Skip to main content
. Author manuscript; available in PMC: 2018 Sep 1.
Published in final edited form as: Mach Learn Knowl Discov Databases. 2017 Dec 30;2017:142–157. doi: 10.1007/978-3-319-71246-8_9

Algorithm 2.

Empirical Data Creation (D, n, r)

Input: dataset D, number of bootstraps n, and a set of constraints r
Output: empirical dataset Dr with n rows and m = |r| columns
1: Let Dr[n, m] be a new 2−d array with n rows and m columns
2: for b = 1 to n do
3: sampleb Bootstrap(D)
4: for ri ∈ {r1, r2, …, rm} do
5:   p ← BSC(ri, sampleb)
6:   if p ≥ 0.5 then
7:    Dr[b, i] 1
8:   else
9:    Dr[b, i] 0
10: return Dr[n, m]