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Abstract

Purpose—To investigate potential attenuation of healthy worker biases in populations in which 

healthy women of reproductive age opt out of the workforce to provide childcare.

Methods—We used 2013–2015 data from 120,928 U.S. women and men aged 22–44 years 

participating in the Gallup-Healthways Well-Being Index. We used logistic regression to estimate 

adjusted prevalence odds ratios (PORs) and 95% confidence intervals (CIs) for associations 

between health and workforce nonparticipation.

Results—Women and men reporting poor health were more likely to be out of the workforce 

than individuals reporting excellent health (POR: 3.7, 95% CI: 3.2–4.2; POR: 6.7, 95% CI: 5.7–

7.8, respectively), suggesting potential for healthy worker bias. For women (P <.001) but not men 

(P = .30), the strength of this association was modified by number of children in the home: POR: 

7.3 (95% CI: 5.8–9.1) for women with no children, decreasing to POR: 0.9 (95% CI: 0.6–1.5) for 

women with four or more children.

Conclusions—These results are consistent with attenuation of healthy worker biases when 

healthy women opt out of the workforce to provide childcare. Accordingly, we might expect the 

magnitude of these biases to vary with the proportion of women with differing numbers of 

children in the population.
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Introduction

Healthy worker biases encompass a variety of biases that arise in occupational epidemiology 

studies and result from differential entry into and exit from the workforce by factors related 
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to health or disease risk [1]. Healthy hire bias and healthy worker survivor bias are the two 

types most often studied.

Healthy hire bias is confounding arising from differential entry into the workforce by 

healthy versus unhealthy individuals [2,3]. An example of a scenario resulting in healthy 

hire bias is comparison of risk (or prevalence) of disease in a worker population to risk in the 

general population: because healthier individuals are more likely to join the workforce than 

less healthy individuals, the risk of disease is lower in the working population than in the 

general population, which results in confounding when the two risks are compared [3].

Healthy worker survivor bias involves differential exit from the workforce by healthy versus 

unhealthy individuals. This bias takes the form of time-varying confounding affected by 

prior exposure and occurs when exposure causes less healthy individuals to leave the 

workforce, leaving healthier workers in the workforce [1,4]. Thus, a higher cumulative 

occupational exposure is accrued by the healthy individuals remaining in the workforce and 

a lower cumulative occupational exposure is accrued by the less healthy individuals who 

leave the workforce. The result is often a downward bias in the association between 

cumulative exposure and disease [1].

Poor physical health and mental health are important reasons why individuals leave or do 

not join the workforce, and these are the mechanisms through which healthy worker biases 

are thought to operate [2]. However, in many populations, substantial proportions of healthy 

women opt out of the workforce for reasons unrelated to health, such as to provide childcare 

[5]. Investigators have also found evidence suggestive of weaker healthy worker biases 

caused by healthy women leaving the workforce after marriage among U.S. white women in 

the 1960s and in a contemporary population of college-educated Japanese women [6,7].

The objective of this study was to explore relationships between health, workforce 

participation, and childcare in a contemporary U.S. population in which the number of 

children in the home might be a strong predictor of workforce nonparticipation for women, 

just as marriage was once a strong predictor of workforce nonparticipation in this 

population. We hypothesized healthy worker biases would be weaker among U.S. women 

with children compared with women without children and that a greater attenuation would 

be seen as the number of children in the home increased. However, we would not expect to 

see this effect for men, who do not traditionally leave the workforce to provide childcare. We 

used the magnitude of the association between workforce participation and self-reported 

health among women and men with differing numbers of children as a proxy for healthy 

worker bias.

Materials and methods

We included adult women and men participating in the Gallup-Healthways Well-Being 

Index (WBI) between January 2013 and October 2015 [8,9]. Approximately 175,000 adults 

(aged 18 years and over) from the 50 U.S. states and the District of Columbia were sampled 

yearly for the WBI using a cross-sectional telephone survey conducted in English or 

Spanish.
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Participants were identified by dual-frame (landline and cell phone) random digit dialing 

from lists purchased from Survey Sampling International. The sample was stratified by time 

zone within U.S. census region and phone type. At least three attempts were made to contact 

the household. For landlines, the adult household member with the next upcoming birthday 

was selected to participate. For cell phones, the person answering the phone was selected (if 

eligible) because the device is treated as a personal device. Since the WBI began in 2008, an 

average of 74% of eligible respondents reached have completed the interview (the overall 

contact rate [persons reached out of all active or inactive numbers called] was 9%). Samples 

were weighted to account for selection probability, nonresponse, and households with both 

cell phones and landlines being present in both sampling frames. In addition, samples were 

weighted by demographic variables to match distributions expected based on the most recent 

Current Population Survey (gender, age, race, ethnicity, education, region, population 

density, phone status) [9]. Participants provided verbal agreement to participate in the 

telephone survey.

Our primary association of interest was between self-reported health (exposure) and 

workforce nonparticipation (outcome), the magnitude of which was used as a proxy for the 

magnitude of healthy worker bias. For this to be valid, we made the following assumptions. 

First, we assumed that healthy worker bias had the structure of confounding (either time 

invariant or time varying affected by prior exposure), in which health affected both an 

occupational exposure (through workforce participation) and a hypothetical disease outcome 

(corresponding directed acyclic graphs are provided in eAppendix Fig. A1). Second, we 

assumed that the association between health and the hypothetical disease outcome was 

constant, so that the stronger the association between health and workforce participation, the 

stronger the likely effect of healthy worker bias.

We restricted our analysis to adults aged 22–44 years to focus on the time when 

reproductive-aged women might be raising young children, to exclude age groups in which 

substantial proportions of respondents are out of the workforce because they are in school 

(ages 18–21 years), and to reduce the likelihood that workforce nonparticipation would be 

driven by retirement or work-related chronic disease, which might be more prevalent in 

older populations.

We used self-rated health as our measure of general health status based on the question, 

“Would you say your own health, in general, is excellent, very good, good, fair, or poor?”.

We categorized WBI participants as in the workforce (working for an employer, being self-

employed fulltime or part-time, or being unemployed and looking for work) or out of the 

workforce (unemployed and not looking for work) at the time of the survey. To determine 

employment status, participants were asked: “Thinking about your work situation over the 

past 7 days, have you been employed by an employer—even minimally like for an hour or 

more—from whom you receive money or goods?” and “Again thinking about the last 7 

days, were you self-employed, even minimally like for an hour or more? This means 

working for yourself, freelancing, or doing contract work or working for your own or you 

family’s business?”. To determine if participants who did not report a job were actively 

looking for work, they were asked: “In the past four weeks, have you actively been looking 
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for employment? ‘Actively looking’ means applying for jobs, searching for jobs, and the 

like”.

Additional variables of interest related to self-reported health and workforce 

nonparticipation included age (22–29, 30–34, 35–39, 40–44 years), race/ethnicity (non-

Hispanic white, non-Hispanic black, Hispanic, other), educational attainment (less than high 

school, high school or equivalent, some college or vocational training, college graduate, 

graduate work or degree), and number of children aged less than 18 years in the home (0, 1, 

2, 3, ≥4).

We first investigated which of our variables of interest were associated with the outcome 

(workforce nonparticipation) by using multivariable models to examine associations 

between these variables (including self-reported health, the exposure) and workforce 

nonparticipation. Covariate choice for multivariable models was guided by directed acyclic 

graphs (eAppendix Fig. A2) [10]. We adjusted the models for age and race/ethnicity when 

education was the variable of interest and adjusted for age, race/ethnicity, and education in 

models for self-rated health and number of children. Models in which age or race/ethnicity 

was the variable of interest remained unadjusted.

A second set of models was created to see how presence of children in the home affected the 

strength of the main association of interest between self-reported health and workforce 

nonparticipation. First, we included interaction terms between number of children in the 

home and self-reported health to assess departure from multiplicative interaction. Then, we 

used stratified analyses to see how the magnitude of the association varied.

We used survey procedures for logistic regression to estimate prevalence odds ratios (PORs) 

and 95% confidence intervals (CIs) for associations between variables in SAS version 9.4 

(Cary, NC), accounting for the sampling weights. Linear tests for trend were used to identify 

potential dose-response relationships, using the variable itself for continuous variables and 

ordinal scores for categorical variables. Results for this test were presented as both P-values 

and POR and 95% CI.

We excluded individuals with missing data for any variables of interest from all analyses. Of 

55,262 participating women and 70,215 men aged 22–44 years, we excluded the following 

number of participants for missing data on the following variables: work-force participation 

(1 woman), self-reported health (30 women, 82 men), race/ethnicity (1273 women, 2088 

men), educational attainment (338 women, 397 men), and number of children in the home 

(99 women, 241 men). Overall, 1741 (3%) women and 2808 (4%) men were excluded from 

the analysis.

Results

Among the 53,521 women and 67,407 men in the analysis, 24% of women and 10% of men 

(weighted prevalence) were not participating in the workforce.

Characteristics of women and men in and out of the workforce are shown in Table 1. Women 

aged 30 years and above were slightly more likely to be out of the workforce than women in 
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their 20s; for men, there was no difference by age. For women, workforce nonparticipation 

was higher among Hispanic women (POR: 1.7, 95% CI: 1.6–1.8) and women of “other” 

races (POR: 1.3, 95% CI: 1.1–1.4), compared with non-Hispanic white women. For men, 

workforce nonparticipation was higher among non-Hispanic black men (POR: 2.1, 95% CI: 

1.9–2.3), Hispanic men (POR: 1.5, 95% CI: 1.4–1.7), and men of “other” races (POR: 1.8, 

95% CI: 1.6–2.1) compared with non-Hispanic white men. Education was strongly 

associated with workforce nonparticipation in both women and men, with greater 

educational attainment associated with increasing workforce participation (P for trend <.001 

for both men and women). Having children aged less than 18 years in the home was 

associated with workforce nonparticipation for women (POR: 1.6, 95% CI: 1.5–1.6 for any 

vs. no children); conversely, men were more likely to participate in the workforce when 

there were children in the home (POR: 0.6, 95% CI: 0.5–0.6 for any vs. no children). 

Likelihood of being out of the workforce increased for women as the number of children in 

the home increased; for men, it remained constant.

Both women and men out of the workforce reported poorer health than those in the 

workforce, with the association weaker for women (POR: 3.7, 95% CI: 3.2–4.2 poor vs. 

excellent health) than for men (POR: 6.7, 95% CI: 5.7–7.7) (Table 1). When interaction 

terms between health and number of children were entered into the model, there was 

evidence of interaction for women (P < .001) but not for men (P = .30). After stratifying the 

health and workforce nonparticipation results by number of children aged less than 18 years 

in the home (Table 2), the association attenuated and then disappeared for women as the 

number of children in the home increased. For women with poor compared to excellent self-

rated health, the POR was 7.3 (95% CI: 5.8–9.1) for women with no children in the home 

and 0.9 (95% CI: 0.6–1.5) for women with four or more children in the home. In contrast, 

the association remained strong (PORs between 5.9 and 9.9) for men, regardless of the 

number of children in the home. The sample sizes and proportion of individuals out of the 

workforce for each population in this analysis are presented in eAppendix Table A1.

Discussion

Self-reported health and workforce participation were associated among U.S. women and 

men aged 22–44 years, with individuals in poorer health less likely to participate in the 

workforce than those in excellent health. Previous studies have consistently reported poorer 

health among unemployed individuals compared to employed individuals; however, 

individuals out of the workforce (i.e., not actively seeking employment) were frequently 

excluded from these studies [11–13]. A study from England showed that women out of the 

workforce because they were caring for family were more likely to report poor health than 

employed women [14]. This association between health and workforce participation 

suggests potential for healthy worker bias to occur, given the structures of healthy worker 

biases we assumed. However, our finding that this association was attenuated among women 

with increasing numbers of children aged less than 18 years in the home indicates the 

potential for a lesser impact of healthy worker bias when women leave the workforce for 

nonhealth reasons, such as providing childcare, diluting the effect of healthy worker bias.
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Childcare is a major driver of workforce nonparticipation among women. Previous research 

(using data from 1979 to 1994) showed that presence of preschool-aged children in the home 

was a strong predictor of workforce nonparticipation among women [5]. In 2012, an 

estimated 29% of U.S. women with children aged less than 18 years in the home did not 

work at a job in the past year, similar to the estimate of 28% in our data [15]. We 

hypothesized that we would observe a weakened association between self-reported health 

and workforce participation as the number of children in the home increased (i.e., greater 

likelihood of opting out of the workforce for reasons aside from health), which is what we 

observed. When there were no children in the home (i.e., no women opting out of the 

workforce to provide childcare), the magnitudes of the association between self-reported 

health and workforce participation were similar for women and men, suggesting that in the 

absence of childcare responsibilities, health might be a similarly important factor in 

workforce participation between the two genders.

Although our example focused on childcare as a counteracting force to healthy worker 

biases in female populations, any factor that causes substantial proportions of healthy 

individuals (female or male) to opt out of the workforce could have a similar effect. In the 

1960s, a stronger association between self-reported health and workforce exit was reported 

among unmarried white women in the United States than among married white women, 

perhaps due to societal pressures at the time that caused married women to opt out of the 

workforce [6]. Single parenthood, providing eldercare, or living in an area with few 

economic opportunities are examples of additional variables that might drive healthy 

individuals out of the workforce and attenuate the health-workforce participation 

relationship. As a result, we might expect variable impact of healthy worker bias in the 

presence or absence of social, cultural, or economic forces that are strong drivers of 

workforce participation.

There are methods available to account for healthy worker biases in study design and 

analysis [1,16]. However, in studies in which healthy worker biases cannot be well 

accounted for (e.g., some occupational cohorts), making valid comparisons of results 

between studies might be challenging, given the observations of this and other studies 

suggesting that the magnitude of bias might vary by population characteristics [6,7].

Throughout the article, we referred to healthy worker biases without specifying if we meant 

healthy hire bias (differential entry into the workforce) or healthy worker survivor bias 

(differential exit from the workforce). This was because, in our cross-sectional study, it was 

not possible to determine the temporality of the association (i.e., if workforce 

nonparticipation was due to health limitations that precluded entrance into the workforce or 

health limitations that had prompted exit from the workforce).

We used self-reported health to represent the difference in disease risk between individuals 

in and out of the workforce, but we recognize that this might not be as equally a strong 

predictor of all health outcomes (e.g., self-reported health might be associated more strongly 

with chronic conditions than occupational injury) and that “health” might be defined 

differently by different respondents [17]. Our numeric results therefore serve only as 

examples illustrating how the potential effect of healthy worker biases might vary across 
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populations depending on population characteristics (here, number of children in the home) 

and might not generalize to all exposures, health outcomes, or populations.

The WBI data set provided the unique advantage of having a large number of participants 

recruited over a short time period. This provided adequate power for studying the 

intersection of fairly uncommon events (e.g., individuals with ≥4 children who reported poor 

health). Because the data were collected in a short time period, in the analysis, we did not 

have to account for time trends in variables such as cultural shifts in child-rearing 

expectations, number of children per household, and availability of flexible or alternative 

work schedules that have occurred over the past several decades and that might affect 

workforce participation, particularly among women.

However, this data set had limitations. The low contact rate of the WBI (9% of all numbers 

called) could have affected generalizability of results, although the participation rate among 

eligible participants reached was fairly high (74%), and the data were weighted to account 

for nonresponse and sociodemographic characteristics of respondents. A previous 

comparison of WBI participant characteristics to nationally representative data showed that 

WBI participants were slightly older, less likely to be members of racial/ethnic minorities, 

and more likely to have higher educational attainment [8]. The data set also did not include 

information on the ages of children in the home. Because having preschool-aged children in 

the home is a stronger driver of workforce participation than having older children at home, 

restricting our analysis to presence of younger children in the home might have strengthened 

the associations we observed [5].

In this study, we found that healthy worker biases might be attenuated in populations in 

which a substantial number of healthy women opt out of the workforce to provide childcare. 

Accordingly, if healthy worker biases cannot be accounted for through study design or 

analysis, we might expect the results of epidemiologic studies to be variably affected by 

healthy worker biases depending on the prevalence of women, the average number of 

children per woman, or the prevalence of other factors that might affect work-force 

participation in the worker population.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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