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Although metabolomics are desirable to understand the
pathophysiology of gestational diabetes mellitus (GDM),
comprehensive metabolomic studies of GDM are rare. We
aimed to offer a holistic view of metabolites alteration in
GDM patients and investigate the possible multimarker
models for GDM diagnosis. Biochemical parameters and
perinatal data of 131 GDM cases and 138 controls were
collected. Fasting serum samples at 75 g oral glucose
tolerance test were used for metabolites by ultra perform-
ance liquid chromatography-quadrupole-time of flight-
mass spectrometry, ultra performance liquid chroma-
tography-triple triple-quadrupole-mass spectrometry and
gas chromatography- time-of- flight mass spectrometry
platforms. Significant changes were observed in free fatty
acids, bile acids, branched chain amino acids, organic
acids, lipids and organooxygen compounds between two
groups. In receiver operating characteristic (ROC) analy-
sis, different combinations of candidate biomarkers and
metabolites in multimarker models achieved satisfactory
discriminative abilities for GDM, with the values of area
under the curve (AUC) ranging from 0.721 to 0.751. Model
consisting of body mass index (BMI), retinol binding pro-
tein 4 (RBP4), n-acetylaspartic acid and C16:1 (cis-7) man-
ifested the best discrimination [AUC 0.751 (95% CI: 0.693–
0.809), p < 0.001], followed by model consisting of BMI,
Cystatin C, acetylaspartic acid and 6,7-diketoLCA [AUC

0.749 (95% CI: 0.691–0.808), p < 0.001]. Metabolites alter-
ation reflected disorders of glucose metabolism, lipid me-
tabolism, amino acid metabolism, bile acid metabolism as
well as intestinal flora metabolism in GDM state. Multivar-
iate models combining clinical markers and metabolites
have the potential to differentiate GDM subjects from
healthy controls. Molecular & Cellular Proteomics 17:
10.1074/mcp.RA117.000121, 431–441, 2018.

As a consequence of growing obesity prevalence and ad-
vancing maternal age, the incidence of gestational diabetes
mellitus (GDM)1 is gradually increasing worldwide, ranging
from 5.8% to 12.9% (1). A large epidemiological survey in
Tianjin, China, shows that the incidence of GDM has risen
from 6.9% in 2008 to 9.9% in 2010 (2). Previous studies have
indicated that GDM women were at a higher risk of adverse
perinatal outcomes, including preeclampsia, infection, prema-
ture delivery, increased caesarean rates and premature rup-
ture of membrane (PROM) 3–5). Hyperglycemia during preg-
nancy also leads to harmful impact on neonates such as fetal
malformations, macrosomia, neonatal asphyxia and hypogly-
cemia as well (6). In addition, both women with GDM and their
children are more prone to develop type 2 diabetes (T2DM)
later in life (7, 8).

At present, oral glucose tolerance test (OGTT) is considered
as the gold standard for the diagnosis of GDM. However, this
screening test is complex and time-consuming. There is a
strong need for researches on potential ways that can be
used to discriminate women of normal pregnancies and preg-
nancies complicated by GDM. Although adiponectin levels
have been repeatedly reported to be lower in GDM women
and closely associated with plasma glucose concentrations of
OGTT, the area under the receiver-operator characteristic
(ROC) curve of adiponectin was relatively low (9–11). Alanbay
et al. found that in the GDM group, Gamma Glutamyl Trans-
peptidase (�-GT) were significantly higher and determined to
be an independent risk factor, but the specificity of �-GT for
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indicating GDM was merely 37% (12). Only a handful of stud-
ies on some metabolites of GDM have been conducted. With
respect to GDM, higher levels of homocysteine have been
found by Guven et al. (13). In another research, such signifi-
cant difference of homocysteine levels was not observed
(14). Tarim et al. (15) reported triacylglycerols were higher in
women with GDM. However, Seghieri et al. (16) found no
difference in triacylglycerols levels among women with GDM
and controls. In addition to the inconsistent results from these
studies, the sensitivity and specificity required for clinical use
were also lacking.

In the current study, comprehensive metabolite profiles of
269 participants were constructed by liquid chromatography-
mass spectrometry (LC-MS) and gas chromatography-mass
spectrometry (GC-MS). Furthermore, using different combi-
nations of metabolites and clinical variables, we developed a
number of multivariate models obtained by ROC analysis for
distinguishing women with GDM from those without.

EXPERIMENTAL PROCEDURES

Participants—This was a nested case-control study of pregnant
women enrolled in a prospective cohort study. Briefly, from January
2013 to August 2016, a cohort of pregnant women who received
prenatal care at the Department of Obstetrics and Gynecology of
Shanghai Jiao-Tong University Affiliated Sixth People’s Hospital was
set up. Their socio-demographic and clinical profiles were recorded
from antenatal visit to delivery. All subjects in the current study met
the following inclusion criteria: (a) no alcohol consumption, (b) no
preconceptional diabetes, (c) no chronic or serious acute infections,
(d) no cardiovascular hematological diseases, (e) normal liver or kid-
ney function, (f) negative results for hepatitis C antibodies or HIV.
During 24–28th weeks of gestation, diagnostic 75-g, 3-hour oral
glucose tolerance test (OGTT) was conducted. The diagnosis of GDM
was according to the International Association of Diabetes and Preg-
nancy Study Group (IADPSG) criteria, with one or more plasma glu-
cose values being equal or greater than the following plasma glucose
values: fasting, 5.1 mmol/L, 1 h, 10.0 mmol/L, and 2 h, 8.5 mmol/L
(17). The study was approved by the Ethics Committee of the Shang-
hai Jiao-Tong University Affiliated Sixth People’s Hospital. The in-
formed consents were obtained from all participants. All methods
performed in this study adhered to the tenets of the Declaration of
Helsinki.

Measurement of Clinical and Biochemical Characteristics—General
background information including medical and family history, repro-
ductive history, alcohol consumption and smoking status were col-
lected. BMI was calculated as BMI � body weight (in kg)/height (in
m2). Blood samples were drawn in the morning after an overnight fast
at about 12 weeks of gestation. All biochemical parameters were
assayed in the same serum sample. Alanine aminotransferase (ALT),
aspartate aminotransferase (AST), �-GT, cholinesterase (ChE), blood
urea nitrogen (BUN), creatinine (Cr), and uric acid (UA) were assessed
on an automatic analyzer (7600–020 biochemistry automatic ana-
lyzer, Hitachi, Tokyo, Japan). Serum lipids including total triglyceride
(TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-
C), and low-density lipoprotein cholesterol (LDL-C) were measured
by enzymatic method. Macrosomia was defined as birth weight �

4000 � g. Hypertension and proteinuria occurred after 20 weeks of
gestation were diagnosed as preeclampsia. The diagnosis of PROM
was established when membranes ruptured before the onset of labor.

Sample Preparation—Fasting serum specimens were collected
at OGTT and stored at �80 °C until analyzed. Metabolome was

tested using three instrumental platforms, ultra performance liquid
chromatography-quadrupole-time of flight-mass spectrometry (UPLC-
QTOFMS), ultraperformance liquid chromatography-triple triple-qua-
drupole-mass spectrometry (UPLC-TQMS) and gas chromatography-
time-of-flight mass spectrometry (GC-TOFMS).

For quantification of free fatty acids (FFAs), 40 �l of sample was
mixed with 10 �l of isotope labeled internal standard (5 �g/ml C19:
0-d37) and 500 �l of isopropyl/hexane (v/v � 4/1) with 2% phosphate
(2 M). Then 400 �l of hexane and 300 �l of water were added. After
vortexing, the mixture was centrifuged for 10 min at 12,000 g. The
supernatant (400 �l) was transferred to a new tube. The remaining
mixture was extracted with 400 �l of hexane. After centrifugation for
10 min, 500 �l of supernatant was mixed with the first supernatant
and dried under vacuum. The dried analyte was redissolved with 80 �l
of methanol, and then filtered with 0.22-�m membrane (EMD Milli-
pore, Billerica, MA) for analysis.

The internal standard of bile acids (BAs) included cholic acid-D4,
ursodeoxycholic acid-D4, lithocholic acid, glycocholic acid-D4, and
glycodeoxycholic acid-D4. Each 100 �l of serum was mixed with 10
�l of internal standard and dried under vacuum. The residue was
reconstituted with 25 �l of acetonitrile and methanol (v/v � 19/1) with
0.1% formic acid and 25 �l of water with 0.1% formic acid. After
centrifugation, the supernatant was retained for analysis.

For semi-quantification of other metabolites, 100 �l of serum was
mixed with two internal standard solutions (10 �l of L-2-chlorophe-
nylalanine in water, 0.3 mg/ml; 10 �l of heptadecanoic acid in meth-
anol, 1 mg/ml) and 300 �l of methanol/chloroform (v/v � 3/1). The
mixture was vibrating for 30 s and kept for 10 min at �20 °C. After
centrifugation at 10,000 rpm for 10 min, 300 �l supernatant was
vacuum-dried. The residue was dissolved in 80 �l of methoxyamine
with pyridine (15 mg/ml) and kept for 90 min at 30 °C. Then the
mixture was silylated with 80 �l of BSTFA (1%TMCS) for 60 min at
70 °C. After keeping for one hour at room temperature, the sample
was ready for analysis.

Metabolites Analysis—All samples were injected randomly, a sam-
ple for quality control (QC) was run after every ten serum samples to
monitor the stability of the instrument.

FFAs measurement was performed by UPLC/QTOFMS (Xevo G2,
Waters Corp., MA, USA). A 2.1 mm � 100 mm, 1.7 �m BEH C18
chromatographic column (Agilent J&W Scientific, CA, USA) was used
for separation and the column temperature was set at 40 °C. The
elution solvents were water (A) and acetonitrile/isopropyl (v/v � 4/1,
B) with a flow rate of 0.4 ml/min. The elution procedure for the column
was 70% B for 2 min; 70–75% B over 2–5 min; 75–80% B over 5–10
min; 80–90% B over 10–13 min; 90–99% B over 13–16 min and kept
at 99% B. The MS was operated at a positive electrospray ioniza-
tion mode. The capillary voltage was set to 2.5 kV. The sample cone
and the extraction cone were set at 55 V and 4 V, respectively. The
source and desolvation temperature was set at 150 °C and 450 °C,
respectively.

BAs were analyzed using UPLC/TQMS platform (Xevo G2, Waters
Corp., Milford, MA). The elution solvents were water with 0.01%
formic acid (A) and acetonitrile with 0.01% formic acid (B). The initial
gradient was 20% B and maintained for 2 min, increased to 25% B
over 1 min and kept for 3 min, increased to 35% B over 2 min and
kept for 3.5 min, increased to 99% over 6.5 min kept for 2 min before
switching back to the initial condition. The MS was operated at a
negative electrospray ionization mode. The capillary voltage was set
to 3.0 kV. The extraction cone was set at 4 V. The source and
desolvation temperature was set at 120 °C and 350 °C, respectively.
The desolvation gas flow rate was 650 L nitrogen per hour.

Other metabolites were selected for GC/TOFMS analysis (Pegasus
HT, Leco Corp., St. Joseph, MI). An aliquot of 1 �l sample was
injected into a DB-5 ms capillary column (30 m � 250 �m, 0.25 �M;
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Agilent J&W Scientific, Folsom, CA). The temperature of injection,
transfer interface, and ion source was set to 270, 260, and 200 °C,
respectively. Ultra-pure helium (99.9996%) was used as the carrier
gas. Its flow rate was set at 1.0 ml/min. The initial GC oven temper-
ature was 80 °C and maintained for 2 min, then increased to 180 °C
with a rate of 10 °C/min, increased to 240 °C with a rate of 5 °C/min,
increased to 290 °C with a rate of 25 °C/min, and kept at 290 °C for
9 min. The analyses were performed with electron impact ionization
(70 eV) in the full scan mode (m/z 30–600).

Statistical Analysis—The raw data from UPLC/QTOFMS and UPLC/
TQMS was targeted and initially processed by TargetLynx applica-
tions manager (version 4.1, Waters Corp.) to detect peak signals,
obtain calibration equations, and calculate the concentration of each
FFA and BA. The acquired data from GC/TOFMS was exported in
NetCDF format by ChromaTOF software (v3.30, Leco Co., CA, USA).
CDF files were extracted using custom scripts in the MATLAB 7.0 (The
Math Works, Inc.) for data pretreatments such as denoising, baseline
correction, time-window splitting, etc (18). Missing values (less than
10%) were supplemented by mean values of corresponding groups.

Variables were expressed as mean � standard deviation (S.D.) or
median (25% quartile, 75% quartile) for continuous variables and
percentages (%) for categorical variables. Student’s t test or Mann-
Whitney U test were performed to evaluated the difference among
groups for continuous variables. For categorical variables, Chi-square
test or Fisher’s exact test were conducted to compare the difference.
Binary logistic regression analysis was used to assess the correla-
tions of clinical data and metabolites with the risk of GDM. The
Receiver Operator Characteristics (ROC) analysis was performed and
area under the curve (AUC) was used to evaluate their diagnostic
capabilities. All the statistical analyses above were performed by
SPSS 21.0 (SPSS Inc., Chicago, IL). A two-sided p value less than
0.05 was considered statistically significant. The test performances of
the multimarker models were assessed using sensitivity, specificity,
positive predictive values (PPVs) and negative predictive values (NPVs)
at different estimated GDM prevalence. A supervised multivariate model
named orthogonal partial least square discriminant analysis (OPLS-DA)
was carried out in Simca-p � (Umetrix, Sweden, V12.0). Benjamini-
Hochberg procedure was used for false discovery rate correction.

RESULTS

Baseline Characteristics of the Subjects—In this nested
case-control study, a total of 269 pregnant women were
enrolled. The clinical data of control and GDM patients are
shown in Table I. Women with GDM were significantly older
than control women. The incidence of diabetes family history,
abortion history and multiparity history before pregnancy
showed no remarkable difference. Pre-pregnancy BMI was
higher in GDM participants, as were ChE, retinol binding
protein 4 (RBP4), Cystatin C (Cys C) and TG (all p � 0.05). All
subjects were followed up until delivery. The incidence of
caesarean section was significantly higher in women with
GDM than healthy pregnant women (caesarean section,
12.3% versus 22.9%, p � 0.025). Other adverse pregnant
outcomes such as preeclampsia and PROM and newborn
characteristics showed no marked difference.

Metabolite Identification and Quantitation—UPLC-QTOFMS,
UPLC-TQMS and GC-TOFMS platforms were used for me-
tabolite measurement. We identified 131 metabolites based
on our in-house standard library and online available libraries,
FFAs and BAs were quantified. The metabolites included

FFAs, BAs, amino acids (AAs), organic acids, lipids, orga-
nooxygen compounds, pyridines and others. FFAs were fur-
ther separated into saturated fatty acids, monounsaturated
fatty acids, and polyunsaturated fatty acids. BAs were sepa-
rated into primary bile acids (PBA) and secondary bile acids
(SBA), AAs were separated into aromatic amino acids (AAAs),
branched chain amino acids (BCAAs) and other amino acids.
The numbers and proportions of the metabolite types and
subtypes are shown in Fig. 1A. Detailed list of metabolites
was displayed in supplemental Table S1.

Changes of Metabolic Profile in GDM Status—Metabolome
alteration between the two groups was evaluated by the score
values of multivariate statistics orthogonal partial least square
discriminant analysis (OPLS-DA) model (Fig. 1B). The permu-
tation test was performed for the OPLS-DA model (Fig. 1C). It
was clear from the OPLS-DA scores scatter plot that individ-
uals with GDM were separated from those without based on
all metabolites assayed. In the FFA subgroup, twenty FFAs
were significantly elevated in women who developed GDM
(Fig. 2A). In the BA subgroup, four BAs were significantly
increased and three BAs were significantly reduced in women
with GDM (Fig. 2B). In the AA subgroup, BCAAs and other
three AAs were significantly higher in GDM patients. Eight
organic acids, two lipids and four organooxygen compounds
showed marked difference between GDM cases and controls
(Fig. 2C). After false discovery rate correction by the Benja-
mini-Hochberg procedure, eleven FFAs, two BAs, five AAs,
six organic acids, one lipids and two organooxygen com-
pounds remained significantly different (p � 0.05). Concen-
trations of differential metabolites between the two groups
were shown in supplemental Table S2.

Univariate Analysis of the Association of Clinical Character-
istics with Metabolites and GDM—For all clinical variables and
metabolites that initially exhibited significant differences be-
tween cases and controls, ROC analyses were constructed
and AUC values evaluated (Table II). Of these clinical param-
eters, BMI showed the best predictive performance (AUC
0.651 (95% CI: 0.586–0.716), p � 0.001). Of these metabo-
lites, 2-Oxo-4-methylvaleric acid and 4-Aminobutanoic acid
showed the largest AUC values (AUC 0.687 (95% CI: 0.618–
0.756), p � 0.001; AUC 0.687 (95% CI: 0.618–0.756), p �

0.001; respectively).
The Development of Multivariate Models to Indicate GDM—

To investigate more sensitive potential indicator from the mul-
tiple biomarker models for discriminating the risk of GDM,
binominal logistic regression analysis and ROC analysis were
constructed using different combinations of variables. Setting
the AUC value for GDM at 0.6 and fold change between the
two groups at 1.2 to identify variables for testing in the mul-
tivariate models, we selected six metabolites such as C16:1
(cis-7), 6,7-diketoLCA, alanine, n-acetylaspartic acid, 2-oxo-
4-methylvaleric acid and 1-monooleoylglycerol. BMI, ChE,
RBP4 and Cys C were chosen as candidate clinical markers
by setting the AUC value for GDM at 0.6 (bold in Table II).
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Three modeling strategies were used in this study: (1) metab-
olites only, (2) BMI plus metabolites, (3) BMI plus other can-
didate clinical markers plus metabolites. No more than four
biomarkers were permitted for each model in order to avoid
overfitting of the data. The top six models with the largest
AUC values of three modeling strategies were listed in Table
III. Strategy 3 performed better than the other two strategies
in distinguishing GDM patients and controls. Of all models
listed, Model 13 consisting of BMI, RBP4, n-acetylaspartic
acid and C16:1 (cis-7) manifested the best discrimination
(AUC 0.751 (95% CI: 0.693–0.809), p � 0.001), followed by
Model 14 consisting of BMI, Cys C, n-acetylaspartic acid
and 6,7-diketoLCA (AUC 0.749 (95% CI: 0.691–0.808), p �

0.001).

The ROC curves of the top two models of each modeling
strategy e.g. Model 1, Model 2, Model 7, Model 8, Model 13
and Model 14 were displayed in Fig. 3. Corresponding sensi-
tivity and specificity at the optimal cutoff points were calcu-
lated (Table IV). A recent review of data published over the
past decade indicated that the median prevalence of GDM
varied worldwide, ranging from 5.8% to 12.9% (1). Thus,
positive and negative predictive values were calculated using
different cohort prevalence of GDM (5 and 10%). As shown in
Table IV, both sensitivity and specificity of these six models
were �70%. In cases which were diagnosed positive in these
ROC models, only 10%�20% (PPVs) had GDM. On the other
hand, in cases which were diagnosed negative, almost 100%
(NPVs) could be ruled out GDM. These models’ values in real

TABLE I
Maternal and offspring characteristics of GDM and healthy pregnant women. GDM, gestational diabetes mellitus; BMI, body mass index; SBP,
systolic blood pressure; DBP, diastolic blood pressure; GA, glycated albumin; HbA1c, glycosylated hemoglobin; ALT, alanine aminotransferase;
AST, aspartate aminotransferase; �-GT, �-glutamyl transferase; ChE, cholinesterase; BUN, blood urea nitrogen; Cr, creatinine; UA, uric acid;
RBP4, retinol binding protein 4; Cys C, Cystatin C; TC, total cholesterol; TG, total triglyceride; HDL-C, high-density lipoprotein cholesterol;
LDL-C, low-density lipoprotein cholesterol; BPD, biparietal diameter; PROM, premature rupture of membrane; AFI, amniotic fluid index. Data

represent means � S.D., median (25% quantile, 75% quantile) or percentage (%)

Group Control GDM p value

N 138 131
Clinical and biochemical variables

Age (years) 30.4 � 3.8 31.4 � 3.8 0.030a

Prepregnancy BMI (kg/m2) 20.9 � 2.9 22.3 � 2.9 �0.001a

SBP (mm Hg) 112.4 � 13.2 114.4 � 12.7 0.198a

DBP (mm Hg) 67.7 � 10.0 69.6 � 10.6 0.142a

Family history of diabetes (n) 0 1 –
Nulliparous (%) 73.2 66.4 0.141b

Abortion history (%) 45.7 48.9 0.343b

ALT (U/L) 13.0 (10.0–21.0) 13.0 (9.5–20.5) 0.475c

AST (U/L) 18.0 (15.0–22.0) 17.0 (14.0–20.0) 0.266c

�-GT (U/L) 14.0 (11.0–19.0) 14.0 (11.0–19.5) 0.997c

ChE (U/L) 270.6 � 51.7 293.8 � 50.7 �0.001a

BUN (mmol/L) 2.7 (2.3–3.1) 2.6 (2.3–3.1) 0.749c

Cr (�mol/L) 43.5 (40.0–48.0) 43.0 (39.0–47.0) 0.240c

UA (�mol/L) 202.5 (178.0–226.0) 204.0 (181.0–236.0) 0.401c

RBP4 (mg/L) 34.0 (28.0, 39.0) 37.0 (30.0, 45.0) 0.003c

Cys C (mg/L) 0.5 (0.4, 0.5) 0.5 (0.5, 0.6) 0.001c

TC (mmol/L) 4.8 � 1.0 4.8 � 0.9 0.506a

TG (mmol/L) 1.3 (1.1–1.7) 1.5 (1.2–1.9) 0.021c

HDL-C (mmol/L) 1.9 � 0.4 1.8 � 0.4 0.070a

LDL-C (mmol/L) 2.3 (1.9–2.7) 2.4 (2.0–2.8) 0.383c

Pregnancy outcomes
Gestational age at delivery (weeks) 39.0 (38.0–40.0) 39.0 (38.0–40.0) 0.451c

Caesarean section (%) 12.3 22.9 0.025b

PROM (%) 15.2 12.2 0.486b

Preeclampsia (%) 2.2 1.5 0.525b

Amount of postpartum hemorrhage (ml) 310.0 (280.0–340.0) 300.0 (275.0–350.0) 0.599c

AFI (cm) 11.4 (9.8–13.9) 12.1 (10.2–14.4) 0.184c

Offspring
BPD (mm) 94.0 (91.0–96.0) 93.0 (90.0–96.0) 0.462c

Weight (g) 3279.3 � 420.5 3377.0 � 450.7 0.067a

Macrosomia (%) 4.3 9.2 0.145b

Apgar score 10.0 (10.0–10.0) 10.0 (10.0–10.0) 0.305c

a Derived from Student’s t-test.
b Derived from Chi-square test or Fisher’s Exact Test.
c Derived from Mann-Whitney U-test.
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FIG. 1. Metabolite types and the scores plot of the
OPLS-DA model. A, Pie chart displays 6 metabolite types
and subtypes measured in our research. Free fatty acids (red)
include12 monounsaturated fatty acids, 15 polyunsaturated
fatty acids and 17 saturated fatty acids; bile acids (blue)
include 14 primary bile acids and 24 secondary bile acids;
amino acids (green) include 3 branched chain amino acids, 3
aromatic amino acids and other 17 amino acids. B, The
OPLS-DA scores plot shows the groupings of control (blue),
and GDM (red) subjects based on all metabolite profiles.
R2X � 0.314, R2Y � 0.543, Q2 � 0.254. C, The permutation
test for the OPLS-DA model. Permutated R2 � 0.01, permu-
tated Q2 � 0.01.
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clinics were much more appropriate for exclusion screening
than inclusion screening.

DISCUSSION

In the present study, three high-resolution and high-sensi-
tivity mass spectrometry (MS) platforms were combined to
detect a panel of 131 well-annotated metabolites, with 81
accurately quantitated. OPLS-DA scores scatter plot revealed
that the metabolite profiling of women with GDM were well
separated from controls. Significant alteration in FFAs, BAs,

AAs, organic acids, lipids and organooxygen compounds
were observed. Moreover, we established a cluster of multi-
marker models that differentiated among individuals with
GDM and without by diverse combinations of metabolites and
clinical indexes. Among them, the model with the best dis-
criminative performance composed of BMI, RBP4, n-acety-
laspartic acid and C16:1 (cis-7) (AUC � 0.751; 95% CI, 0.693–
0.809; sensitivity, 72.5%; specificity, 71.7%; p � 0.001).

In recent years, metabolomics has gained immense popu-
larity based on its application in identification of novel path-

FIG. 2. Fold change plot of metabolites (GDM/control).
Fold change plot of (A) free fatty acids, (B) bile acids and (C)
other metabolites. Fold changes are ratios of mean values in
GDM over control group. Metabolites labeled with red dots
were significantly different between two groups. Symbol * in-
dicates statistical significance from Student’s t test or Mann-
Whitney U test (*p � 0.05, **p � 0.01, ***p � 0.001). GCDCA,
glycochenodeoxycholic acid; GCA, glycocholic acid; TCDCA,
taurochenodeoxycholic acid; TCA, taurocholic acid; CDCA,
chenodeoxycholic acid; CA, cholic acid; HCA, hyocholic acid;
GHCA, glycohy-ocholic acid; TaMCA, tauro-�muricholic acid;
THCA, taurohyocholic acid; UCA, ursocholic acid; bMCA,
�-muricholic acid; GLCA, glycollithoc-holic acid; GDCA,
glycodeoxycholic acid; GUDCA, glycoursodeoxycholic acid;
GHDCA, glycohyodeoxycholic acid; TLCA, taurolithocholicacid;
TDCA, taurodeoxycholic acid; TUDCA, tauroursodeoxycholic
acid; THDCA, taurohyodeoxycholic acid; LCA, lithocholic acid;
23_NDCA, 23-nordeoxycholic acid; 6-KLCA, 6-ketolithocholic
acid; beta-UDCA, �-ursodeoxycholic acid; HDCA, hyodeoxy-
cholic acid; DCA, deoxycholic acid; 7-KDCA,7-ketodeoxycholic
acid.
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ways and specific biomarker for insulin resistance and type 2
diabetes mellitus (T2DM) (19–21). Metabolomic analyses are
typically carried out by liquid chromatography mass spec-
trometry (LC-MS), gas chromatography-mass spectrometry
(GC-MS) and nuclear magnetic resonance (NMR) spectros-
copy (19). The first two metabolomic techniques used in the
present study, were adequately sensitive to detect subtle
differences in serum protein levels. MS allows the separation
of ions within an analyte according to their mass-to-charge
ratio through using an electromagnetic field. When MS is
coupled with gas or liquid chromatography, specific metabo-
lite classes can be detected. Our data offered a holistic view
of the changes in serum metabolites of relatively large popu-
lation. One PBA named CA and six SBA including THDCA,
HDCA, isoDCA, dehydro_LCA, LCA and 6_7_diketoLCA
showed significant alteration in GDM participants. As we
know, PBAs are transformed into SBAs by gut microbiome
and both of them are closely related with obesity, insulin
resistance and T2DM (22, 23). The alteration of BA metabo-
lome may indicate intestinal flora imbalance and glucose met-
abolic disorders in GDM state. Another BA metabolomics
studied in Chinese subjects reported that THDCA levels were
similarly higher in GDM patients, but the changes in CA,

HDCA and LCA levels were not found (24). UDCA has been
frequently reported to be closely associated with lipid and
glucose metabolism (25, 26), but UDCA concentrations were
comparable between the two groups. Although fasting UDCA
levels were significantly increased in T2DM patients versus
normal glucose tolerance (NGT) subjects in Sonne’s report,
the number of cases enrolled in each group was only 15 (27).
Some studies have shown that elevated FFAs contributed to
hyperglycemia by inhibiting muscular insulin signaling, pan-
creatic insulin secretion and hepatic endogenous glucose
production (28, 29). In our study, almost half of FFAs were
elevated in GDM patients, in accordance with previous re-
search findings (30–32). Alanine transfer its amino group by
the action of alanine aminotransferase to �-ketoglutarate,
forming pyruvate and glutamate, pyruvate regenerated forms
glucose through gluconeogenesis (33). Elevation of alanine,
glutamic acid, pyruvic acid in our GDM cases may indicate
enhanced gluconeogenetic process. BCAAs and AAAs were
associated with risk factors for diabetes, including insulin
resistance and obesity (34). BCAAs are involved in several
pathways of insulin resistance, including fatty acid oxidation,
mTOR, JNK and IRS1 pathways (35, 36). Nevertheless, the
trend of these AAs alteration in GDM women reported from

TABLE II
Clinical parameters and metabolites and their statistical significance in discriminating GDM and healthy individuals. ROC, receiver operating
characteristic; AUC, area under the curve; FC, fold change; GDM, gestational diabetes mellitus; BMI, body mass index; ChE, cholinesterase;
TG, total triglycerides; RBP4, retinol binding protein 4; Cys C, Cystatin C; C16:1 (cis-7), cis-7-hexadecenoate; C16:0, n-hexadecanoic acid;
C18:3 (cis-6_9_12), cis-6,9,12-octadecatrienoic acid; C18:2 (cis-9_12), cis-9,12-octadecadienoic acid; C20:1 (cis-11), cis-11-eicosenoic acid;
C20:3 (cis-8_11_14), cis-8,11,14-eicosatrienoic acid; C20:2 (cis-11_14), cis-11,14-eicosadienoic acid; C22:5 (cis-4_7_10_13_16), cis-
4,7,10,13,16-docosapentaenoic acid; C20:3 (cis-8_11_14), cis-8,11,14-eicosatrienoic acid; 6,7-diketoLCA, 6,7-diketocholic acid; isoDCA,

isodeoxycholic acid

Clinical parameters
and metabolites

ROC analysis

AUC (95% CI) p value FC Biochemical pathway

Age 0.583 (0.514–0.651) 0.019
BMI 0.651 (0.586–0.716) <0.001
ChE 0.629 (0.563–0.695) <0.001
TG 0.581 (0.513–0.650) 0.021
RBP4 0.606 (0.539–0.674) 0.003
Cys C 0.611 (0.544–0.679) 0.002
C16:1 (cis-7) 0.655 (0.590–0.721) <0.001 1.40 Fatty acid metabolism
C16:0 0.619 (0.552–0.687) 0.001 1.12 Fatty acid metabolism, glycerolipid metabolism
C18:3 (cis-6_9_12) 0.600 (0.532–0.667) 0.005 1.12 Alpha linolenic acid and linoleic acid metabolism
C18:2 (cis-9_12) 0.653 (0.587–0.719) �0.001 1.04 Alpha linolenic acid and linoleic acid metabolism
C20:1 (cis-11) 0.614 (0.547–0.681) 0.001 1.13 Fatty acid metabolism
C20:2 (cis-11_14) 0.641 (0.575–0.707) �0.001 1.16 Fatty acid metabolism
C20:3 (cis-8_11_14) 0.602 (0.534–0.670) 0.004 1.17 Fatty acid metabolism
6,7-diketoLCA 0.623 (0.553–0.692) 0.001 1.20 Bile acid biosynthesis
isoDCA 0.686 (0.614–0.758) �0.001 0.95 Bile acid biosynthesis
Alanine 0.649 (0.580–0.719) <0.001 1.25 Glucose-alanine cycle, glutamate metabolism, glycine

and serine metabolism, et al
N-acetylaspartic acid 0.669 (0.603–0.736) <0.001 1.34 Aspartate metabolism
2-Oxo-4-methylvaleric acid 0.687 (0.618–0.756) <0.001 1.25 Valine, leucine and isoleucine degradation
4-Aminobutanoic acid 0.687 (0.618–0.756) �0.001 1.09 Glutamate metabolism
Pyruvic acid 0.613 (0.544–0.683) 0.001 1.18 Gluconeogenesis, glycolysis, citric acid cycle,

glucose-alanine cycle, et al
Aminomalonic acid 0.676 (0.605–0.746) �0.001 1.06 –
1-Monooleoylglycerol 0.624 (0.557–0.707) <0.001 1.35 –
Mannose 0.658 (0.593–0.723) �0.001 1.17 Galactose metabolism
Threitol 0.661 (0.593–0.728) �0.001 1.09 –
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earlier studies varied (32, 37). In the current study, BCAAs
were increased in GDM patients, whereas AAAs showed no
significant change. Rahimi and colleagues found GDM moth-
ers had higher plasma concentrations of arginine, glycine and
methionine (38), however, these glucogenic AAs showed no
significant differences between the two groups in our re-
search. Cysteine, precursor to glutathione, has antioxidant
properties (39). The levels of cysteine in GDM cases were
lower than controls, but in the study from Butte’s group,
cysteine showed the opposite change (37). Dissimilarities
among findings from the studies could be caused by differ-
ences in GDM diagnostic criteria, metabolites profiling plat-
forms, timing of metabolome profiling, specimen prepared for
test, ethnic origin and size of the study populations. Future
investigations that follow the same strict guidelines are needed
to improve replication of findings.

We identified some metabolites that were not measured in
GDM patients before, such as n-acetylaspartic acid, 2,3,4-
trihydroxybutyric acid, 2-aminobutanoic acid, 2-oxo-4-methyl-
valeric acid, 4-aminobutanoic acid, aminomalonic acid, 1-mo-
nooleoylglycerol, 2-ethylhexanoic acid, mannose, maltose,
threitol, threonic acid. 2-aminobutanoic acid is a key interme-
diate in the biosynthesis of ophthalmic acid, which was used
as a biomarker in oxidative stress (40). The observation of
diminished cysteine levels and increased 2-aminobutanoic

acid levels could imply disturbance of redox homeostasis in
GDM cases. Gamma-aminobutanoic acid (GABA) is an inhibi-
tory neurotransmitter found in the nervous systems. GABA
concentrations were higher in T2DM participants. Similar phe-
nomenon was observed in GDM cases. Our results along with
previous research confirmed the association between diabe-
tes and accelerated cognitive decline. In summary, changes in
these metabolites reflected disorders in glucose metabolism,
lipid metabolism, amino acid metabolism, bile acid metabo-
lism as well as intestinal flora metabolism in pregnancies
complicated by GDM.

A strength of our study is the development of different
multivariate models that discriminated GDM women from
controls. Firstly, we combined only three or four metabolites
for modeling, the AUC values of the top six models were
ranging from 0.721 to 0.740. BMI was a well-known risk factor
of GDM and was very convenient to measure (41). In our
study, prepregnancy BMI was significantly higher in GDM
participants. Furthermore, the AUC values were slightly im-
proved by addition of BMI to metabolites in models, ranging
from 0.732 to 0.744.

Though UA were found positively related with insulin resist-
ance (42), the early pregnancy UA concentrations between
GDM and control case showed no significant difference, in
consistence with previous research (43). RBP4 and Cys C

TABLE III
ROC analysis of multimarker models to indicate GDM. GDM, gestational diabetes mellitus; ROC, receiver operating characteristic; AUC, area
under the curve; BMI, body mass index; ChE, cholinesterase; RBP4, retinol binding protein 4; Cys C, Cystatin C; C16:1 (cis-7), cis-7-

hexadecenoate; 6,7-diketoLCA, 6,7-diketocholic acid

Model Variables included in the model AUC (95% CI) p value

Metabolites
1 N-acetylaspartic acid, 2-Oxo-4-methylvaleric acid, C16:1 (cis-7),

6,7-diketoLCA
0.740 (0.680–0.799) �0.001

2 N-acetylaspartic acid, alanine, C16:1 (cis-7), 6,7-diketoLCA 0.740 (0.681–0.800) �0.001
3 N-acetylaspartic acid, 1-monooleoyl glycerol, C16:1 (cis-7),

6,7-diketoLCA
0.738 (0.679–0.798) �0.001

4 N-acetylaspartic acid, C16:1 (cis-7), 6,7-diketoLCA 0.732 (0.672–0.792) �0.001
5 N-acetylaspartic acid, 1-monooleoyl glycerol, 6,7-diketoLCA,

2-oxo-4-methylvaleric acid
0.722 (0.661–0.783) �0.001

6 N-acetylaspartic acid, 1-monooleoyl glycerol, C16:1 (cis-7),
2-oxo-4-methylvaleric acid

0.721 (0.661–0.781) �0.001

BMI and metabolites
7 BMI, 2-oxo-4-methylvaleric acid, n-acetylaspartic acid, 6,7-diketoLCA 0.744 (0.685–0.803) �0.001
8 BMI, 2-oxo-4-methylvaleric acid, n-acetylaspartic acid, C16:1 (cis-7) 0.743 (0.685–0.802) �0.001
9 BMI, 2-oxo-4-methylvaleric acid, C16:1 (cis-7), 6,7-diketoLCA 0.740 (0.681–0.800) �0.001
10 BMI, n-acetylaspartic acid, alanine, C16:1 (cis-7) 0.740 (0.681–0.798) �0.001
11 BMI, n-acetylaspartic acid, 1-monooleoyl glycerol, C16:1 (cis-7) 0.740 (0.681–0.799) �0.001
12 BMI, n-acetylaspartic acid, C16:1 (cis-7) 0.732 (0.672–0.791) �0.001

BMI, biochemical markers
and metabolites

13 BMI, RBP4, n-acetylaspartic acid, C16:1 (cis-7) 0.751 (0.693–0.809) �0.001
14 BMI, Cys C, n-acetylaspartic acid, 6,7-diketoLCA 0.749 (0.691–0.808) �0.001
15 BMI, ChE, n-acetylaspartic acid, C16:1 (cis-7) 0.748 (0.690–0.806) �0.001
16 BMI, Cys C, n-acetylaspartic acid, C16:1 (cis-7) 0.747 (0.689–0.805) �0.001
17 BMI, Cys C, RBP 4, n-acetylaspartic acid 0.743 (0.683–0.803) �0.001
18 BMI, Cys C, n-acetylaspartic acid 0.731 (0.671–0.792) �0.001

***p � 0.001 from ROC analysis.
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have been described as latent biomarkers of GDM in numer-
ous publications (44–47). Here, these two serum parameters
were confirmed as the potential clinical serum markers for
GDM. With respect to GDM, ChE concentrations were signif-
icantly decreased from Khosrowbeygi’s report (48) but re-
mained unchanged from Cocelli’ results (49). In this Chinese
population, ChE levels were elevated in GDM cases and con-
sidered as potential biomarker. We further added these first-
trimester candidate biomarkers to BMI and metabolites in
models, and this modeling strategy performed better than the
other two strategies mentioned above. All these results sug-

gested that the discriminative abilities of diverse combina-
tions of variables are much better than single variable, offering
an appropriate and convenient screening for GDM.

Some limitations of our study deserved mention. As a
nested case-control study, we only conducted serum meta-
bolomics analysis of women at late pregnancy, therefore the
evolutionary process of metabolites throughout pregnancy
could not be assessed. Secondly, complete maternal history
data were not obtained from all participants. For example, we
did not obtain the information of diet and physical activity,
failing to evaluate the impact of these confounding factors on

FIG. 3. ROC analysis of multimarker models. Multivariate
analysis of (A) Model 1, (B) Model 2, (C) Model 7, (D) Model 8,
(E) Model 13, and (F) Model 14. Red circles, the optimal cut-off
points.

TABLE IV
PPV and NPV calculations of multimarker models. PPV, positive predictive value; NPV, negative predictive value

Model Sensitivity (%) Specificity
(%)

5% prevalence 10% prevalence

PPV (%) NPV (%) PPV (%) NPV (%)

1 71.0 71.7 11.7 97.9 21.8 95.7
2 79.4 63.0 10.1 98.3 19.3 96.5
7 66.4 75.4 12.5 97.7 23.1 95.3
8 69.5 73.2 12.0 97.9 22.4 95.6
13 72.5 71.7 11.9 98.0 22.2 95.9
14 67.2 76.1 12.9 97.8 23.8 95.4
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metabolites profiling. Large cohorts, dynamic monitoring of
metabolites during pregnancy, analyses of various specimen
types can improve our understanding of metabolites alteration
and verify the validity of multimarker models of GDM.

In conclusion, our data provided a comprehensive overview
of metabolites alteration from a relatively large participant
population, which offered deeper insights into the pathogen-
esis of GDM. What is more, multivariate models using differ-
ent combinations including metabolites, anthropometry data
and candidate biomarkers improved the diagnostic ability
over single marker. The performance of the multimaker mod-
els can be a feasible and simple tool for distinguishing women
with GDM from those without.
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