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Abstract

A new method for the synthesis of terminal and internal alkynes from the nickel-catalyzed 

decarboxylative coupling of N-hydroxyphthalimide esters (NHP esters) and bromoalkynes is 

presented. This reductive cross-electrophile coupling is the first to use a C(sp)-X electrophile, and 

appears to proceed via an alkynylnickel intermediate. The internal alkyne products are obtained in 

41–95% yield without the need for a photocatalyst, light, or strong oxidant. The reaction displays 

a broad scope of carboxylic acid and alkyne coupling partners and can tolerate an array of 

functional groups including a carbamate N-H, halogen, nitrile, olefin, ketone, and ester. 

Mechanistic studies suggest that this process does not involve an alkynylmanganese reagent and 

involves nickel-mediated bond formation.
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Cross-electrophile coupling[1] has recently been shown to be a general approach to the 

formation of C-C bonds and the number and type of electrophiles that can be cross-coupled 

has grown rapidly in the past decade. The formation of C(sp3)-C(sp2) bonds has been the 

most studied,[2],[3] but the selective formation of C(sp2)-C(sp2)[4] and C(sp3)-C(sp3)[5] 

bonds has also been demonstrated (Scheme 1). In particular, the coupling of aryl[2] and vinyl 

halides[3] with alkyl halides has proven to be a useful alternative to other cross-coupling 

approaches.[6] In contrast, cross-electrophile coupling to form C(sp)-C(spx) bonds has not 

been demonstrated (Scheme 1), even though bromoalkynes are easily generated from 

terminal alkynes.[7] [8]

This absence in the literature could be related to a number of potential problems. First, the 

high reactivity of bromoalkynes could pose a selectivity problem.[9] Second, the low steric 

bulk of the alkyne could lead to rapid transmetalation and homocoupling to form diynes. 

Finally, alkynes can act as radical acceptors and strong ligands, potentially leading to 

catalyst inhibition and side reactions.

We were motivated to explore the reactivity of alkynyl electrophiles in order to develop a 

new synthesis of alkylated alkynes from carboxylic acids. The most often used solution for 

this transformation is through the Corey-Fuchs reaction[10] or the Seyferth-Gilbert 

homologation[11] of aldehydes to terminal alkynes. While this approach has proven useful, it 

often requires the synthesis of the aldehyde from the more abundant carboxylic acid, strong 

base to effect the rearrangement, and additional steps if an internal alkyne is desired.

We envisioned a more convergent approach, the decarboxylative coupling of an N-

hydroxyphthalimide (NHP) ester with an alkynyl bromide (Scheme 2).[12],[13] Strategically, 

this approach differs from the above strategy because it avoids the aldehyde intermediate. 

Additionally, the alkyne component can be substituted, allowing for direct synthesis of 

functionalized internal alkynes. While this exact transformation is unknown, related 

strategies have been investigated recently. For example, the oxidative decarboxylation of 

aliphatic acids to form alkyl radicals with subsequent capture by alkynyl electrophiles.[14] 

Concurrent with these studies, Fu reported on the coupling of terminal alkynes with α-

amino NHP esters[15] and Baran reported on the coupling of N-

hydroxytetrachlorophthalimide (TCNHPI) esters with alkynylzinc or magnesium reagents.
[16] Our proposed approach would avoid the need for organometallic reagents and the more 

expensive TCNHPI[17] without being limited to α-amino acid derivatives.[15] Although this 

approach would use alkyne electrophiles, bromoalkynes[7] are more easily prepared than 

ethynylbenziodoxolones[18] or alkynyl sulfones.[14a–c]

Initial results using conditions we reported for the coupling of iodoarenes to NHP esters[13a] 

resulted in a low yield of the cross-product (Table 1, entry 1, 3a) and a large amount of the 

homodimer (diyne). Two changes solved this selectivity problem (entries 1–3): changing the 

reductant from Zn to Mn (from 11 to 43% yield) and adding in LiBr as an additive (43% to 
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78% yield).[4c, 19] Examination of several other salts showed that both LiCl and LiBr 

improve the yield of cross-product at the expense of diyne formation. Stoichiometric 

amounts of LiBr were required to observe a beneficial effect (entries 8 and 9). Small 

improvements in yield were obtained when using an excess of either coupling partner 

(entries 10 and 11).

Control experiments showed that both nickel and ligand were essential for this 

transformation (entries 12 and 13). A redox active ester appears to be required because 1b 
was not consumed under these reaction conditions (entry 14). Other redox-active esters 

(HOBt or HOAt esters 1c and 1d) were also not consumed under these conditions (entry 14).

Under the optimized conditions, various alkyl NHP esters and bromoalkynes were cross-

coupled successfully in 41–95% yield (Table 2). Functional group compatibility is 

promising, and the reaction tolerates ketones (3b and 3c), esters (3d) and the N-H of 

secondary carbamates (3e). The high reactivity of the NHP esters compared to other alkyl 

electrophiles was demonstrated in product 3f, where an alkyl bromide was tolerated, albeit 

in moderate yield. Another advantage of the NHP esters is that readily available amino acids 

can be easily converted into useful alkynyl amino acids (3g) and alkynyl amines (3k and 

3m). Propargylglycine, obtainable from 3g by routine deprotection, has been made on large 

scale to support pharmaceutical synthesis.[20] Our route, from aspartic acid, is an attractive 

alternative to the chiral auxiliary approach that was recently reported.[21] Linoleic acid was 

coupled to form 3i in high yield without isomerization of the Z-olefins. Although these 

reactions were set up in a glovebox for convenience, the chemistry could be run on 

preparative scale (5 mmol NHP ester) on the benchtop without the need for strict exclusion 

of moisture and air. Subsequent removal of the TIPS protecting group with nBu4NF (1 M in 

THF) gave the terminal alkyne in 84% yield over the two steps.

α-Branched redox-active esters were suitable substrates for the alkynylation reaction (3j-n), 

but reactions with dibranched substrates did not form product. The value of using an 

aliphatic acid as a source for the alkyl moiety was demonstrated with these compounds, as 

the corresponding alkyl halides are not commercially available or fail to couple.[22] For 

example, 3-halotetrahydrofurans, 2-halopyrrolidines, and 2-amido alkyl halides are not 

easily accessible starting materials, whereas the corresponding aliphatic acids are relatively 

affordable and can be successfully transformed into the alkynylation products in moderate to 

good yields (3j, 3k and 3m).

Next, the scope of the bromoalkynes was tested in our reductive coupling method. Both the 

alkyl substituted and the phenyl substituted bromoalkynes were coupled with 3,3-

dimethylbutanoic acid NHP ester in good yields (3o and 3p). Several functional groups can 

be appended onto the alkyl chain of the bromoalkynes including malonate (3q), OTBS (3r), 

cyanide (3s), phthalimide (3t), and alkene (3u), without preventing product formation.

Not all substrates tested coupled in high yield under these conditions. An NHP ester with a 

free carboxylic acid and a bromoalkyne with a free hydroxyl group resulted in low yields. 

Finally, NHP esters that would generate an allylic or benzylic radical failed to give 

alkynylation products.
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Three potential mechanisms were proposed: 1) in-situ formation of an alkynyl manganese 

reagent and subsequent nickel-catalyzed cross-coupling,[16] 2) nickel-catalyzed radical 

generation[13b, 23],[13a] and outer-sphere addition of the free radical to the bromoalkyne;
[14a–c] 3) sequential reaction of two electrophiles with the nickel catalyst and bond-formation 

at nickel.[24] At this time, we can rule out the first two mechanistic possibilities (vide infra).

Given the high reactivity of alkynyl bromides and the positive effect of LiBr on the reaction 

outcome, an additive known to increase the rate of insertion of Mn or Zn,[25] we suspected 

an alkynylmanganese reagent might be an intermediate. However, when silylated 

bromoalkyne 2a was subjected to standard conditions without adding nickel or ligand 

(Scheme 3a), the bromoalkyne was not consumed and only a trace of hydrodebrominated 

alkyne was observed. This shows that direct insertion of Mn into the C-Br bond is slow and 

suggests that Mn serves to reduce a nickel intermediate. Although we are unsure of the role 

of LiBr in minimizing formation of diyne, our own work and that of Osakada and 

Yamamoto[26] suggests that diyne arises from dialkynylnickel(II) intermediates. Added LiBr 

could slow ligand exchange between alkynylnickel(II) intermediates, inhibiting diyne 

formation.

Two experiments suggested the presence of a free alkyl radical in the reaction. The NHP 

ester of cyclopropylacetic acid (1v) reacted to form the rearranged product exclusively 

(Scheme 3b).[24], [27–28] In addition, a standard reaction run in the presence of TEMPO 

formed both the expected cross product and alkylated TEMPO (Scheme 3c).[27a] This 

product required nickel, confirming that nickel is required for radical generation.

While these results are consistent with mechanism two, the coupling of a free-radical with 

the bromoalkyne to form product is unlikely for three reasons. First, it has been reported that 

this process is not high yielding.[14a, 14c, 18] Second, our studies have shown that the ligand 

on nickel is essential to bond formation but not consumption of the NHP ester (Table 1, 

entry 12).[13a] Third, the major challenge during reaction optimization was too-rapid 

consumption of the bromoalkyne and subsequent diyne formation, a process that requires an 

alkynylnickel intermediate (Table 1 and Scheme 3d).

Finally, we briefly studied the reactivity of two possible nickel intermediates to shed light on 

the mechanism (Scheme 3d). The nickel(0) complex (dtbbpy)Ni0(cod) reacted rapidly with 

both electrophiles at rt, in each case forming an as-yet unidentified organonickel 

intermediate (5 and 6).[29] Both of these intermediates, either after isolation and washing to 

remove excess electrophile or without isolation, react with the complementary electrophile 

to form cross-product.[22e],[30] While these studies demonstrate that an inner-sphere, nickel-

mediated mechanism is possible, further studies will be required before a complete catalytic 

cycle can be proposed.[24]

In conclusion, the reductive alkynylation to form a C(sp)-C(sp3) bond has been achieved, 

opening a new class of reactions to cross-electrophile coupling and demonstrating that even 

highly reactive electrophiles can be coupled selectively. The resulting method provides a 

convenient and direct synthesis of a wide variety of internal alkynes from convenient 

precursors and useful alternative to methods that proceed via olefination or use alkyl halides.
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Scheme 1. 
Types of bonds formed by reductive cross-electrophile coupling.
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Scheme 2. 
Comparison of alkynylation strategies.
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Scheme 3. 
Mechanistic studies: (a) reaction of bromoalkyne with Mn, (b) cyclopropylmethyl radical 

rearrangement, (c) TEMPO radical trap, and (d) reactivity of nickel towards the two 

electrophiles.
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Table 1

Optimization of the decarboxylative alkynylation.

Entry Change from Conditions in Scheme Yield of 3a[a] Yield of diyne[a]

1 Zn instead of Mn, omit LiBr 11 40

2 omit LiBr 43 23

3 none 78 11

4 LiCl instead of LiBr 67 9

5 KF instead of LiBr 42 21

6 KBr instead of LiBr 43 16

7 NaI instead of LiBr 46 19

8 LiBr (2 equiv) 78 14

9 LiBr (0.5 equiv) 53 13

10 1.5 equiv of 1a 89 (86) 8

11 1.5 equiv 2a 84 18

12 omit dtbbpy n.d. 6

13 omit NiBr2(dme) n.d. n.d

14 1b–d instead of 1a n.d. >40

[a]
Corrected GC yield using n-dodecane as the internal standard; isolated yield in parentheses.
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Table 2

Substrate scope of NHP-ester and bromoalkyne.

[a]
This reaction was run on 3.3 mmol scale and the crude product was deprotected with TBAF before isolation. Yield is over two steps.

[b]
Reaction run at 50 °C.

[c]
Reaction run at lower concentration (1.8 mL of NMP).
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