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Abstract
Large genomic data sets generated with restriction site-associated DNA sequencing (RADseq), in combination with
demographic inference methods, are improving our ability to gain insights into the population history of species. We used a
simulation approach to examine the potential for RADseq data sets to accurately estimate effective population size (Ne) over
the course of stable and declining population trends, and we compare the ability of two methods of analysis to accurately
distinguish stable from steadily declining populations over a contemporary time scale (20 generations). Using a linkage
disequilibrium-based analysis, individual sampling (i.e., n ≥ 30) had the greatest effect on Ne estimation and the detection of
population size declines, with declines reliably detected across scenarios ~10 generations after they began. Coalescent-based
inference required fewer sampled individuals (i.e., n= 15), and instead was most influenced by the size of the SNP data set,
with 25,000–50,000 SNPs required for accurate detection of population trends and at least 20 generations after decline
began. The number of samples available and targeted number of RADseq loci are important criteria when choosing between
these methods. Neither method suffered any apparent bias due to the effects of allele dropout typical of RAD data. With an
understanding of the limitations and biases of these approaches, researchers can make more informed decisions when
designing their sampling and analyses. Overall, our results reveal that demographic inference using RADseq data can be
successfully applied to infer recent population size change and may be an important tool for population monitoring and
conservation biology.

Introduction

One of the most important parameters in wildlife manage-
ment and conservation biology is effective population size
(Ne), with estimates providing insight into the demographic
history and extinction risk of populations. Although Ne is
informative about population viability and broadly applic-
able in ecology, conservation, and evolution, it is notor-
iously difficult to estimate (Luikart et al. 2010). Rarely is
enough demographic information available from natural
populations to directly estimate Ne, making indirect genetic
estimates of considerable use, especially given their ease of

generation relative to direct demographic methods
(Schwartz et al. 2007; Luikart et al. 2010; Dudgeon and
Ovenden 2015; Andreotti et al. 2016). It is now possible to
generate population genomic data for almost any species for
the investigation of population and evolutionary history
(Narum et al. 2013; Andrews et al. 2016; Nunziata et al.
2017). The increase in power and precision offered by a
genomic approach is poised to greatly improve estimates of
demographic history, including Ne, the timing of demo-
graphic events, and migration. Genomic-based demographic
inference has yielded insight into invasion dynamics
(Trucchi et al. 2016), climate-driven population shifts
(Prates et al. 2016), and glacial refugium dynamics
(Kopuchian et al. 2016) at historical timescales. However,
as emphasized in a recent review, the application of geno-
mic techniques in conservation studies has been rare (Shafer
et al. 2015a). One obvious, but unanswered, question is
whether genomic-based demographic inference methods
have the ability to accurately characterize population history
over a contemporary time scale (e.g., tens of generations),
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and whether there is a time lag between decline in census
size and decline in Ne.

Previous work has begun to hint at the ability for genetic
data to uncover recent population history. Simulation stu-
dies have suggested that microsatellite markers have the
ability to detect bottlenecks and population size trends at a
contemporary scale, but require sample sizes of 60 or more
individuals and are not accurate with large (≥1000) popu-
lation sizes (Tallmon et al. 2010; Antao et al. 2011). While
increasing the number of microsatellite markers employed
can increase the power to detect population size change
(Hoban et al. 2013), in many cases researchers will not have
access to, or resources to generate, ≥100 microsatellite
markers. These studies either did not use single-nucleotide
polymorphism (SNP) data which would be common in
contemporary population genomic studies, or they simu-
lated a small number (100–1000) of SNP markers (Antao
et al. 2011; Hollenbeck et al. 2016). It is possible that the
increased power offered by large genomic data sets can
result in accurate estimates of population size trends over
short timescales while using smaller numbers of sampled
individuals.

Recent empirical studies have shown that coalescent-
based demographic inference can accurately date docu-
mented introductions of populations occurring in the past
few decades (McCoy et al. 2013; Fraser et al. 2015). Coa-
lescence theory states that the probability of coalescence t
generations ago is (1−(1/2Ne))

t−1(1/2Ne), with the coales-
cent Ne estimated as the expected time of coalescence in
generations, T, or T= 2Ne (Nordborg and Krone 2002;
Wakeley and Sargsyan 2009). Given these equations, when
Ne is small enough, as is often the case in species of con-
servation concern, large sample sizes (individuals and/or
loci) may be effective in estimating coalescent Ne at a
contemporary scale as coalescent events will be clustered in
the recent past. Consistent with this theory, a simulation
study found that although large sample sizes are generally
not needed for accurate demographic inference of ancient
events, increased sampling of individuals increases accu-
racy of parameter estimates for more recent events
(Robinson et al. 2014). Before these methods can be applied
to real-world conservation biology, vigorous exploration is
needed to estimate their accuracy with realistic sampling
conditions to gain an understanding of implicit limitations
and biases (Shafer et al. 2015a).

Restriction site-associated DNA sequencing (RADseq) is
arguably the most popular method for generating genome-
wide population genetic data from a reduced subset of the
genome (Davey et al. 2011; Andrews et al. 2016). While
RADseq can yield many thousands or tens of thousands of
shared orthologous loci across individuals and populations,
it also has inherent properties that lead to allele dropout, and
consequently, missing data that may create biases in

population genetic results. Allele dropout via mutations in
restriction cut sites and the shotgun nature of Illumina
sequencing, which under-sequences loci or alleles can ran-
domly lead to either missing genotypes for loci, or the
misinterpretation of null alleles as homozygous at hetero-
zygous loci. Both of these scenarios can result in skewed
estimation of allele frequencies (Arnold et al. 2013), and a
misrepresentation of the site frequency spectrum (Shafer
et al. 2017). Simulation studies have highlighted the
downstream effects of these biases in commonly estimated
population genetic summary statistics (Gautier et al. 2013;
Arnold et al. 2013) and in phylogenetic inferences (Huang
and Knowles 2014). However, the effect of allele dropout in
RADseq-based studies of Ne and contemporary population
size trends has not been investigated.

Here we use an approach similar to Tallmon et al. (2010)
and assess the ability of RADseq-generated SNP data and
different Ne estimators to infer population abundance and
population size trends (λ) over a contemporary time scale.
We simulated ideal Wright–Fisher (W–F) populations over
a range of known census sizes (NC) and with either stable
population size, or a steadily declining population. In ideal
W–F populations NC= Ne, so that estimates of Ne can be
directly compared to the simulated NC. Using both linkage
disequilibrium-based analysis, and a coalescent-based ana-
lysis, we assess the estimation of Ne and population size
trends. In doing so, we also evaluate the impacts of the
various aspects of the population model (initial population
size and the number of generations since λ began) on esti-
mation, as well as the impacts of sampling, number of SNPs
sampled, allele dropout, and data filtering.

Methods

Data simulation

We conducted simulations of RADseq data for populations
with both stable and declining population sizes using the
Python program simuPOP v1.1.4 (Peng and Kimmel 2005),
a forward-time and individual-based population genetic
modeling program. Prior to simuPOP simulations, initial
haploid allele frequencies were generated with the coales-
cent simulator fastsimcoal2 v2.5.2.21 (fsc2; Excoffier et al.
2013) for 20,000 150 base pair (bp) loci using a diploid Ne

of 1000. A mutation rate (µ) was randomly assigned to each
locus from a log-normal distribution with a mean µ of 2.5E
−8 and a log standard deviation of 1.3. This mutation rate
has been robustly estimated in humans (Nachman and
Crowell 2000) and similarly used in other RADseq simu-
lation studies (Huang and Knowles 2014). We used this log-
normal distribution of mutation rates among loci to account
for variance in the mutation rate across the genome, and to
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generate a large number of highly diverse loci. Our rational
was to generate a large number of SNPs typical of empirical
RAD studies, while balancing computational demand of
simulating even greater numbers of individual RAD loci
variable in one or a few SNPs. This created a larger pro-
portion of allele dropout than would be typical of empirical
studies, but the loci retained to assess impacts of allele
dropout should be comparable to those typical of empirical
studies. Loci were generated as Arlequin-formatted files and
were subsequently converted to Phylip format using the
program PGDSpider v2.0.5.1 (Lischer and Excoffier 2012).
Initial diploid genotypes for individuals in the simuPOP
population were generated by pairing the fsc2-simulated
alleles for each locus using random sampling with repla-
cement, which approximated random mating and W–F
populations. Diploid populations were constructed with
initial population sizes of n= 250, 500, and 1000, with 100
replicates constructed for each initial population size.
Throughout the subsequent simulations, populations main-
tained an average sex ratio of 1 with random mating, non-
overlapping generations, a fixed µ= 2.5E−8 across all loci,
and with no assignment to chromosomes. Under these
conditions NC should be approximately equal to Ne. All
simulated populations went through an equilibrium phase of
10 generations to reach Hardy–Weinberg equilibrium
(Waples 2006; Tallmon et al. 2010; Antao et al. 2011), after
which each replicate diploid population evolved for one
generation (t−1) according to two separate deterministic
growth rates that approximated a stable population (λ= 1.0)
and a declining population (λ= 0.9). Data collection began
at generation t0 as the population evolved at the same λ for
20 generations as in Tallmon et al. (2010). In each simu-
lation, genotypes from all loci were recorded after 0, 5, 10,
15, and 20 generations. Sample collection began with one
generation after the initiation of the deterministic growth
rate because inbreeding Ne estimates are reflective of the
number of parents in the parental generation (Waples 2005).
To assess the effect of the sample size of individuals, we
sampled 15, 30, and 60 individuals from each of the spe-
cified generations.

In silico RADseq mutations and data filtering

Using custom Python scripts, we filtered RADseq loci from
sampled individuals to mimic empirical RADseq data
recovery and filtering conditions typically used in popula-
tion genomic studies. To simulate allelic dropout as a result
of a mutation in the restriction enzyme cutting site, all
individual sequences were deleted containing a mutation in
the first 8 bp, which represents our restriction cut site. To
simulate missing data as a result of variation in sequencing
coverage, we simulated the number of reads for each indi-
vidual allele by drawing randomly from a Poisson

distribution with a mean of 10 (Huang and Knowles 2014).
We imposed a sequencing coverage cutoff of 10, which is
considered an efficient sequencing coverage cutoff for
diploids. To be genotyped as heterozygous, individuals
were required to have a coverage ≥5 reads per allele for a
given locus. If one allele had a coverage ≥10 reads and the
other had o5, the locus was recorded as homozygous for
the higher-coverage allele due to allele dropout. Loci below
these coverage cutoffs were recorded as missing data. All
other sources of missing data and biases from sequencing
errors, coverage cutoffs, and alignment errors were ignored
here as they are not the focus of our study. These have been
thoroughly reviewed in other studies, and are expected to
cause general biases in all sequencing projects (Rokas and
Abbot 2009, Pool et al. 2010, Huang and Knowles 2014).

We next filtered our simulated RADseq data using the
criteria specific to the two analytical programs used in
demographic estimation.

Linkage disequilibrium-based estimation

Linkage disequilibrium (LD) methods for Ne estimation
assume unlinked loci. To remove the inclusion of linked
sites within a RADseq locus, we used only the first SNP in a
locus in all LD-based data sets. To examine whether the
LD-based method produced unbiased Ne estimates with
perfect detection of allele dropout, we analyzed data sets
that removed all loci with missing data exclusively due to
RADseq cut site mutations, hereafter referred to as the LD
RAD mutation data set. We further examined how LD-
based Ne estimation would be affected by the combined
impacts of missing data from allele dropout due to RADseq
cut site mutation and low sequencing coverage. For these
analyses, we generated two filtered data sets that removed
loci with ≥10% and ≥50% missing data; hereafter referred
to as the 10% missing and 50% missing data sets,
respectively.

Fastsimcoal2

In fsc2, the use of linked SNPs should not bias parameter
estimation, so all data sets analyzed in this study used all
SNPs in a locus. However, the inclusion of loci with
missing data is expected to lead to a biased site frequency
spectrum (SFS) and result in inaccurate parameter estimates
(Excoffier et al. 2013). Therefore, we included only loci
with no missing data across all sampled individuals. Only
variable sites were included in the SFS. To examine the
potential effects of allele dropout on Ne estimation in the
program fsc2, we analyzed our simulated RADseq data
under a range of filtering strategies that accounted for allele
dropout due to mutations in restriction cut sites and insuf-
ficient sequencing coverage. First, we analyzed an unfiltered
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data matrix with no allele dropout. Here the SFS was
constructed using the complete 20,000 locus (3,000,000 bp)
simulated data set, and is hereafter referred to as the fsc2
complete data set. Next, we examined the performance of
Ne estimation in fsc2 when accounting for the perfect
detection of allele dropout due to restriction cut site muta-
tions. Here the SFS was constructed after removal of all loci
with a restriction cut site mutation, hereafter referred to as
the fsc2 RAD mutation data set. We examined the perfor-
mance of Ne estimation in fsc2 when allowing for allele
dropout due to both cut site mutation and low sequencing
coverage, hereafter referred to as the fsc2 RAD mutation
and coverage data set. Finally, to examine the impact of
number of SNPs included in the joint SFS, we subsampled
the fsc2 complete data set for 5000, 15,000, 25,000, 50,000,
100,000, and 150,000 SNPs.

Ne estimation and demographic inference

We used the program NeEstimator v2.01 (Do et al. 2014) to
estimate Ne using the linkage disequilibrium method (Hill
1981). With finite population size and a limited number of
parents, nonrandom associations of alleles at different
genetic markers occur (i.e., linkage disequilibrium), even
without any physical linkage on a chromosome (Waples and
Do 2010). We estimated Ne from all sampled generations of
our temporally simulated populations, employing all three
LD-based data-filtering scenarios described above. In
addition, we assessed the effect of excluding rare alleles
using Pcrit cutoffs, which is important in LD-based Ne

estimation. For all data sets, we separately applied a Pcrit of
0.01, 0.02, and 0.05. A Pcrit of 0.02 has been recommended
to balance precision and bias (Waples and Do 2010),
although 0.05 is a common value used in SNP-based
studies.

We used fsc2 to perform demographic inference using
the joint SFS generated from serial samples taken at gen-
erations 0 (t0) and 20 (t20) in our temporally simulated
populations. For all fsc2 analyses, we used a simple model
of a single population with Ne at t0 fixed at the known
starting value and Ne in subsequent generations allowed to
vary according to the model. Fixing Ne at t0 allowed us to
reduce the number of parameters estimated from the model,
scale Ne estimation without a mutation rate, and ignore
invariant sites in the SFS. Defined parameter ranges were
uniformly distributed with Ne ranging from 1 to 10,000. A
total of 100,000 simulations were performed to estimate the
SFS, with a minimum and maximum of 10 and 100 loops
(ECM cycles), respectively. The stopping criterion was
defined as the minimum relative difference in parameters
between two iterations, and was set to 0.001. A total of 50
replicate fsc2 runs were performed for each replicate
simulation of a demographic scenario, and for each of the

three fsc2 filtering options described above. The overall
maximum likelihood run across all 50 fsc2 replicates was
retained as a point estimate for Ne

t20. Due to computational
limitations, for each combination of initial population size
and population growth rate, only the first 40 temporally
simulated replicates (out of 100) were analyzed with fsc2.

Accuracy assessments

The performance of each Ne estimation method was eval-
uated for the overall accuracy of Ne estimates. To char-
acterize the accuracy of Ne estimates across simulation
replicates, we measured the root mean squared error
(RMSE) calculated after removing infinitely large estimates
by

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where bNei is the estimated Ne in the ith (i= 1–100) replicate,
and Ne is the simulated Ne. The RMSE was not calculated if
over 50% of the estimates of bNei reached infinity.

Detection of population size change

To estimate population size trends, we calculated bλ as the
slope of a linear regression of the log transformation of Ne

estimates from current and historical samples within a
simulated replicate and we compared these to known λ. We
performed these calculations for results generated from both
NeEstimator and fsc2 using all simulated demographic
scenarios, data-filtering scenarios, and Pcrit levels. Follow-
ing Tallmon et al. (2010), we recorded the proportion of
times bλ o 0.95 when true λ= 0.9. This is a practical con-
servation scenario to identify populations that are declining
by at least 5% per generation. We also assessed how often a
stable population was incorrectly identified as declining as
the proportion of times bλ o 0.95 when true λ= 1.0 (false
positive rate).

Results

The number of SNPs generated in the simulation depended
on the initial population size, imposed lambda, and the post-
simulation filtering scenario used (LD-based data: Table 1;
fsc2 data: Table S1). Consistent with theoretical expecta-
tions, in the LD-based SNP data sets, larger populations
generally had more SNPs and lost genetic diversity less
rapidly due to drift, and declining populations lost genetic
diversity more rapidly than stable populations. The mean
number of SNPs in the joint SFS was highly dependent on
data-filtering method, with the number of shared SNPs
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between t0 and t20 declining with allele dropout from both
RADseq mutation and insufficient sequencing coverage.
Although the number of SNPs will vary with study design,
such as the number of individuals multiplexed in an Illu-
mina sequencing lane, and coverage cutoffs, the number of
SNPs we recovered in our simulations is comparable to
empirical RADseq studies.

Stable population size estimation

LD-based estimation

Here we focus on results from estimation of bNe at t20 under a
λ= 1.0, where the accuracy of bNe estimation was most
influenced by the number of individuals sampled and the
Pcrit employed (Fig. 1; Fig. S1). Estimates of bNe at time
points t0 through t15 were nearly identical to bNe at t20, and
are not presented here. RMSE calculations yielding the
lowest measures of error for all simulated demographic and
filtering scenarios are presented in Table 2. The lowest
individual sample size (n= 15) only produced meaningful
results at a simulated population size of n= 250 and a Pcrit

= 0.05, with the majority of replicates at higher simulated
population sizes and/or different filtering methods yielding
either infinite bNe or very wide ranges of parameter esti-
mates. A full summary of the proportion of replicate esti-
mates that reached infinity can be found in Tables S2–S4. In
contrast, increased individual sampling (n= 30 and n= 60)
produced more accurate estimates of bNe over most demo-
graphic and data-filtering scenarios. Analyses of the LD
RAD mutation data set generated bNe estimates with the
greatest accuracy and least variance; however, data sets with
10 and 50% missing data due to both cut site mutations and

insufficient read coverage also generated similarly accurate
bNe estimates under many simulated population sizes and
Pcrit levels. The Pcrit level yielding the most accurate results
varied with the number of individuals sampled and simu-
lated population size. Generally, including low frequency
alleles with an Pcrit= 0.01 appeared to have the largest
effect by upwardly biasing bNe and yielding the greatest
variance (Fig. S1).

Fig. 1 Boxplots of the distribution of bNe estimates from 100 replicate
simulations for LD-based estimation at generation 20 from temporal
simulations under stable population sizes (λ= 1.0) with a Pcrit= 0.05.
Dashed lines represent true Ne for the three population size models
(1000, 500, and 250). Different missing data-filtering strategies are
shown at the bottom of the figure. The number of individuals sampled
is shown at the top

Table 1 Number of SNPs used for LD-based analysis resulting from
simulations in simuPop

Initial variation at t0 Final variation at t20

RAD
mutation

10% 50% RAD
mutation

10% 50%

N λ # SNPs # SNPs # SNPs # SNPs # SNPs # SNPs

250 1.0 3660 3938 4527 3521 3695 4223

500 1.0 3718 4054 4657 3629 3876 4451

1000 1.0 3756 4130 4742 3703 4013 4611

250 0.9 3915 3941 4676 3099 2965 3457

500 0.9 3719 4053 4661 3392 3493 3975

1000 0.9 3756 4128 4739 3570 3773 4327

SNPs were calculated as average across the 100 replicates for each
simulated scenario and are presented for the initial generation (t0) after
the 10-generation equilibrium phase and from the final generation (t20).
SNP levels are broken down across the different initial population
sizes (N), population growth rates (λ), and data-filtering methods (LD
RAD mutation, 10% missing, and 50% missing data sets).
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Fastsimcoal2

Estimation of bNe at t20 under a λ= 1.0 population model
was most influenced by the number of SNPs included in the
SFS (Fig. 2a, b, c) and, therefore, the allele dropout filtering
scenario was used (Fig. 2S A–C). Overall, the fsc2 RAD
mutation and fsc2 RAD mutation and coverage data sets
yielded similar precision and accuracy compared to data
sets using a similar number of randomly chosen SNPs from
the fsc2 complete data set. Increased individual sampling
had a slight improvement on accuracy and/or precision
under all three population size models. However, analysis
of 60-individual data sets in combination with lower num-
bers of SNPs (5000 and 10,0000), including the fsc2 RAD
mutation and coverage data sets, yielded a very wide range
of estimates under all three population size models, with
highly inaccurate and negatively biased estimates under a n
= 250 model. In general, accuracy and precision in all
scenarios proportionally decreased with the number of
SNPs in the data set.

The 150,000 SNP data set yielded the lowest RMSE
values for the n= 250 and n= 500 population models, and
when sampling 60 individuals in the n= 1000 model (Table
3). Subsampled SNP data sets with 25,000 or more SNPs
yielded only small decreases in RMSE with increasing
numbers of SNPs. In the allele dropout data sets, the fsc2
complete data set yielded the lowest RMSE values for the n
= 250 and n= 500 population models, and when sampling
60 individuals in the n= 1000 model (Table S5). Overall,
fsc2 RAD mutation and fsc2 RAD mutation and coverage
data sets had similar RMSE values.

Declining population size estimation

LD-based estimation

The number of generations since the beginning of a popu-
lation decline was the biggest factor affecting the accuracy
and precision of bNe estimation (Fig. 3, Figs. S3–S5), with
the variance in estimates decreasing over time as population
size declined. Individual sampling also affected results, with
an n= 15 yielding a greater estimation variance, particu-
larly in earlier generations of the decline. Estimation using
an n= 30 or 60 produced highly accurate estimates of bNe in
t10 through t20. In general, bNe estimation over time was only
minimally affected by the initial population size, the miss-
ing data filter used, or the Pcrit used. However, with indi-
vidual samples size of n= 15 a Pcrit of 0.05 lead to a greater
proportion of finite bNe (Table S8–S10).

Similarly, estimation of bλ over different time intervals
was most influenced by the number of generations passing
between sampling events. The data filter used had minimal
impact on the accuracy of bλ estimation and we present
results from analyses of the 10% missing data here (Table 4)
with results from analysis of additional allele dropout data
sets presented in Tables S6–S7. When sampling 30–60
individuals, the Pcrit did not have a large impact on popu-
lation trend detection, but with an individual samples size of
15, a Pcrit of 0.05 improved population trend detection. For
example, when sampling 15 individuals, population
declines with an initial n ≤ 500 were detected 67% of the
time when at least ten generations passed, and increased to
85% of the time when 20 generations passed. With n= 15
and an initial n= 1000, at least 20 generations must pass for
population declines to be detected 64% of the time. How-
ever, with n= 15 using a Pcrit of 0.05 also increased the

Table 2 RMSE values for all filtering scenarios for LD-based analysis in NeEstimator under a stable population (λ= 1.0)

LD RAD mutation 10% missing data 50% missing data

(&Pcrit level) (&Pcrit level) (&Pcrit level)

0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05

N= 250 n= 15 2.73E−03 2.73E−03 2.95E−03 3.41E−03 3.41E−03 2.73E−03 3.68E−03 3.68E−03 2.70E−03

n= 30 1.41E−03 1.10E−03 1.25E−03 1.55E−03 1.11E−03 1.18E−03 1.532E−03 1.11E−03 1.23E−03

n= 60 6.88E−04 6.17E−04 6.10E−04 1.55E−03 1.11E−03 1.18E−03 1.53E−03 1.11E−03 1.23E−03

N= 500 n= 15 Inf. Inf. 1.60E−03 Inf. Inf. 1.54E−03 Inf. Inf. 1.62E−03

n= 30 9.65E−04 7.98E−04 8.41E−04 1.16E−03 7.79E−04 8.06E−04 1.16E−03 7.79E−04 8.15E−04

n= 60 4.59E−04 4.63E−04 4.40E−04 4.99E−04 4.56E−04 4.54E−04 5.02E−04 4.47E−04 4.43E−04

N= 1000 n= 15 Inf. Inf. 1.99E−03 Inf. Inf. 1.84E−03 Inf. Inf. 1.87E−03

n= 30 6.65E−04 7.76E−04 8.90E−04 8.03E−04 7.44E−04 7.87E−04 8.23E−04 7.32E−04 8.14E−04

n= 60 3.01E−04 3.14E−04 3.04E−04 8.03E−04 7.44E−04 7.87E−04 8.23E−04 7.32E−04 8.14E−04

Bold values identify the lowest RMSE for a particular combination of population size (N), individual sampling level (n), and minor allele
frequency cutoff (Pcrit). Bold and italicized values identify the lowest RMSE for a particular population size. RMSE was not estimated if over 50%
of the estimates of bNe reached infinity for a particular parameter combination (Inf.)
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false positive rate, where stable populations were incor-
rectly identified as declining with bλ estimates of o0.95
across many replicates (Table 5, Tables S11–S12).
Increased individual sampling greatly improved the correct
identification of a declining population. For example, under
an n= 1000 model, sampling 60 individuals resulted in the
correct identification of a population decline 495% of the

time when 10 generations passed and correct identification
471% of the time after just five generations.

Fastsimcoal2

The accuracy of bNe at t20 was most influenced by the
number of SNPs included in the joint SFS (Figs. 2d, e, f),

Fig. 2 Boxplots of the distribution of fastsimcoal2 estimates of bNe at
t20 from 40 replicate temporal simulations. a–cbNe estimates under a
stable population size (λ= 1.0) for population sizes of (a) 1000, (b)
500, and (c) 250. d–fbNe estimates under declining population size (λ=
0.9), for initial population size of (d) 1000, (e) 500, and (f) 250. Red

dots represent the true Ne at t20. Results are broken down across the
number of individuals sampled (identified at the top of each panel) and
the different numbers of SNPs used in analysis (identified at the bot-
tom of each panel). For some parameter combinations, there were
insufficient numbers of individuals for target n
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and therefore also the allele dropout filter used (Fig. S2 D-
F). Estimates of bNe at t20 were positively biased across all
data sets, with greater bias in data sets with fewer numbers
of SNPs. Similarly, estimation of bλ was most influenced by
the number of SNPs included in the joint SFS. When
sampling 5000–10,000 SNPs, population declines were
detected o50% of the time across most scenarios (Table
S13). With samples of 50,000–150,000 SNPs, population
declines were detected across most replicates for an initial N
of 500 and 1000. Population declines were not reliably
detected for an initial N of 250 for any sampling scenario.
For the allele dropout data sets, population declines of bλ o
0.95 were detected across all 40 analyzed replicates using
the fsc2 complete data set (Fig. S2 D–F). In contrast, none
of the replicates for either fsc2 RAD mutation, or fsc2 RAD
mutation and coverage data sets meet our criteria of bλ o
0.95, although most qualitatively indicated decline relative
to Ne at t0. Stable populations were never identified as
declining in any data set examined.

Discussion

Our results demonstrate that RADseq data have the poten-
tial to improve the inference of population demography and
the detection of population declines on a very recent time
scale. The linkage disequilibrium and coalescent methods
we applied to estimate Ne use largely different sources of
information from genomic data sets. The relative perfor-
mance of these methods was influenced by different factors
related to the study design, such as the number of indivi-
duals sampled (important for LD-based estimation) and the
amount of variable data generated (important for coalescent
estimation). Given that the accuracy and precision of Ne

estimators hinge on aspects of the study design and the
underlying population history, we further discuss these
influences and provide guidelines for inferring Ne and

population size trends. While we compare and contrast the
performance of both estimators, combining results from
both methods in empirical studies may be the best approach
to develop an encompassing view of overall population
demographic history, as suggested by Waples (2016).

Performance of estimators

In our analysis of RADseq data, LD-based demographic
inference generally outperformed coalescent-based infer-
ence for Ne estimation and the detection of population
declines. However, there were limitations with LD-based
inference, most notably with the number of sampled indi-
viduals required to provide both accurate and precise
results. Sampling of 15 individuals led to large variance in
estimates. This was most evident under a stable population
size and in early generations of a population decline, par-
ticularly when population size was large (e.g., N= 1000). In
contrast, increasing sampling to 30 individuals greatly
increased the accuracy and precision of Ne estimates. This
may be discouraging from the perspective of sampling, as
many-population genetic studies sample far fewer than 30
individuals per population. However, in light of
microsatellite-based simulations showing that 30 indivi-
duals resulted in largely biased Ne estimation (Tallmon et al.
2010), LD-based analysis of RADseq appears to provide
new opportunities for accurate demographic inference.

In contrast, coalescent-based Ne estimation (using fsc2)
was not greatly affected by the number of individuals
sampled, with highly precise Ne estimates produced using as
few as 15 individuals. This result is similar to those
obtained with ABC estimates based on large genomic data
sets (Robinson et al. 2014). The most significant limitation
for the coalescent approach was the number of SNPs in the
joint SFS, and therefore the data filter used. We found that
sampling 25,000 SNPs, and in some cases as many as
50,000 SNPs, were required to obtain accurate estimates of

Table 3 RMSE values for increasing number of SNPs using fastsimcoal2 under a stable population (λ= 1.0)

5000 10,000 25,000 50,000 100,000 150,000

N= 250 n= 15 0.000357 0.000357 0.000267 0.000201 0.000136 0.000101

n= 30 0.000118 0.000234 0.000178 0.00014 0.000103 8.58E−05

n= 60 0.000738 0.000367 0.000153 6.30E−05 6.14E−05 5.73E−05

N= 500 n= 15 0.000233 0.00017 0.000105 0.000153 0.000152 0.000147

n= 30 0.00019 6.69E−05 8.29E−05 6.43E−05 6.10E−05 8.13E−05

n= 60 0.000352 0.000191 8.78E−05 5.30E−05 5.33E-05 5.28E-05

N= 1000 n= 15 0.000217 0.000208 0.000217 0.000208 0.00022 0.000234

n= 30 0.000205 8.59E−05 9.19E−05 9.73E−05 0.000115 0.000113

n= 60 0.000188 1.18E−04 4.66E−05 4.04E-05 4.52E−05 5.50E−05

Bold values identify the lowest RMSE for a particular combination of population size (N) and individual sampling level (n). Bold and italicized
values identify the lowest RMSE for a particular population size

RADseq demography estimation 203



Ne under a stable population model, with minimal increases
in accuracy with greater number of SNPs. Previous simu-
lation studies using coalescent-based ABC approaches
found similar limitations with population size difficult to
estimate even with 50,000 loci in some cases (Shafer et al.
2015b). All data sets yielded a consistent upward bias in Ne

estimation in the declining populations (Figs. 2d, e, f), and
we are not sure what drives this estimation bias, but it was
most pronounced in the data sets with fewer SNPs. Despite
this positive bias, population declines were obvious using
≥50,000 SNPs at 20 generations from initiating declines.
Due to the intense computational needs inherent to fsc2, Ne

was not estimated at earlier time points. Interestingly,
detection of population declines were more difficult when
initial population size was smaller (i.e., N= 250). While
complete data sets similar to the ones used here are not
attainable in empirical research, the positive correlation
between numbers of SNPs and accurate coalescent-based Ne

estimation is encouraging. Technological improvements
and sequencing costs continue to increase our ability to
generate more complete genome-wide SNP data, even when
factoring in allele dropout. In contrast, increasing sample
size, especially temporally, will remain difficult for many
species. Our use of true Ne as a prior for one of our sampled
years is also unlikely to be available in most study systems,
which would further model complexity and add analytical
time to an already computationally challenging set of ana-
lyses. Ultimately, coalescent-based demographic inference
using a joint SFS-based method may be a great option for a
more limited set of studies with access to large SNP data
sets, and prior population information, as has been illu-
strated in a number of empirical studies (McCoy et al. 2013;
Fraser et al. 2015; Nunziata et al. 2017).

Allele dropout and data filtering

Missing data via allele dropout in RADseq studies has been
shown to affect a number of population genetic summary
statistics, including measures of genetic diversity and
population structure (Arnold et al. 2013; Gautier et al.
2013). Our results from parameter estimators for Ne are
therefore encouraging, as increasing levels of missing data
via allele dropout had little impact on LD-based Ne esti-
mation and were generally comparable to the data set with
no null alleles. Interestingly, while LD-based estimation
was robust to the effects of allele dropout and missing data,
the Pcrit influenced bNe accuracy and precision, particularly
under a model of stable population size. These results are
consistent with other studies (Waples and Do 2010), where
the inclusion of low frequency alleles created a positive
bias, while the exclusion of these alleles created a slightly
negative bias, particularly at the lowest sample size (Waples
and Do 2010). Also consistent with the guidelines outlined
in Waples and Do (2010), when low individual samples
sizes were used (n= 15) a Pcrit of 0.05 yielded the most
finite and accurate estimates, as it is the only Pcrit that
screened out singletons, which can bias bNe.

In contrast to the LD-based analyses, the allele dropout
filter used in the fsc2 analyses did affect the results.

Fig. 3 Boxplots of the distribution of point estimates from 100 repli-
cate simulations for LD-based Ne estimation from five temporal
sampling points (t0–t20) under declining population growth model (λ=
0.9) using the 10% missing data set and a Pcrit= 0.05. Red dots
represent true Ne over time, starting from an initial N of 1000 (top),
500 (middle), or 250 (bottom). Results are also broken down across
different levels of individual sample size (n= 15, 30, or 60). For some
parameter combinations, there were insufficient numbers of indivi-
duals for target n
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However, allele dropout data sets did not appear to create
any systematic bias compared to data sets using a similar
number of randomly chosen SNPs from the fsc2 complete
data set. Because these analyses preclude the use of loci
with missing data, the direct impact of filtering loci by allele
dropout was a major reduction of the number of SNPs
included in the joint SFS. Contemporary population
declines purge rare alleles, creating a predictable signature
in the SFS (Nei et al. 1975; Gattepaille et al. 2013), with the
likelihood of detecting this signature increasing with the
number of SNPs included in the data set. We found that Ne

estimation was accurate, and declines were reliably detec-
ted, using our data set containing ≥50,000 SNPS. The
generation of empirical data sets robust enough to detect

population declines may, therefore, require increased
sequencing efforts to offset the effects of allele dropout by
increasing the number of loci sampled and their coverage.
Maybe counter intuitively, increased individual sampling
does not solve this problem as adding individuals increases
the probability of allele dropout through a cut site mutation
or insufficient sequencing coverage, creating a smaller SNP
matrix and decreasing precision in bNe (Fig. 2S). Potentially,
this result can be overcome by subsampling individuals for
non-missing data (e.g., Papadopoulou and Knowles 2015).

Allele dropout often goes undetected in many studies,
and our preliminary exploration suggests that the under-
lying population history of either stable or declining
populations were recovered and point estimates were almost

Table 4 Number of times that a declining population trend was correctly identified out of 100 replicate runs for LD-based analysis in NeEstimator
under a declining population model (λ= 0.9)

t0–t5 t0–t10 t0–t15 t0–t20

(&Pcrit level) (&Pcrit level) (&Pcrit level) (&Pcrit level)

0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05

N= 250 n= 15 49 49 68 63 63 83 71 71 95 72 72 99

n= 30 86 79 79 99 94 93 100 100 100 — — —

n= 60 94 94 94 100 100 100 — — — — — —

N= 500 n= 15 8 8 48 18 18 67 25 25 79 29 29 85

n= 30 79 73 72 94 84 86 100 99 98 100 99 99

n= 60 80 81 84 97 98 98 100 100 100 — — —

N= 1000 n= 15 0 0 35 0 0 40 2 2 53 2 2 64

n= 30 57 65 66 70 80 79 76 91 91 78 97 97

n= 60 71 73 74 96 95 96 100 100 100 100 100 100

Results are presented for increasing intervals of time and by the combination of population size (N), individual sampling level (n), and minor allele
frequency cutoff (Pcrit). Results are based on the analysis of data sets with 10% missing data.

For some parameter combinations, there were insufficient numbers of individuals for target n (—)

Table 5 Number of times that a population trend was incorrectly identified as declining out of 100 replicate runs for LD-based analysis in
NeEstimator under a stable population model (λ= 1.0)

t0–t5 t0–t10 t0–t15 t0–t20

(&Pcrit level) (&Pcrit level) (&Pcrit level) (&Pcrit level)

0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05 0.01 0.02 0.05

N= 250 n= 15 26 26 38 24 24 29 24 24 24 20 20 10

n= 30 29 27 25 20 13 12 15 9 8 3 1 1

n= 60 8 9 8 1 1 1 1 1 1 0 0 0

N= 500 n= 15 1 1 38 0 0 32 2 2 29 3 3 23

n= 30 47 41 43 36 21 22 29 16 15 20 8 8

n= 60 26 24 27 6 6 6 1 1 1 0 0 0

N= 1000 n= 15 1 1 20 0 0 12 0 0 10 0 0 9

n= 30 16 36 37 11 30 28 16 27 27 7 18 18

n= 60 21 18 25 14 13 12 4 4 4 1 1 0

Results are presented for increasing intervals of time and by combination of population size (N), individual sampling level (n), and minor allele
frequency cutoff (Pcrit). Results are based on the analysis of data sets with 10% missing data.
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always within an order of magnitude of real Ne. Previous
simulation work has revealed that non-equilibrium demo-
graphy, such as a population decline, can cause low Ne and
result in fewer loci with missing data and more accurate
allele frequency estimation (Arnold et al. 2013). Therefore,
our findings should not be interpreted as applicable across
systems, since we may have modeled scenarios (i.e., low Ne,
steadily declining) that create evident signatures in the SFS
at a contemporary time scale.

Practical considerations

Many additional factors influence Ne that we have not
modeled here, including selection, migration, and over-
lapping generations (Slatkin 2008). In real populations, Ne

rarely equals NC, and changes in Ne could track any number
of demographic changes, not exclusively NC (Palstra and
Ruzzante 2008). Further simulations are needed under more
realistic scenarios to determine the application of evaluated
methods across systems. One factor that must be considered
with RADseq data sets and the LD-based approach is that
although pairwise r2 values (correlation of genes within
individuals) increase with number of loci, SNPs on the same
chromosome are not independent and will reduce the pre-
cision of bNe because LD will be the result of physical
linkage and not drift (Waples et al. 2016). The use of linked
SNPs could be corrected for by using known genomic
architecture (Waples et al. 2016); and is an important con-
sideration in the application of LD-based Ne estimation to
RADseq data.

Both LD and coalescent methods produced a time lag
between census size declines and corresponding decline in
Ne. The LD-based method has potential for accurate
detection of population declines, generally after only 10
generations from initiation of a decline. However, if
working with long-lived species with long-generation times,
these 10 generations could equate to several decades within
which populations could decline rapidly toward extinction
with a little change in Ne. Given these findings, we
emphasize that genomic monitoring is not a replacement for
traditional census size monitoring in many cases, but may
serve as an informative complement.

When inferring bλ from bNe for conservation purposes,
false positives can lead to a waste of management resources
when stable populations are misidentified as declining
(Schwartz et al. 2007). The absence of any false positives in
the fsc2-based λ estimation, and the lower number of
individuals required, is promising for its application in
conservation studies. However, the failure to detect declines
in most replicates with o25,000 SNPs highlights the need
for very large SNP data sets, as well as temporal sampling,
especially if quick detection of population declines is a goal.
False positives for LD-based λ estimates were also low,

although this typically required larger sample sizes of at
least 30 individuals. With large resources available to
researchers, the application of both methods for demo-
graphic inference will be the ideal approach to take, but
given constraints on sampling or sequencing, the results
here can be useful for guiding decisions about how to
design a conservation genetic study aimed at detecting
recent population declines. Finally, even when temporal
sampling is unavailable, Ne is itself an important indicator
of population viability and evolutionary potential and
RADseq data can serve as a valuable source of information
for this parameter.

Data archiving

All simulation scripts Data available from the Dryad Digital
Repository: https://doi.org/10.5061/dryad.6d925.
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