and to consider how they would
interact with them. On all regulate trials, participants were in-
structed to reappraise their craving for the foods by considering
short- or long-term negative health consequences associated
with consumption (e.g. stomach aches, weight gain, cavities),
and participants were instructed to try to imagine how the
health effects would feel physically. With the help of the experi-
menter, participants generated several negative health conse-
quences so as to have multiple strategies to use while
completing the task.

Each trial (see Figure 1) was 15 seconds long and consisted of
the following events: cue (2 seconds), image presentation (7 se-
conds), craving rating (4 seconds) and action report (2 seconds).
Inter-trial intervals were selected from a gamma distribution jit-
ter (M¼ 1.01, s.d.¼ 0.26), and participants viewed a fixation
cross during this period. On each trial, participants were cued
about the instruction to look or regulate (no-choice condition)
or to make a choice to look or regulate (yes-choice condition).
The task consisted of three runs and each run consisted of 28
trials: 7 trials instructing participants to look, 7 trials instructing
participants to regulate and 14 trials instructing participants to

choose whether to look or regulate. To reduce potential image-
related confounds (i.e. choosing to regulate on relatively less
craved images and choosing to look on relatively more craved
images) on choice trials, participants made their decision during
the cue phase and were told that it was important to stick with
their choice once made. After the cue, participants proceeded to
look or regulate while viewing the food image, reported their
craving for the food by rating how much they desired to eat the
food item (1¼no desire, 5¼ strong desire) and finally reported
their instructed or chosen action. To minimize demand charac-
teristics (e.g. reduced craving ratings on regulate trials), the ex-
perimenter stated that participants were not expected to be
able to regulate well on every trial and stressed the importance
of making honest craving ratings. Within each run, the trial
order was optimized to maximize contrast estimation using a
genetic algorithm (Wager and Nichols, 2003). Stimuli and trial
order varied by subject, and run order was also counterbalanced
across participants. Stimuli were presented using Psychtoolbox
3 (Brainard, 1997), and participants responded using a five-but-
ton box.

Post-task craving ratings

Participants completed a rating task after the scan session to ac-
count for idiosyncratic reactions to stimuli (e.g. not liking some
ice cream images due to the presence of a disliked topping).
Participants were instructed to view the images afresh and rate
their current craving, irrespective of their rating during the
regulation task. Post-task ratings were centered within-subject
to account for potential habituation effects.

Neuroimaging data acquisition

Data were acquired using a 3T Siemens Skyra scanner at the
University of Oregon’s Lewis Center for Neuroimaging. High reso-
lution anatomical volumes were acquired using a T1-weighted MP-
RAGE pulse sequence and functional volumes were acquired using
a T2*-weighted echo-planar sequence (voxel size¼ 2 mm3). Scan
parameters are listed in Supplementary material.

Behavioral analysis

Multilevel modeling was used to test the effects of action and
choice on self-reported craving ratings. Post-task craving rat-
ings were included as a covariate to control for idiosyncratic re-
actions to stimuli. The model included the fixed effects of
action, choice, action� choice and post-task craving ratings,
and the inclusion or exclusion of random effects was deter-
mined by sequentially removing effects that did not account for
significant variance (see Supplementary material). Regulation
success was defined as the mean difference in craving ratings
between look and regulate conditions (look � regulate) and was
calculated for each level of choice separately. Statistical ana-
lyses were performed in R 3.3.0 (R Core Team, 2016; https://
www.r-project.org/) using the lme4 package (Bates et al., 2015).
Behavioral data and related analysis scripts are available via the
Open Science Framework (http://osf.io/e9cqv).

Univariate neural analysis

Images were preprocessed and analyzed using SPM12
(Wellcome Department of Cognitive Neurology; http://www.fil.
ion.ucl.ac.uk/spm) with the following steps: realignment of
functional images, coregistration of the anatomical image,
manual reorientation of all images, and segmentation of the
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anatomical image. Segmented images for each subject were
combined to form a group template using Dartel and flow fields
were generated for each subject. Functional images were then
spatially normalized to a Montreal Neurological Institute (MNI)
standard using the Dartel template and individual flow fields,
and smoothed using a 6 mm3 full-width at half maximum
(FWHM) Gaussian smoothing kernel.

In first-level statistical analyses, event-related condition ef-
fects were estimated using a fixed-effects general linear model
and convolving the canonical hemodynamic response function
with stimulus events. Separate regressors were entered for con-
ditions of interest (no-choice look, yes-choice look, no-choice
regulate and yes-choice regulate) and modeled during the
image presentation period. Additional regressors were added
for the cue period, rating period and reporting period.
Realignment parameters were transformed into five motion
regressors, including absolute displacement from the origin in
Euclidean distance and the displacement derivative for both
translation and rotation, and a single trash regressor for images
with>1 mm translation or rotation or visible motion artifacts
(e.g. striping). These regressors were included as covariates of
no interest. One participant was excluded from the group-level
analysis for having>15% unusable volumes, which was more
than 3 s.d. from the mean (M¼ 2.26%, s.d.¼ 4.08%). Additional
regressors (covariates of no interest) were included as needed
for trials in which participants failed to report whether they
looked or regulated during yes-choice trials (N¼ 21, 0.87% of
trials), or reported doing the opposite of the instruction during
no-choice trials (N¼ 20, 0.83% of trials). All data were high-pass
filtered at 128 seconds and modeled with a first-order autore-
gressive error structure. Linear contrasts for each condition of
interest vs rest were estimated for each participant and used as
inputs in second-level analyses.

A flexible factorial model was used to estimate second-level
random effects. To determine the main effects of action, choice
and their interaction, condition contrast images from each par-
ticipant were used as inputs. This model was masked using a
gray matter mask created by calculating the average of all sub-
jects’ segmented grey matter maps, smoothing the average
with a 6 mm3 FWHM Gaussian smoothing kernel and binarizing
using the optimal thresholding protocol.

To correct for multiple comparisons, cluster-extent thresh-
olding was implemented using AFNI version AFNI_16.1.06 (Cox,
1996). Smoothness was first estimated for each subject using
AFNI’s 3dFWHMx tool with the spatial autocorrelation function
and then averaged across subjects. To determine probability
estimates of false-positive clusters given a random field of
noise, Monte-Carlo simulations were conducted with AFNI’s
3dClustSim. To achieve a whole-brain familywise error rate of
a¼ 0.05, a voxel-wise threshold of P< 0.001 and cluster extent of
k> 108 was estimated (voxel dimensions¼ 2 mm3).

Multivariate neural analysis

To further explore differences in neural activity between yes-
choice and no-choice trials, we conducted a follow-up analysis
using multi-voxel pattern analysis (MVPA). For each participant,
functional images were realigned, coregistered to the high-
resolution anatomical image and smoothed using a 2mm3

FWHM Gaussian smoothing kernel in SPM12. The same first-
level modeling procedure detailed above was followed, with the
exception that models were run in native-space and each trial
was entered in the model as a separate regressor (rather than
grouped by condition). The resulting statistical maps for each
trial were concatenated to create a beta-series (Rissman et al.,
2004) and z-scored within run.

Classifier-based MVPA analyses were implemented in
MATLAB 2014a (MathWorks; http://www.mathworks.com) using
the Princeton MVPA Toolbox (Detre et al., 2006). To restrict the
number of voxels, subject-specific masks were created using a
standard parcellation atlas based on intrinsic connectivity from
resting-state fMRI (Thomas Yeo et al., 2011). The frontoparietal
network from this atlas was registered for each subject using
FreeSurfer (Fischl, 2012; http://surfer.nmr.mgh.harvard.edu/)
and binarized in SPM12. We then tested how well the trial-by-
trial activation patterns in the frontoparietal network differenti-
ated between look and regulate trials using a leave-one-out
cross-validation procedure. During each cross-validation fold, a
linear logistic regression classifier was trained to distinguish be-
tween look and regulate trials from two of three functional runs
and then applied to the remaining run. This procedure was re-
peated so that each run served as a testing run, yielding three
cross-validation accuracies for each subject. To test whether
classification accuracy differed as a function of level of choice,
this procedure was conducted separately for yes-choice and no-
choice trials and accuracy was regressed on choice using multi-
level modeling with subject intercepts as random effects.

Results
Behavioral results

We used multilevel modeling to evaluate the effect of choice
and action on self-reported craving ratings. All parameter esti-
mates and relevant statistics can be found in Table 1.
Consistent with previous findings, we found a significant main
effect of action (see Figure 2), with lower ratings for food items
on regulate trials (M¼ 2.36, s.d.¼ 0.98) than on look trials
(M¼ 3.72, s.d.¼ 1.14). As expected, craving ratings on no-choice
trials (M¼ 3.04, s.d.¼ 1.29) did not differ from yes-choice trials
(M¼ 3.05, s.d.¼ 1.24) and the main effect of choice on craving
ratings was not significant. The interaction between
action� choice was significant (Figure 3), but contrary to our
predictions, the difference between look and regulate trials was

Fig. 1. Task design. Each trial consisted of a 2 second cue period, followed by a 7 second image presentation during which participants looked or regulated while view-

ing the food image. Participants then had 4 seconds to rate their desire to eat the food and 2 seconds to report whether they looked or regulated on the trial. All trials

ended with a jittered fixation cross for an average of 1 second.

D. Cosme et al. | 303

Deleted Text: , 
Deleted Text: , 
Deleted Text: e.g.,
Deleted Text: standard deviations 
Deleted Text: SD
Deleted Text: versus
Deleted Text: , 
Deleted Text: grey 
Deleted Text: , 
Deleted Text: false 
Deleted Text: <italic>p</italic>
Deleted Text: , 
http://www.mathworks.com
http://surfer.nmr.mgh.harvard.edu/
Deleted Text: Choice
Deleted Text: Choice 
Deleted Text: Choice 
Deleted Text: Action 
Deleted Text: Action 
Deleted Text: SD&thinsp;
Deleted Text: SD
Deleted Text: SD
Deleted Text: SD
Deleted Text: Choice 
Deleted Text: A
Deleted Text: Choice 
Deleted Text: see 


lower for yes-choice trials (Mdiff¼ 1.29, s.d.¼ 0.59) than for no-
choice trials (Mdiff¼ 1.42, s.d.¼ 0.60). Further, visual inspection
revealed that choice affected both the look and regulate condi-
tions, with cravings on yes-choice look trials rated lower than
on no-choice look trials and higher on yes-choice regulate trials
than on no-choice regulate trials (Figure 3B). Including hunger,
last meal time, and body mass index did not improve model fit
or change any of the results, v2(3)¼ 1.79, P¼ 0.616.

Univariate neural results

Main effect of choice. To investigate areas that showed relatively
greater BOLD signal during implementation following choice, a
contrast of yes>no was computed during the image presenta-
tion period (Figure 4). We observed increased BOLD signal in the
frontoparietal control network, with significant clusters in bilat-
eral posterior parietal cortex and lateral and medial prefrontal
cortex. Additional clusters were found in left inferior temporal
gyrus and left cerebellum. The reverse contrast, no> yes choice
(Figure 4), revealed significant clusters of activation in bilateral
ventromedial prefrontal cortex with a peak in left middle orbital
gyrus. Table 2 shows the full results. Unthresholded statistical
maps for this effect and all other effects reported in this article
are available through NeuroVault (Gorgolewski et al., 2015;
http://neurovault.org/collections/2427).

Main effect of action. To assess which areas of the brain had rela-
tively stronger BOLD response when participants were

reappraising their cravings and actively viewing food items, we
computed contrasts for regulate> look and look> regulate.
These results maps are visualized in Figure 5, and clusters that
survived thresholding are reported in Table 3.

Interaction between action and choice. No significant clusters of
activation for either the positive or negative effect of the inter-
action survived thresholding. However, to explore sub-threshold
interactions, we parcellated the brain into 353 clusters (Craddock
et al., 2012) and calculated the average effect size for the inter-
action within each parcel. This map, as well as similar maps for
the simple effects, has been uploaded to the collection for this
article on NeuroVault.

Post hoc multivariate neural results

We expected that choice would increase engagement with the
task, resulting in increased activity in attention- and control-
related regions and greater regulation success. Though we
observed increased activity in the frontoparietal network fol-
lowing choice, behavioral results indicated reduced rather than
enhanced regulation success. Although seemingly at odds, one
hypothesis consistent with these findings is that choice may
disrupt concurrent allocation of cognitive resources that are
bandwidth limited (Vohs et al., 2008). We reasoned that if choice
disrupted cognitive resource allocation during implementation,
then neural representations for look and regulate would be less
distinguishable in the yes-choice vs no-choice condition,

Fig. 2. (A) Parameter estimates for the fixed-effect of action from the multilevel model predicting self-reported craving ratings and (B) the raw subject means. Error bars

and bands are 95% confidence intervals.

Fig. 3. Parameter estimates from the multilevel model predicting self-reported craving ratings, plotted as (A) mean regulation success (look � regulate) for no- and yes-

choice separately and (B) the interaction between action and choice (blue¼no, yellow¼yes). Error bars are 95% confidence intervals.
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mirroring the reduced self-reported regulation success in the
choice condition. To test this hypothesis, we conducted post
hoc analyses using MVPA. We measured classification accuracy
of look vs regulate trials in the frontoparietal network and pre-
dicted lower classification accuracy on yes-choice relative to
no-choice trials. Consistent with this prediction, we observed
significantly lower classification accuracy for yes-choice
(M¼ 0.65, s.d.¼ 0.16) than for no-choice (M¼ 0.70, SD¼ 0.17) tri-
als, t(137.17)¼ 2.48, P¼ 0.014. Parameter estimates and statistics
are in Table 4 and visualized in Figure 6.

Discussion

Our goal was to investigate whether and how choice affects ap-
petitive regulation during a craving reappraisal task. As ex-
pected, reappraisal effectively reduced self-reported craving for
personally craved foods. In line with previous studies, we also
observed increased activity in regions associated with re-
appraisal (e.g. dlPFC, ventrolateral prefrontal cortex and dmPFC)
and decreased activity in vmPFC, a region implicated in valu-
ation and reward-processing (Hare et al., 2009; Kober et al., 2010;
Giuliani et al., 2014). However, contrary to our prediction, choice
slightly reduced rather than enhanced regulation success. This
behavioral effect was not readily explainable by the univariate
activation results. While choice was associated with relatively
greater BOLD signal in the frontoparietal control network, there

were no interactions at the whole-brain level that might explain
the behavioral results. To reconcile the neural and behavioral
findings, we hypothesized that choice may have disrupted allo-
cation of cognitive resources during implementation.
Consistent with this hypothesis, classifier-based MVPA demon-
strated less differentiation between look and regulate trials in
the yes-choice relative to no-choice condition.

Neural and behavioral effects of choice

Based on the theoretical premise that choice would enhance
motivation for and engagement with the task, we expected to
see increased BOLD signal in regions associated with attention
and control following choice. In accordance, we replicated pre-
vious research showing increased activity in the frontoparietal
control network during choice trials (Kühn et al., 2014).
However, in contrast to Kühn et al. (2014), this activity was not
accompanied by enhanced regulation success. Instead, choice
slightly reduced regulation success on average.

One key difference between Kühn et al. (2014) and our study
is that we used appetitive rather than aversive stimuli. Because
appetitive stimuli like craved foods typically elicit approach ten-
dencies rather than avoidance tendencies (Lang and Bradley,
2010), motivation to regulate affective responses likely differs
between appetitive and aversive stimuli. This asymmetry may
have made regulation more effortful in our study and could

Table 1. Parameter estimates for fixed effects behavioral analysis

Parameter b 95% CI SE df t P

Intercept 3.70 3.51 3.90 0.10 32.00 37.48 <0.001
Choice (yes) �0.07 �0.16 0.03 0.05 2261.57 1.37 0.171
Action (regulate) �1.34 �1.57 �1.10 0.12 33.75 11.43 <0.001
Average post-task rating 0.39 0.33 0.46 0.03 28.34 11.83 <0.001
Choice � action 0.15 0.01 0.29 0.07 2256.06 2.14 0.032

Note. The reference group for choice is no and the reference group for action is look. Degrees of freedom (df) were calculated using the Satterthwaite approximation.

CI, confidence interval.

Fig. 4. Univariate main effects for choice. Results are thresholded at P<0.001 and k¼ 108. Cluster extent (k) is measured in 2 mm3 voxels.
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have undermined potential regulatory enhancement effects
of choice. Although this has not been tested directly with
emotional pictures, recent research has shown that affective
context can modulate the effect of choice. For example,
when both gains and losses are presented, individuals prefer
choice in the gain, but not the loss condition (Leotti and
Delgado, 2014).

Another potential explanation that reconciles these findings
is that choice led to inefficient allocation of limited cognitive re-
sources, such as attention and working memory. On choice tri-
als, participants may have over-allocated attention to the
decision during the choice phase (e.g. by tracking the number of
times they chose to look and regulate) or equivocated about the
decision during the implementation phase, resulting in the
combination of increased activity in the frontoparietal network
and reduced implementation efficacy. Consistent with this ex-
planation, the follow-up MVPA analyses suggested that the neu-
ral representations for look and regulate trials were less
differentiable. The pattern of the behavioral results also sup-
ports this conclusion, as choice reduced implementation effi-
cacy for both look and regulate trials. That is, craving ratings
were lower on yes-choice look trials than on no-choice look tri-
als and higher on yes-choice regulate trials than on no-choice
regulate trials. Together, these results support the hypothesis
that, rather than enhancing task engagement and regulation
success, in some contexts, choice may disrupt regulation. These
findings are significant because the majority of research on cog-
nitive reappraisal has focused narrowly on regulation per se
without considering the effects of the antecedent choice to
regulate, and therefore may misjudge cognitive regulation abil-
ity outside the lab when individuals must first choose to regu-
late their emotions.

Helpful and harmful effects of choice

Although the present manipulation of choice did not enhance
regulation success, other laboratory studies have demonstrated
positive effects of choice on self-regulation (Legault and
Inzlicht, 2013; Kühn et al., 2014) and task performance
(Murayama et al., 2015) and engagement (Leotti and Delgado,
2011; Legault and Inzlicht, 2013) more generally. Although sev-
eral of these studies manipulated choice in a similar fashion, it
is possible that choice in the context of this study may have
felt burdensome rather than motivating (Schwartz, 2000; Vohs
et al., 2008).

Table 2. Regions, MNI coordinates, cluster extent, and peak t values
for the main effects of yes>no choice and no>yes choice

Contrast and region MNI coordinates
(x, y, z)

Extent
(k)

Peak
t

Yes > no
R angular gyrus 44 �50 38 1037 6.03

R inferior parietal lobule 44 �44 60 1037 4.02
R middle frontal gyrus 32 46 38 1952 5.88

R middle frontal gyrus 42 50 20 1952 5.41
R middle orbital gyrus 22 60 �8 1952 4.58

L inferior parietal lobule �44 �48 42 1013 5.23
L superior parietal lobule �32 �64 50 1013 3.67

L cerebellum (VII) �40 �72 �52 771 5.06
L cerebellum (VIII) �40 �48 �46 771 4.59
L cerebellum (Crus 1) �42 �80 �26 771 4.07

Bilateral PCC 0 �26 28 140 4.83
R precuneus 12 �60 40 272 4.73

L precuneus �8 �66 40 272 4.53
L superior medial gyrus 2 22 50 363 4.51
L inferior temporal gyrus �60 �34 �18 221 4.47
L middle frontal gyrus �32 54 18 265 4.41
R IFG (p. orbitalis) 36 26 �6 142 4.39
R superior frontal gyrus 18 18 54 326 4.08

R middle frontal gyrus 38 10 52 326 3.88
L inferior parietal lobule �38 �52 44 1013 3.37

No > yes
L mid orbital gyrus �2 50 �8 334 4.91

Note. Cluster family-wise error correction for a¼0.05 and P<0.001 is k¼108.

Cluster extent (k) is measured in 2 mm3 voxels.

Fig. 5. Univariate main effects for action. Results are thresholded at P<0.001 and k¼ 108. Cluster extent (k) is measured in 2 mm3 voxels.

306 | Social Cognitive and Affective Neuroscience, 2018, Vol. 13, No. 3

Deleted Text:  &amp; 
Deleted Text: e.g.,
Deleted Text: , 
Deleted Text: K&uuml;hn <italic>et<?A3B2 show $146#?>al.</italic>, 2014; 
Deleted Text: ), 
Deleted Text: ; Leotti &amp; Delgado, 2011)


Indeed, although choice often promotes autonomy and in-
trinsic motivation, in certain contexts, choice can be detrimen-
tal. For example, individuals report decreased preference for
choice in decisions involving unattractive or difficult options
(Iyengar and Lepper, 2000; Botti and lyengar, 2004). For choice to
enhance motivation, choices should feel volitional and self-
determined (Reeve et al., 2003; Ryan and Deci, 2006). If individ-
uals feel pressured or compelled to choose a particular option,
or if the choice does not confer actual agency (i.e. the locus of
perceived causality is external), the positive effects of choice
can be undermined (Moller et al., 2006; Legault and Inzlicht,
2013; Sullivan-Toole et al., 2017). In our study, we asked partici-
pants to try to look and regulate approximately equally. While
necessary to ensure there were sufficient trials per condition,
this may have reduced participants experience of self-
determination on choice trials. Further, because we sought to
study the effect of choice on craving regulation in a normative
sample and therefore did not explicitly recruit participants
based on health- or diet-related goals, it is possible that choice
in this context may not have been meaningful to all partici-
pants. Future research assessing the relationship between
choice and craving regulation may benefit from a stronger
choice manipulation to support autonomy, such as by providing
more personally relevant choices or studying this relationship
in individuals with explicit health or dietary concerns.

This study has several limitations. First, on choice trials, par-
ticipants chose before viewing the food images. We did this to
avoid confounding the decision to regulate with stimulus fea-
tures (e.g. looking when food images were relatively more
craved and regulating when food images were relatively less
craved), even though it restricted ecological validity. Second,
our task was not designed to assess how choice affected neural
activity separately during the choice and implementation
phases. Because regulation choices likely involve a host of cog-
nitive processes, such as working memory to track previous de-
cisions and effort calculations (Shenhav et al., 2013), we cannot
rule out that these processes extended into the implementation
phase. Indeed, this explanation would be consistent with the
pattern of results indicating that choice disrupted implementa-
tion. Future studies may benefit from separating the choice and
implementation phases to control for increases in cognitive
load associated with choice (e.g. decision making and set shift-
ing; Lo et al., 2012). It is possible that doing so would reduce the
cognitive disruption and lead to enhanced regulatory success in
the choice condition. However, it is important to note that im-
plementation under the present conditions may more closely
resemble the implementation process in the real-world. Third,
to have sufficient trials per condition, participants were in-
structed to look and regulate approximately equally. This was
necessary to ensure adequate power, but regulation frequency
is likely an individual difference that should be investigated
subsequently (see Supplementary material; McRae et al., 2012).
Fourth, we did not measure affective experience, perceived

Table 3. Regions, MNI coordinates, cluster extent and peak t values
for the main effects of regulate> look and look> regulate

Contrast and region MNI coordinates
(x, y, z)

Extent
(k)

Peak
t

Regulate > look
L post. med. frontal gyrus �8 14 66 1796 7.49

L superior frontal gyrus �12 52 42 1796 6.63
L superior medial gyrus �8 34 52 1796 5.78

L middle frontal gyrus �44 10 54 782 6.88
L IFG (p. orbitalis) �48 34 �12 2495 6.83

L temporal pole �40 14 �40 2495 6.06
L IFG (p. triangularis) �54 18 16 2495 5.91

R cerebellum (VII) 32 �76 �44 1216 6.75
R cerebellum (crus 2) 10 �82 �26 1216 5.37

L middle temporal gyrus �66 �36 �2 167 4.38
Look > regulate

R IFG (p. triangularis) 48 34 20 3284 6.02
R middle orbital gyrus 38 48 �6 3284 5.87
R superior frontal gyrus 20 58 10 3284 5.22

L postcentral gyrus �50 �22 22 3657 5.89
L IFG (p. opercularis) �60 6 32 3657 5.61
L postcentral gyrus �42 �32 60 3657 5.48

R intraparietal sulcus 30 �44 42 3125 5.53
R rolandic operculum 58 �18 22 3125 5.37
R angular gyrus 34 �66 52 3125 4.85

R insula lobe 42 �2 12 181 5.42
L insula lobe �42 �2 12 259 4.89
L post. med. frontal gyrus �2 �4 54 189 4.88
R MCC 10 �38 42 769 4.79

R precuneus 6 �66 50 769 3.85
L precuneus �2 �46 62 769 3.59

R inferior temporal gyrus 58 �40 �12 554 4.74
R cerebellum (crus 1) 48 �56 �24 554 3.72
R inferior temporal gyrus 60 �20 �22 554 3.54

R IFG (p. opercularis) 46 8 32 516 4.74
R IFG (p. opercularis) 56 8 14 516 3.94

L cerebellum (VIII) �28 �70 �52 298 4.69
R cerebellum (VIII) 22 �56 �52 260 4.29
R calcarine gyrus 10 �68 22 285 4.19
L inferior temporal gyrus �52 �58 �8 163 3.89

Note. Cluster family-wise error correction for a¼0.05 and P<0.001 is k¼108.

Cluster extent (k) is measured in 2 mm3 voxels.

Fig. 6. Mean group and subject classification accuracy from MVPA analyses classify-

ing look and regulate trials, plotted separately for no- and yes-choice. Error bars are

95% confidence intervals and the dotted line at 50% represents chance accuracy.

Table 4. Parameter estimates for fixed effects of MVPA analysis

Parameter b 95% CI SE df t P

Intercept 0.70 0.66 0.75 0.02 41.82 29.91 <0.001
Choice (yes) �0.05 �0.09 �0.01 0.02 137.17 2.48 0.014

Note. The reference group for choice is no. Degrees of freedom (df) were calcu-

lated using the Satterthwaite approximation. CI, confidence interval.
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effort or self-determination. Including these measures would
help characterize the effects of choice on craving regulation.
Fifth, we focused on cognitive reappraisal, but there are other
effective regulatory strategies, such as mindfulness-based
approaches, that require less effortful control (Westbrook et al.,
2013; Kober and Mell, 2015). Because choice appears to have
taxed limited cognitive resources, it may differentially affect
such regulatory strategies and should be investigated in future
studies. Finally, future studies should extend this work to in-
clude other outcomes measures, such as food choice (Hare et al.,
2011; Hutcherson et al., 2012).

Conclusions

The present study is the first to investigate how choice affects
appetitive regulation in the context of a craving reappraisal
task. This study adds to the growing body of research on the
cognitive regulation of appetitive motives, as well as emerging
research on regulation choice. Contrary to the theoretical pre-
diction that choice would increase task engagement and im-
prove regulation, choice actually disrupted the implementation
process, resulting in increased activity in the frontoparietal net-
work and reduced regulation success. These unexpected results
highlight the importance of considering upstream processes,
such as regulation choice, when studying emotion regulation.
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