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Abstract

There are limited biomarkers for substance use disorders (SUDs). Traditional statistical 

approaches are identifying simple biomarkers in large samples, but clinical use cases are still being 

established. High-throughput clinical, imaging and “omic” technologies are generating data from 

SUD studies and may lead to more sophisticated and clinically useful models. However, analytic 

strategies suited for high dimensional data are not regularly used. We review strategies for 

identifying biomarkers and biosignatures from high dimensional data types. Focusing on penalized 

regression and Bayesian approaches, we address how to leverage evidence from existing studies 

and knowledge-bases, using as an example, nicotine metabolism. We posit that big data and 

machine learning approaches will considerably advance SUD biomarker discovery. However, 

translation to clinical practice, will require integrated scientific efforts.
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Biosignatures in Substance Use Disorders

Biomarkers for substance use disorders (SUD) are available for drug use based on detection 

of the substance or its metabolites, e.g., ethyl glucuronide for alcohol [1], 

tetrahydrocannabinol for marijuana [2], and cotinine for tobacco [3]. They are not, however 

readily available for the neurobiological modifications that result in the maladaptive 

behaviors we describe as addiction [4]. Clinical phenotyping has been used to assess the 
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presence and severity of SUDs and comorbid psychiatric disease and to evaluate treatment 

options. We now have massive data on patients with SUDs (e.g., genomics and other omics 
(see Glossary), and imaging on the structure and function of the brain). How can we use this 

data in biomarker/biosignature discovery? The ability to combine omics with each other and 

with complex neurocognitive or imaging data promises to deliver biosignatures that will 

reflect the behavioral and biological modifications that occur in addiction. Standard 

biostatistical analysis that has been so useful in clinical research does not perform well in 

this high dimensional environment where variables vastly outnumber patients [5]. Studies of 

SUDs and treatments are beginning to use more comprehensive modeling approaches. In one 

example, data from diverse concepts (brain, personality, cognition, demographics and 

genetics) were incorporated into a highly predictive model of current and future alcohol 

abuse in adolescents [6]. In another recent example, researchers performed an integrative 

analysis to link genomic variation with expression changes in brains of alcohol dependent 

individuals [7]. While these studies point to an encouraging trend, there still appears to be a 

gap between the massive data available and the routine use of computational and statistical 

tools in biomarker/biosignature discovery in SUDs.

Biosignature discovery provides a way of combining many variables (e.g., genetic effects, 

voxels in neuroimaging) into meaningful models. Without models of net effects, it is 

difficult to interpret many small effects, especially given complex correlations in data. High 
dimensional data is also becoming quite common on large populations, while measures of 

molecular phenotypes, which may not be cost effective or safely accessed, are less 

commonly collected. Biobanks of large cohorts with genomic data are becoming available, 

such as the Millions Veteran’s Program, the All of Us Research Program, UK Biobank, 

GenomeAsia 100K, and even direct-to-consumer services such as 23andMe and Helix. 

While there is recognition that additional omics are necessary to understand the influence of 

genotype on phenotype, the most commonly available data will remain genotypic. Using a 

biosignature approach, there are opportunities to gain new biological insights and assess 

multiple predicted phenotypes. This is one of the premises behind transcriptome-wide 

association studies using genome-wide genotype data [8]. Using studies where both genomic 

and transcriptomic data are available, the tissue-specific relationship between DNA 

(genotypes) and RNA (gene expression) can be modeled to generate predictive models [9]. 

These models are then used in genomic data to predict expression and association to 

diseases or quantitative traits [10, 11].

The overall strategy of using high dimensional data to profile and predict molecular 

phenotypes and other outcomes is a new development path for biomarkers and biosignatures 

for SUDs and their treatments (see Key Figure, Figure 1). Discovery is driven by statistical 
learning algorithms suited for detection of biosignatures from high dimensional data. The 

learned biosignatures are then validated and applied in various use-cases (e.g., to identify 

subgroups at risk of SUDs or as tools to optimally select treatments). We advocate 

propagating the data from new observations and the predictive performance of the models 

back into the development cycle to allow for continuous improvement of the biosignatures 

(Key Figure 1). We see great promise in statistical learning to discover and validate 

biosignatures, but recognize that the translational path into clinical settings will have some 
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unique challenges. In the next sections, we illustrate the workflow presented for this model 

(Key Figure, Figure 1) by learning biosignatures of nicotine metabolism in high dimensional 

genomic data.

Application to Nicotine Metabolism

We use the nicotine metabolism pathway as a motivating example for the utility of statistical 

learning to discover and use SUD biosignatures from high dimensional data. Nicotine 

metabolism is strongly influenced by genes; the majority of variance (74%) is due to 

additive genetic influence [12, 13]. The cytochrome P450 monooxygenase 2A6 (CYP2A6) 

is the dominant but not exclusive metabolic enzyme in nicotine metabolism [14]. Early work 

established that the ratio of the first two major metabolites of nicotine 

(trans-3′hydroxycotinine / cotinine, or the nicotine metabolism ratio; NMR) can serve as a 

biomarker of nicotine metabolism [15]. The NMR is estimated biochemically [16] or via 

prediction using CYP2A6 genotypes [17, 18]. Genes coding for numerous additional 

oxidases (FMO3, AO, CYP2B6, POR, AKR1D1), and the uridine diphosphate 

glycosyltransferases (UGTs), have been found to be associated with nicotine metabolism 

through individual candidate gene single nucleotide polymorphisms (SNPs), or, less 

commonly, gene/protein expression, or protein activity analyses [19, 20, 21, 22, 23, 24, 25, 

26, 27]. Moreover, in diverse populations and using blood, saliva and urine biospecimens 

from smokers, or using labeled nicotine and cotinine in clinical laboratory studies using 

blood and urine, nicotine metabolism has been reported to vary by ancestry [28, 29, 30, 31], 

age, gender, body mass index, estrogenic hormones, alcohol and cigarette consumption [32].

In addition to pharmacologic investigations of nicotine metabolism [14], investigators have 

studied the influence of nicotine metabolism on smoking cessation retrospectively, using 

either the biochemical measure of the NMR [33, 34, 35] or genotypes associated with 

reduced NMR [36, 33, 37]. There has been one prospective analysis of the influence of the 

NMR on smoking cessation, examining the efficacy of nicotine replacement therapy 
(NRT) (NRT), varenicline (VAR) and placebo in slow and normal nicotine metabolizers, 

with the NMR determined from direct biochemical measurement [38]. Note that biomarkers 

of nicotine metabolism, as studied in the literature, have differed somewhat depending upon 

genotyping approach, biochemical ratios and cutoff-points selected, as well as clinical or 

population samples used to establish the biomarker; one common dichotomization stratifies 

individuals with normal metabolism versus slow metabolism.

In general, retrospective studies of smokers, randomized to NRT or placebo, have shown that 

individuals with biomarkers of slow metabolism, whether defined by genotype or 

biochemical ratio, were significantly more likely to remain abstinent than individuals with 

normal metabolism. In one retrospective analysis [37], individuals with slow nicotine 

metabolism did not benefit (no reduction in relapse proportions) from active treatment (NRT, 

bupropion or combined active treatment) compared to placebo treatment, while individuals 

with fast nicotine metabolism did benefit from active treatment. In the prospective trial 

stratified by the NMR, individuals with normal nicotine metabolism responded significantly 

better to active treatment than placebo, and those randomized to varenicline (VAR) 

responded significantly better than those randomized to NRT [38]. Together, these findings 
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suggest that treatment success can be optimized by assigning treatment to patients by their 

NMR status, e.g., assigning more active pharmacotherapy to normal metabolizers and less 

active pharmacotherapy to slow metabolizers. Clinical trials using the NMR to assess 

nicotine metabolism and provide metabolism-matched pharmacotherapy are in progress 

[39]. Biosignatures for predicting nicotine metabolism in clinical trials of smoking cessation 

therapies, and in cohorts being studied for tobacco-related behaviors, diseases and 

exposures, will be useful to characterize the role of nicotine metabolism in these complex 

outcomes [40].

The prior knowledge, results, and data described above can be directly used in biosignature 

development (inputs in Key Figure 1). Statistical learning algorithms (described in the next 

sections) can be applied to detected biosignatures of nicotine metabolism. These 

biosignatures (once validated) can be used to predict other outcomes (such as smoking 

cessation) or to personalize treatments (e.g., bupropion, varenicline, or NRT for a smoker; 

Key Figure 1).

Biosignature Detection in High Dimensional Data

The data layout for biosignature learning is shown in Figure 2. One or more SUD studies 

have both high dimensional data (e.g., genomic) and molecular phenotypic data (e.g., 

metabolites). For simplicity, it was assumed that the clinical factors were binary and that the 

genotypes were single nucleotide polymorphism (SNPs), coded by the number of copies of 

the minor allele [41]. Millions of genotyped and imputed SNPs can be available. The 

relevant variables (the biosignature) and its net effects on a predictable molecular phenotype 

(denoted Z in Figure 2) are then learned using statistical algorithms. Once the relationships 

are represented in models, they can be applied to new data for prediction and assessment of 

the outcomes of interest (denoted Y in Figure 2). For nicotine metabolism, these could be 

smoking cessation, lung cancer risk, treatment response, etc. Of note, the molecular 

phenotype does not need to be measured once the model is learned, as it can be predicted 

from the biosignature, sometimes from summary statistics [10, 11].

Simple models consider only one genetic variant at a time. A genome-wide association 
scan (GWAS) across the genome represents millions of tests for genetic associations with 

the trait or outcome [5]. There have been four GWASs using the NMR as the trait to date 

[13, 42, 43, 44]. These four GWASs used readily available GWAS genotyping arrays, as well 

as typical statistical pipelines for genotype cleaning and imputation via the 1000 Genomes 

Project resource (http://www.1000genomes.org). Two GWASs represented meta-analyses of 

single ancestries [13, 44], one was a multi-ancestry meta-analysis [42], and one was a multi-

ancestry mega-analysis [43]. As expected, in all four scans, variants in and near CYP2A6 on 

human chromosome 19 (the gene encoding the primary nicotine metabolic enzyme) were 

associated with the NMR at genome-wide significance. In each GWAS, the most significant 

associations were located proximal, within and distal to CYP2A6, with individual SNPs, 

significance ranks and span of association being dependent upon study, sample size and 

ancestry composition. We and others [13, 42, 43] have noted complex patterns of association 

with the NMR that span into nearby genes, including CYP2B6 (Figure 3) [42]. Given that 

there are complex patterns of marginal associations and that the number of variables exceed 
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the sample size (known in statistics as P > N), how does one define a biosignature of 

nicotine metabolism based on genomic data?

The dimensionality problem can be addressed in part by using existing knowledge and 

results to reduce the model space (Key Figure 1). With available genome-wide data from our 

GWAS [42], we selected 11 genomic regions implicated in nicotine metabolism for 

modeling. We identified the relevant regions using a combination of knowledge bases (such 

as PharmGKB [45]) and recent literature [19, 20, 21, 22, 23, 24, 25, 26, 27]. The second 

strategy consists of using algorithms to reduce model complexity. The rationale here was 

that there can be too many variables for a human to decide which should go in a model.

Two classes of statistical learning algorithms can be used for selecting which variables 

should be in a model (see Box 1) and estimating its joint effects on an outcome [46]. These 

algorithms explore a trade-off between model complexity, prediction bias, and prediction 
variance. That is, prediction bias can be reduced by increasing model complexity. 

Alternatively, one can also trade prediction bias for reduced variance using approaches to 

reduce complexity. The goal is to find a sweet spot, selecting the right model complexity to 

minimize prediction error [47, 48].

Box 1

Model Specification

Generalized linear models can be used as a foundation for biosignature discovery and 

predicting nicotine metabolism from genomic and clinical data [89]. The conditional 

mean of Yi, the observed molecular phenotype or outcome of individual i, is related to P 
explanatory variables through the link function g (·):

where there are P1 clinical factors (e.g, age, sex, BMI), P2 genetic markers, and P3 

derived variables, denoted by Cij, Gij, and Zij, respectively, with P = P1 + P2 + P3. The 

βkj’s are the usual regression coefficients. The derived variables can be interaction terms 

of other functions that combine sets of other variables. In the analysis described herein, 

the natural logarithm of NMR is used as the response variable so that g (·) can be taken to 

be the identity link.

The First Approach: Penalized Regression

Penalized regression approaches add a penalty term to the typical optimization problem 

[47, 48]. That is, many penalized regression methods estimate the regression coefficients by 

minimizing a penalized residual sum of squares which is given by:

Baurley et al. Page 5

Trends Mol Med. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where λ represents a collection of tuning parameters which implicitly controls the model 

complexity, β denotes the collection of all the regression coefficients, and P(·, ·) is a penalty 

function [47, 48]. For example, a penalty function of the form

could be considered, where setting α = 1 results in the least absolute shrinkage and selection 

operator (LASSO) of [49], α = 0 provides the usual ridge estimator [50], and α ∈ (0, 1) 

results in the elastic net of [51]. In general, through regularization, the ridge estimator is able 

to provide better prediction performance by exploiting the so called bias versus variance 

trade-off, and can be used (unlike standard ordinary least squares) to uniquely estimate the 

regression coefficients when P > N [50]. Unlike ridge, LASSO provides a parsimonious 

model through automatic variable selection, though it has been empirically shown that ridge 

maintains a higher level of prediction accuracy in the face of correlated predictors, when 

compared to LASSO [49]. The elastic net is a blend of ridge and LASSO, which attempts to 

gain from their strengths and overcome their individual weaknesses. In particular, the elastic 

net makes use of a linear combination of the ridge and LASSO penalties and can therefore 

complete automatic variable selection while maintaining a high degree of prediction 

accuracy in the face of correlated predictors[51].

There are numerous algorithmic varieties of this general approach, with different properties 

in terms of handling correlation, sparsity, and picking out features in the data [48]. 

Moreover, extensive work has shown that none of the penalized regression procedures are 

universally better in all situations [48, 52]. So it is natural to posit the question “What 

penalized regression method should I use?”. Our retort, why choose one?

Different penalized regression procedures can be applied to the motivating nicotine 

metabolism data; for details on these algorithms, their implementation, and their penalty 

structures see Table 1. In particular, Table 1 provides nine different penalized regression 

methods, citations that present the relevant background on each procedure, and R-packages 

that can be utilized to implement each of the methods. As discussed above, these algorithms 

have different properties and therefore provide diverse insights into the data. We believe that 

the collection of models (the ensemble) characterizes the biosignature of this molecular 

phenotype. This is demonstrated in Figure 4, where the rows represent the biosignatures 

learned by the different algorithms applied to the nicotine metabolism data [53]. The un-

shaded portions represent the genetic signature identified by each approach. As expected, a 

handful of SNPs (out of 3752) were selected in all the models [53]. The largest model 

included 63 SNPs, but more parsimonious models explained NMR just as well with fewer 
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SNPs (58–62% NMR) [53]. The genetic biosignature found by these methods in human 

chromosome 19 are overlayed on the marginal results in Figure 3. This highlights additional 

signals near the CYP2A6 and CYP2B6 genes that may have been missed in a more 

traditional approach. The collection of variables that is predictive of an individual’s nicotine 

metabolism is more than those discoverable using standard genetic association scans. To 

predict nicotine metabolism with new genotypes, one simply applies the learned weights to 

the SNP biosignatures [53]. The predicted nicotine metabolism can be then applied in 

additional association or clinical studies.

The differences in the SNPs selected by the penalized regression algorithms (Figure 4) 

suggest that there are multiple “good” models and one may want to average over the 

strengths of a set of models when making predictions [54, 55]. This leads to the second 

approach where model uncertainty can be quantified [54].

The Second Approach: Bayesian model averaging

In the previous section we discussed the uncertainty with which SNPs belong in a 

biosignature of nicotine metabolism. Bayesian approaches can account for this uncertainty 

in the model specification. Here, the posterior probability for a given model is:

Obtaining the denominator would involve exploring all possible biosignatures which may 

not be computationally feasible. Thus the posterior probability is usually approximated by 

assessing the relative merit of a subset of models [56].

The likelihood above is actually marginalized over the parameters in the model and again is 

often approximated.

The priors on the model p(M) and its parameters p(β) can give us the opportunity to 

formally introduce existing results, knowledge-bases, and assumptions into the modeling 

[57]; e.g., what variables are biologically important, the direction and magnitude of their 

importance, and the certainty with which they are involved. In fact, most penalized 

regression approaches can also be represented by specifying priors on p(β) [48].

More complex relationships among variables can also be learned from the data. 

Combinations of SNPs or other factors can be condensed into new derived variables Zj. For 

example, tree structures denoted Λ, can be considered where the output of each node is 

determined by its input values and a set of edge parameters [58]. One such tree structure is 

shown in Figure 5, which represents the following system of equations:
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These tree-based derived variables provide a very flexible way of representing interactions 

[58]. For example, given binary inputs, different edge parameters can represent different 

operators. If θ1 = θ2 = 0.5, the effects are additive; if θ1 = θ2 = 0 there is an effect only 

when both variants are present (logical AND); and if θ1 = θ2 = 1 there is an effect if either 

variant is present (logical OR). The effects of the derived variables represent the net effect of 

the tree [58].

Under this theme, every pairwise SNP effect on nicotine metabolism can be considered (over 

6 million derived variables). The evidence for or against each can be computed using Bayes 
factors, the ratio of posterior to prior odds. The top associations are shown in Figure 6. 

Seven genomic regions showed evidence of interactions. The CYP2A6 region is an 

important hub, with other genetic variants near UGT2B10, UGT1A4/A9, POR, NR1I3, 

NFE2L2, and HNF4A, contributing to its effects on nicotine metabolism (Figure 6).

More complex combinations (starting with one tree and then modifying it in a quest to find 

better combinations) can be sought. This process can be repeated hundreds of thousands of 

times. Combinations of variants that had large impacts on nicotine metabolism were found. 

For example, the best learned model had a posterior probability of 0.90%, explained 43% of 

nicotine metabolism, and had a rather large effect on natural log NMR (βΛ = −1.35). As in 

penalized regression, multiple models fit the data well, but the posterior probabilities 

provide an intuitive way to average models [54, 55]. Trees with the highest posterior 

probabilities contained a handful of SNPs and had strikingly similar measures of fit [53]. 

This suggest that one should make nicotine metabolism predictions by averaging over the 

collection of models. The posterior predictive distribution allowed us to generate predictions 

of new observations using the entire distribution of explored biosignatures [59].

Incorporating these Approaches into Research and Clinical Translation

Statistical learning algorithms can help identify biosignatures of SUD outcomes. Once 

learned, these models can provide biological insights on their own as well as be applied to 

existing or new data to generate predictions. While the focus of the nicotine metabolism 

application in this example relied on genomics, the approach can be applied to other data 

commonly available or becoming available in studies of substance use disorders, such as 

metabolomic [60, 61], personality assessment [62, 63], neuroimaging [64, 65], and mobile 

health applications [66]. The first strategy described involves learning using penalized 

regression algorithms. These algorithms select variables while simultaneously estimating 

their effects. As demonstrated in the nicotine metabolism application, they extract different 

features from the data. We advocate using the entire ensemble to characterize SUD 

biosignatures because each algorithm can extract unique features in the data. The second 

approach involves learning a distribution of models and leveraging that distribution in 

prediction [54]. These Bayesian algorithms allow us to consider more complex relationships 

among variables [58]. In the nicotine metabolism example, variants near CYP2A6 and other 

parts of the pathway jointly influenced nicotine metabolism (Figure 6). This suggests that 
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learning algorithms can identify combinations of genetic variances that explain molecular 

phenotypes that may be missed using traditional analyses. The next steps involve: validating 

the biosignatures in other datasets with both genomic data and nicotine metabolites, and then 

applying the learned biosignatures and weights in other datasets, to observe how the 

biosignatures influence smoking related outcomes (e.g., smoking-related behaviors, 

cessation, disease and comorbidities).

Many statistical learning approaches have been around for some time, but are just now being 

applied to SUDs. Computing used to be a major bottleneck in applying these algorithms. But 

with new acceleration computing and software stacks, algorithms are being retooled to 

handle much more complex and large datasets. As in all industries, data is now in 

abundance. There are more data on individuals with SUDs available now than ever before 

[67]. Several groups have begun to explore applying these algorithms to learn predictors of 

response to treatment for SUDs [68, 69, 70], but this is just the beginning of a new wave of 

discovery. There has been a recent increase of deep learning algorithms being applied to 

health applications: automatic detection of new tumors from imaging data [71], discovery of 

new drug targets [72], and precision treatments in cancer patients (http://

candle.cels.anl.gov/). The availability of data, computation, and algorithms have profound 

implications for the future of biosignature and biomarker development in SUD screening, 

diagnosis, and treatment.

Retrospective biomarker/biosignature discovery has strengths (available data) and 

weaknesses (older, possibly less relevant trials, biospecimen availability) or biases (lack of 

biospecimens, older molecular datasets). Similarly, hypothesis-driven prospective biomarker 

discovery and validation has strengths (ability to define variables/study domains, state of the 

art biospecimen and biomarker data collection) and weaknesses (candidate hypotheses may 

miss predictive biomarker variables/domains). The choice of a retrospective versus a 

prospective approach may depend upon currently available resources or the ability to 

leverage existing public datasets. A prospective discovery and validation design offers the 

theoretical ability to include all domains or selected (hypothesis-driven) domains; the former 

is limited by practical considerations and the latter may unfortunately restrict variable 

discovery. The necessity of validation for replication, and clinical utility analysis to fulfill 

regulatory and reimbursement requirements, means that designing discovery and validation 

studies will involve both retrospective and prospective designs. Excluding logical 

incompatibilities, practical and contingent limitations are more likely to limit or slow 

biosignature development and translation to practice than the choice of study design or 

whether either type of design is hypothesis-driven.

Guidelines for biomarker development and translation to treatment of omics-based tests has 

been a hot topic for almost a decade [73, 74]. Omics-based tests are defined as an assay 

composed of or derived from many molecular measurements and interpreted by a fully 

specified computational model to produce a clinically actionable result [75]. There are 

currently no regulatory guidelines on versioning of biosignatures whose specifications may 

adapt and improve with more data (see Key Figure 1). Current guidelines require that 

biomarker tests for any application be fixed before moving into a clinical trial for assessment 

of their utility [76, 74]. Current recommendations regarding evaluating evidence on a 
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biomarker prior to final utility testing are focused on the limitations derived from 

development from retrospective analyses, the complexity of the bioassay, and the nature of 

the mathematical model [77, 78]. Many challenges remain in the translation of biosignatures 

to clinical care; the guidelines, roadmap, and regulatory ecosystem will need to be 

recalibrated as models and predictions become more dynamic.

Some progress has been made in developing dynamic systems that collect and analyze data 

from its own processes in order to improve outcomes. Recommendations for development of 

a rapid learning system for biomarkers encompassing policy, data infrastructure and patient 

care are part of an evolutionary process of the biomedical enterprise [74]. This represents 

extensions of older ideas of a learning [79], continuously improving [80], and, a genomics-

enabled learning [81] health care system. Adding biosignature discovery and translation to 

these ideas implies much greater efforts to align patient care, and provider and health care 

system practice than introduction of a single biomarker with a single context of use. Rising 

to the challenges of biosignature translation have perhaps been most thoroughly addressed in 

oncology [82, 83]. However, the FDA has provided guidance on: the multiple domain 

challenges [84, 85]; the general pathway for biomarker qualification [86]; and, biomarkers 

for specific SUDs [87, 88].

Concluding Remarks

Here, new strategies for biosignature development have been described that acknowledge the 

complexities of disease and data and touch on the ongoing challenges of translation to 

clinical care. In both biosignature development and in translation to clinical care, complex 

challenges require comprehensive, integrated solutions. We encourage addiction researchers 

to share data, organize themselves to enable secondary data analyses, and consider applying 

these and other learning algorithms to their data to generate new biological insights and 

prediction models. We realize there are some remaining big questions on how the strategy 

presented fits into existing biomarker development, clinical translation, and regulation 

paradigms (see Outstanding Questions and Box 2). There is a delicate balance between 

encouraging standardization and enabling a learning healthcare system that requires 

scientific and regulatory leadership to advance biosignatures into clinical care.

Box 2

Clinician’s Corner

• Biomarkers of SUDs are now used clinically to detect substance use and 

relapse from abstinence. Emerging biomarkers will enable stratification of 

diagnosed SUD patients for greatest therapy efficacy.

• Future SUD biosignatures will aggregate multiple predictors through omic 

analysis and statistical learning and dramatically expand diagnostic and 

predictive utility.

• Translation of SUD biosignatures into clinical care requires support for 

clinical biospecimen testing and clinical counseling.
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• Improving the effectiveness of SUD biosignatures will be facilitated by 

integration of SUD biosignature assessment and counseling into clinical care - 

as smoking status assessment has become routine in multiple medical 

specialities.

Outstanding Questions Box

• What tools can be developed to help researchers accelerate SUD biomarker/

biosignature innovation? Learning algorithms need high quality data to grow 

models. Current challenges include culture (data sharing), data merging, and 

patient consent and regulatory issues.

• How will predictive biosignatures or learning algorithms be clinically 

validated? Traditional biomarker development emphasizes a discovery to 

clinical validation path, followed by evaluation of a fixed model for clinical 

utility and use. How will this be adapted for versioned biosignatures in a 

continuous improvement system? What best practices should there be to 

encourage innovation, yet maintain patient safety?

• What are the challenges of deploying these models into health care systems? 

Predictive biosignatures should be applicable across demographics and 

environments by qualification across diverse populations. Enabling 

comparative effectiveness evaluation will require data sharing across regions 

and practice environments.
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Glossary

Bayes factors
A statistical measure that quantifies the evidence for a hypothesis relative to an alternative 

hypothesis.

Bayesian
A method of statistical inference in which Bayes’ theorem is used to update the probability 

for a hypothesis as more evidence or information becomes available.

bupropion
A FDA approved non-nicotine smoking cessation pharmacotherapy, most commonly 

prescribed in an extended-release formulation.

edge
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An element that connects two nodes in a graph, sometimes defining relationships or 

assigning weights.

genome-wide association scan
An epidemiological study designed to evaluate the statistical association among genotypes 

and traits or diseases of interest.

high dimensional data
Data characterized by a large number of dimensions. The refinement of “large” within this 

context is still a topic that is debatable. Many define “large” relative to the size of the 

available data; i.e., the data is high dimensional when the number of dimensions (P) exceeds 

the number of observations (N).

learned weights
The estimated model parameters, such as regression coefficients.

measures of fit
Statistical techniques designed to assess how well a model fits a data set.

model complexity
Typically refers to the size of the model; i.e., the number of free parameters.

nicotine replacement therapy (NRT)
Smoking cessation therapy providing the patient with nicotine; there are five FDA-approved 

modes of administration of NRTs, i.e., gum, patch, lozenge, spray, and inhaler.

node
A point at which lines or pathways intersect or branch.

omics
The exhaustive and systematic study of a molecular analytes (DNA, RNA, protein, or 

metabolites, and modifications to the same) from one or multiple (“meta”) species, 

sometimes in relation to a disease or trait, e.g., substance use behavior.

operators
A mapping that takes as inputs elements of a space and returns other elements of the same 

space.

Penalized regression
Regression method that make use of a penalty structure to regularize regression coefficients, 

also known as regularized and shrinkage regression.

posterior predictive distribution
The distribution of possible unobserved values conditional on the observed values.

posterior probability
The conditional probability of an event after observed/known evidence is taken into account.

prediction bias
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The bias associated with a prediction, with bias referring to the tendency of a measurement 

process to over- or under-estimate the value of a population parameter.

prediction variance
The variability associated with a prediction, with variance being a measure of dispersion/

deviation from a mean.

priors
Probability models which are meant to reflect a modeler’s a priori knowledge of the 

parameters in the data model before some evidence is taken into account.

single nucleotide polymorphism
A variation in a single nucleotide that occurs at a specific position in the genome.

statistical learning algorithms
Algorithms which implement different statistical learning techniques. That is, algorithms 

which complete function estimation from a given collection of data.

varenicline
A smoking cessation aid that is a partial agonist of α4β2 nicotinic acetylcholine receptors.

versioning
The variables selected in a model and its estimated weights may change as more data 

becomes available. Careful tracking of each iteration of the data, algorithms, models, 

predictions, and validations allows biomarkers and biosignatures to continually improve.

voxels
Much like a pixel in a 2-D image, a voxel is a tiny cube that contains information and is used 

to build a 3-D image.
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Highlights Box

• Substance use disorders are complex diseases with significant heritibility and 

psychosocial susceptibility factors that develop with neurobiological and 

neurocognitive adaptations after chronic exposure to drugs of abuse. 

Individual effects of genes and psychosocial factors are modest in most cases. 

Recent large sample collections have began to identify single factors with 

confidence.

• New molecular, imaging and environmental collection technologies have 

vastly increased the depth of data per individual. New computation and data 

management technologies no longer limit complex statistical modeling 

routines.

• Machine learning algorithms are beginning to be applied to SUD data. New or 

streamlined artificial intelligence algorithms are disrupting all industries. 

These have direct applications to biomarker/biosignature development.
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Key Figure 1. Biosignature Development Workflow
Data where the number of variables vastly outnumbers the number of samples (high 

dimensional data) are becoming commonplace in studies of substance abuse disorders and 

treatment approaches. We present two approaches (penalized regression and Bayesian 

learning) for detecting the combination of variables (biosignatures) predictive of SUD 

phenotypes (e.g., nicotine metabolism). Biosignature detection is followed by validation, 

then prospective assessment of utility for translation to clinical practice.
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Figure 2. Biosignatures of Nicotine Metabolism
Nicotine metabolism biosignatures are learned from genotypes G and clinical C data in 

laboratory studies of nicotine metabolism. Nicotine metabolism is then predicted (Zpred) in 

existing or new observations using the biosignatures and corresponding model weights. The 

predicted nicotine metabolite ratio can them be associated with clinical outcomes Y, such as 

smoking cessation (1’s indicate success). Adapted from [10].
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Figure 3. Genetic Associations with Nicotine Metabolism in the CYP2A6 Region of Human 
Chromosome 19
The variants selected using penalized regression algorithms are overlaid on the marginal 

genetic association results (−log10 p-values on the y-axis). This shows how penalized 

regression algorithms can define biosignatures (red boxes) from complex patterns of 

marginal associations (stars).

Baurley et al. Page 23

Trends Mol Med. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. An Ensemble of Models to Define Biosignatures
The rows highlight (unshaded) the sets of SNPs selected by different penalized regression 

algorithms applied to nicotine metabolism data. Shaded SNPs were not selected as 

predictors. While there are a core set of SNPs selected by all the approaches, there is 

diversity in the sets of SNPs selected among the models. We define the biosignature as the 

entire set of variants selected by any of the algorithms.
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Figure 5. Tree-based Structures Can Represent Complex Relationships in Sets of Variables
Here each derived variable Z is computed from its inputs (genetic variants, clinical factors, 

or other derived variables) and a pair of edge parameters θ. The regression coefficient β1 

represents the net effect of the entire combination of variables on the outcome of interest Y. 

These structures were explored using Bayesian algorithms to learn biosignatures of nicotine 

metabolism.

Baurley et al. Page 25

Trends Mol Med. Author manuscript; available in PMC 2019 February 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. Joint SNP Effects on Nicotine Metabolism
The effects of combination of genetic variant on nicotine metabolism can be explored using 

Bayesian algorithms [58]. This plot shows that many genetic variants (dots) in different 

genes (color) can modify the effects of CYP2A6 variants on nicotine metabolism. This 

presents another way of defining biosignatures from a collection of models for use in 

prediction or generating new hypotheses.
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Table 1

Penalized Regression Algorithms Applied to the Nicotine Metabolism Dataset. The table includes the R 

packages implementing it, and the primary research articles describing the algorithms.

Method R-Package Reference

LASSO glmnet Tibshirani (1996) [49]

Elastic net glmnet Zou and Hastie (2005) [51]

Adaptive LASSO parcor Zou (2006) [90]

SCAD ncvreg Fan and Li (2001) [91]

MCP ncvreg Zhang (2010) [92]

SCAD-Ridge ncvreg Breheny and Huang (2011) [93]

MCP-Ridge ncvreg Breheny and Huang (2011) [93]

Dantzig Selector flare Candes and Tao (2007) [94]

lq LASSO flare Li et al. (2015) [95]
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