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Abstract

Optimal spatial sampling of light rigorously requires that identical photoreceptors be arranged in 

perfectly regular arrays in two dimensions. Examples of such perfect arrays in nature include the 

compound eyes of insects and the nearly crystalline photoreceptor patterns of some fish and 

reptiles. Birds are highly visual animals with five different cone photoreceptor subtypes, yet their 

photoreceptor patterns are not perfectly regular. By analyzing the chicken cone photoreceptor 

system consisting of five different cell types using a variety of sensitive microstructural 

descriptors, we find that the disordered photoreceptor patterns are “hyperuniform” (exhibiting 

vanishing infinite-wavelength density fluctuations), a property that had heretofore been identified 

in a unique subset of physical systems, but had never been observed in any living organism. 

Remarkably, the patterns of both the total population and the individual cell types are 

simultaneously hyperuniform. We term such patterns “multihyperuniform” because multiple 

distinct subsets of the overall point pattern are themselves hyperuniform. We have devised a 

unique multiscale cell packing model in two dimensions that suggests that photoreceptor types 

interact with both short- and long-ranged repulsive forces and that the resultant competition 

between the types gives rise to the aforementioned singular spatial features characterizing the 

system, including multihyperuniformity. These findings suggest that a disordered hyperuniform 

pattern may represent the most uniform sampling arrangement attainable in the avian system, 

given intrinsic packing constraints within the photoreceptor epithelium. In addition, they show 

how fundamental physical constraints can change the course of a biological optimization process. 

Our results suggest that multihyperuniform disordered structures have implications for the design 
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of materials with novel physical properties and therefore may represent a fruitful area for future 

research.

I. INTRODUCTION

The purpose of a visual system is to sample light in such a way as to provide an animal with 

actionable knowledge of its surroundings that will permit it to survive and reproduce [1]. In 

most cases, this goal is achieved most effectively by a highly regular two-dimensional (2D) 

array of photoreceptors that evenly sample incoming light to produce an accurate 

representation of the visual scene. Classical sampling theory [2,3] as well as more recent 

studies [4–6] have demonstrated that the optimal arrangement of a 2D array of detectors is a 

triangular lattice (i.e., a hexagonal array). Indeed, modeling studies suggest that any 

deviation from a perfectly regular arrangement of photoreceptors will cause deterioration in 

the quality of the image produced by a retina [7]. Accordingly, many species have evolved 

an optimal sampling arrangement of their photoreceptors. For example, the insect compound 

eye consists of a perfect hexagonal array of photoreceptive ommatidia [8,9]. In addition, 

many teleost fish [10–12] and some reptiles [13] possess nearly crystalline arrangements of 

photoreceptors. These and other examples attest that a perfect or nearly perfectly ordered 

arrangement of photoreceptors can be realized in a biological system.

Diurnal birds have one of the most sophisticated cone visual systems of any vertebrate, 

consisting of four types of single cone (violet, blue, green, and red) which mediate color 

vision and double cones involved in luminance detection [14–16] (see Fig. 1). Despite the 

presence of numerous evolutionary specializations in the avian eye, the overall arrangement 

of bird cone photoreceptors is not perfectly ordered but rather is irregular [17,18]. The five 

avian cone types exist as five independent, spatial patterns, all embedded within a single 

monolayered epithelium. The individual cone patterns in the bird’s retina are arranged such 

that cones of one type almost never occur in the near vicinity of other cones of the same type 

[18]. In this way, the bird achieves a much more uniform arrangement of each of the cone 

types than would exist in a random (Poisson) pattern of points.

Given the utility of the perfect triangular-lattice arrangement of photoreceptors for vision 

[7], the presence of disorder in the spatial arrangement of avian cone patterns is puzzling. It 

is crucial to ascertain whether the apparent “disordered” photoreceptor arrangements 

correspond to a different optimal solution because of constraints, such as cell size 

polydispersity, that are not present in the aforementioned insect retinas. By analyzing the 

chicken cone photoreceptor system using a variety of sensitive microstructural descriptors 

that arise in statistical mechanics and particle-packing theory [19], we show here that the 

avian system possesses a remarkable type of correlated disorder at large length scales known 

as hyperuniformity [20], which has heretofore not been observed in a living organism. A 

disordered hyperuniform many-body system is an exotic state of matter that behaves like a 

perfect crystal or quasicrystal in the manner in which it suppresses large-scale density 

fluctuations and yet, like a liquid or glass, is statistically isotropic with no Bragg peaks. 

Moreover, in a departure from any known physical system, the photoreceptor patterns of 

both the total population and the individual cell types are simultaneously hyperuniform, 
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which we term multihyperuniformity. We subsequently determine effective interactions 

between the photoreceptors on multiple length scales that could possibly explain their 

unusual disordered hyperuniform state. Specifically, we consider two types of interactions 

that have competing effects in determining the degree of order in the system. Indeed, we 

show via computer simulations that the local-energy minimizing configurations of such a 

many-particle interacting system quantitatively capture, with high accuracy, the unique 

spatial characteristics, including multihyperuniformity. The fact that the aforementioned 

competing interactions lead to disordered hyperuniform systems suggests that the 

photoreceptor patterns may represent the most uniform sampling arrangement attainable in 

the avian system due to intrinsic packing constraints associated with the photoreceptor cells.

The rest of the paper is organized as follows: In Sec. II, we provide definitions of 

fundamental concepts used in our analysis including various statistical microstructural 

descriptors, order metrics, as well as the concept of hyperuniformity. In Sec. III, we 

quantitatively investigate structural characteristics of avian photoreceptor patterns containing 

multiple cell species and show that both the overall pattern and the arrangements of 

individual species are hyperuniform. In Sec. IV, we determine the effective interactions 

between the photoreceptors and devise a unique multiscale packing model incorporating 

such interactions. We show that our multiscale packing model can lead to point 

configurations that are virtually indistinguishable from the actual photoreceptor 

arrangements. In Sec. V, we provide concluding remarks.

II. DEFINITIONS AND FUNDAMENTAL CONCEPTS

Before presenting our analysis of the avian photoreceptor system, we first briefly review the 

“hyperuniformity” concept and its quantification, which plays a central role in this paper. In 

addition, we introduce the order metrics that will be employed to characterize the avian 

patterns.

A. Hyperuniform systems

The ensemble-averaged structure factor of infinite point configurations in d-dimensional 

Euclidean space at number density ρ is defined via

(1)

where h̃(k) is the Fourier transform of the total correlation function h(r) = g2(r) − 1 and 

g2(r) is the pair-correlation function of the system. Note that definition (1) implies that the 

forward scattering contribution to the diffraction pattern is omitted. For statistically 

homogeneous and isotropic systems, the focus of this paper, g2 depends on the radial 

distance r ≡ |r| between the points (cell centers) as well as the number density ρ. In two 

dimensions, the quantity ρg2(r)2πr dr is proportional to the conditional probability of 

finding a cell center at a distance between r and r + dr given that a cell center is at the origin, 

where ρ is the number of cell centers per unit area.
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The small-k behavior of the structure factor S(k) encodes information about large-scale 

spatial correlations in the system and in the limit k → 0 determines whether the system is 

hyperuniform. Specifically, an infinite point configuration in d-dimensional Euclidean space 

is hyperuniform if

(2)

which implies that the infinite-wavelength density fluctuations of the system (when 

appropriately scaled) vanish [20].

For computational purposes, the structure factor S(k) for a given finite point configuration 

can be obtained directly from the positions of the points rj [21], i.e.,

(3)

where N is the total number of points in the system (under periodic boundary conditions) 

and k is the wave vector. Note that the forward scattering contribution (k = 0) in (3) is 

omitted, which makes relation (3) completely consistent with the definition (1) in the 

ergodic infinite-system limit. For statistically homogeneous and isotropic systems, the focus 

of this paper, the structure factor S(k) only depends on the magnitude of the scalar wave 

number k = |k| = 2πn/L, where n = 0, 1, 2 … and L is the linear size of the system.

A hyperuniform point configuration has the property that the variance in the number of 

points in an observation window Ω grows more slowly than the volume of that window [20]. 

In the case of a spherical observation window of radius R, this definition implies that the 

local number variance σ2(R) grows more slowly than Rd in d dimensions. The expression for 

the local number variance of a statistically homogeneous point configuration in a spherical 

observation window is given exactly by

(4)

where υ(R) is the volume of a spherical window of radius R and α(r; R) is the scaled 
intersection volume, i.e., the intersection volume of two spheres of radius R separated by a 

distance r divided by the volume of a sphere υ(R). We remark that the average number of 

points in an observation window is 〈N(R)〉 = ρυ(R) for any statistically homogeneous point 

configuration.

It has been shown that the number variance (4), under certain conditions, admits the 

following asymptotic scaling [20]:

Jiao et al. Page 4

Phys Rev E Stat Nonlin Soft Matter Phys. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

where

(6)

and D is a characteristic microscopic length associated with the point configuration (e.g., the 

average nearest-neighbor distance between the points). Clearly, when the coefficient A = 0, 

i.e., limk→0 S(k) = 0 satisfies the requirements for hyperuniformity. The relation in (6) then 

implies that hyperuniform point patterns do not possess infinite-wavelength density 

fluctuations (when appropriately scaled) and hence from (5) the number variance scales as 

the surface area of the window for large R, i.e., σ2(R) ~ Rd−1 in the large-R limit. This result 

is valid for all periodic point patterns (including perfect crystals), quasicrystals, and 

disordered systems in which the pair-correlation function g2 decays to unity exponentially 

fast [20]. The degree to which large-scale density fluctuations are suppressed enables one to 

rank order crystals, quasicrystals, and special disordered systems [20,21]. Disordered 

hyperuniform structures can be regarded as new states of disordered matter in that they 

behave more like perfect crystals or quasicrystals in the manner in which they suppress 

density fluctuations on large length scales, and yet are also like liquids and glasses in that 

they are statistically isotropic structures with no Bragg peaks. Thus, hyperuniform 

disordered materials possess a “hidden order” that is not apparent on short length scales.

For disordered hyperuniform systems with a total correlation function h(r) that does not 

decay to zero exponentially fast, other dependencies of the number variance on R may be 

observed. For example, it is known that if S(k) for k → 0 or, equivalently, if the total 

correlation function h ~ −r−(d+1) for large r, then σ2(R) ~ (a0 ln R + a1)Rd−1. More generally, 

for any reciprocal power law,

(7)

or, equivalently,

(8)

one can observe a number of different kinds of dependencies of the asymptotic number 

variance σ2 on the window radius R for R → ∞ [20–22]:
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(9)

Note that in all cases, the number variance of a hyperuniform point pattern grows more 

slowly than Rd.

B. Order metrics

The local bond-orientational-order metric q6 is defined as [23]

(10)

where j runs over all cells in the system, k runs over all neighbors of cell j, θjk is the angle 

between some fixed reference axis in the system and the bond connecting the centers of cells 

j and k, and Nb is the total number of such bonds in the system. This quantity indicates the 

degree of orientational order in the local arrangement of the immediate neighbors of a cell 

and it is maximized (i.e., q6 = 1) for the perfect hexagonal arrangement.

To characterize translational order of a configuration, we use the following translation order 

metric T introduced in Ref. [24] and further applied in Ref. [25]:

(11)

where g2(r) is the pair-correlation function, h(r) = g2(r) − 1 is the total correlation function, 

and ηc is a numerical cutoff determined by the linear size of the system. The translational 

order metric measures the deviation of the spatial arrangement of cell centers in a pattern 

from that of a totally disordered system (i.e., a Poisson distribution of points). The greater 

the deviation from zero, the more ordered is the point configuration.

III. STRUCTURAL PROPERTIES OF EXPERIMENTALLY OBTAINED 

PHOTORECEPTOR PATTERNS

The chicken retina contains five different cone cell types of different sizes: violet, blue, 

green, red, and double. Each cell type of this multicomponent system is maximally sensitive 

to visible light of a different wavelength. The spatial coordinates of each cell can be 

determined by the presence of a colored oil droplet in the cell’s inner segment (Fig. 1). Since 

the oil droplets used to identify the locations of individual photoreceptors are not always in 

exactly the same plane [18], pairs of real photoreceptors sometimes appear to be closer to 

one another than they are in actuality and in the simulations. In addition, the original slightly 

curved retina epithelium was flattened for imaging purposes [18]. These effects introduce 
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small errors in the intercell small-distance behavior but do not affect the overall statistics, 

especially on large length scales. The spatial coordinate data sets of post-hatch day 15 

chicken (Gallus gallus) cone photoreceptors were obtained from a published study [18]. 

Each data set contains approximately 4430 photoreceptors, and the average number of 

violet, blue, green, red, and double species are, respectively, 350, 590, 880, 670, and 1840. 

To clearly illustrate the photoreceptor patterns of different species, only a portion of the 

entire system is shown in Fig. 2. We compute a variety of the associated statistical structural 

descriptors and order metrics to quantify the degree of spatial regularity (or disorder) of the 

cell arrangements.

A. Disordered hyperuniformity

As discussed in Sec. II B, a point pattern is hyperuniform if the number variance σ2(R) 

within a spherical sampling window of radius R (in d dimensions) grows more slowly than 

the window volume for large R, i.e., more slowly than Rd [20]. The property of 

hyperuniformity can also be ascertained from the small wave number behavior of the 

structure factor, i.e., S(k = 0) = 0 of the pattern [20], which encodes information about large-

scale spatial correlations (see Sec. II B for details). We find that S(k) for the cell 

configurations associated with both the total population and the individual photoreceptor 

species are hyperuniform and each of these structure factors vanishes linearly with k as k 
tends to zero, i.e., S(k) ~ k (k → 0) (see Fig. 3). As discussed in Sec. II B [cf. Eq. (9)], such 

a linear behavior indicates a power-law decay for large-r values in the pair-correlation 

function [i.e., g2(r) − 1 ~ − 1/r3] instead of an exponential decay and therefore quasi-long-

range correlations in the system. We will elaborate on this point in the ensuing discussion.

We have directly computed the number variance σ2(R) for the individual and overall patterns 

and verified that they are also consistent with hyperuniformity, i.e., the “volume term” in 

σ2(R) is several orders of magnitude smaller than the other terms [cf. Eq. (5)]. Specifically, 

for each R value, 2500 windows are randomly placed in the system without overlapping the 

system boundary. The finite system size L imposes an upper limit on the largest window 

size, which is chosen to be Rmax = L/2 here. Figure 4 shows the experimental data as well as 

the associated fitting functions of the form

(12)

where A = S(k = 0) and B, C > 0. Note that in the plots, the window size R is normalized by 

the corresponding nearest-neighbor distance d0 for each species. Also shown in each plot is 

the corresponding “surface term” C R for purposes of comparison. The numerical values of 

the fitting parameters for both the overall pattern and the individual species are given in 

Table I. It can be clearly seen that the values of the parameter A are several orders of 

magnitude smaller than the other two parameters, indicating that the associated patterns are 

effectively hyperuniform. These values are also consistent with the numerical values of S(k 
= 0) obtained by directly fitting S(k) for small-k values [26].

The fact that the photoreceptor patterns display both overall hyperuniformity and homotypic 

hyperuniformity implies that if any subpopulation of the individual species is removed from 
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the overall population, the remaining pattern is still hyperuniform. We term such patterns 

multihyperuniform because distinct multiple subsets of the overall point pattern are 

themselves hyperuniform. These are highly unusual and unique structural attributes. Until 

now, the property of overall hyperuniformity was identified only in a special subset of 

disordered physical systems [27–38]. The chicken photoreceptor patterns provides the first 

example of a disordered hyperuniform biological system. In addition, the photoreceptor 

patterns possess quasi-long-range (QLR) correlations as indicated by the linear small-k 
behavior in S(k). We will elaborate on these points in Sec. V.

B. Pair-correlation functions

We find that each cell is associated with an effective exclusion region (i.e., an area in 2D) 

with respect to any other cells, regardless of the cell types. The size of these exclusion 

regions roughly corresponds to the size of the cells themselves [18]. In addition, cells 

belonging to the same subtype (i.e., like-cells) are found to be mutually separated from one 

another almost as far as possible, leading to a larger effective exclusion region associated 

with like-cells of each species. The exclusion effects are quantitatively captured by the 

associated pair-correlation functions (Fig. 5). The hard-core exclusion effect is manifested in 

g2(r) as an interval of r for which g2(r) = 0 (i.e., an “exclusion gap”) and g2(r) approaches its 

large-r asymptotic value of unity very quickly, indicating the absence of any long-range 

spatial ordering. This is to be contrasted with ordered systems, such as crystals, whose pair-

correlation functions are composed of individual Dirac delta functions at specific r values.

C. Order metrics

A bond-orientational order metric q6 [23] and a translational order metric T [25] were used 

next to quantify the degree of spatial regularity in the photoreceptor patterns (see Table II), 

each of which are maximized by the triangular lattice and minimized by a spatially 

uncorrelated point pattern. Interestingly, the q6 and T values for the total population are 

close to the corresponding values for polydisperse hard-disk packings we obtained, implying 

that the local cell exclusion effect plays a primary role in determining the overall pattern. In 

contrast, the higher-q6 and -T values for individual cell species suggest that like-cells 

interact with one another on a length scale larger than the size of a single cell, which tends to 

increase the degree of order in the arrangements of like-cells.

From a functional point of view, photoreceptor cells of a given type maximize their sampling 

efficiency when arranged on an ordered triangular lattice, as in the case of the compound eye 

of insects [8,9]. Importantly, the triangular lattice has been shown to be the most 

hyperuniform pattern [20], i.e., it minimizes the large-scale density fluctuations among all 

2D patterns. However, this most hyperuniform pattern may not be achieved if other 

constraints (e.g., cell size polydispersity) are operable. We therefore hypothesize that the 

disordered hyperuniformity of avian photoreceptor patterns represents a compromise 

between the tendency of the individual cell types to maximize their spatial regularity and the 

countervailing effects of packing heterotypic cell types within a single epithelium, which 

inhibits the spatial regularity of the individual cell types. In other words, the avian 

photoreceptors are driven to achieve the most “uniform” spatial distribution subject to 

heterotypic cell packing constraints.
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IV. COMPUTATIONAL MODEL THAT YIELDS MULTIHYPERUNIFORM 

PATTERNS

Our initial attempt to model the avian photoreceptor cell patterns employed classic packing 

models of polydisperse hard disks that are driven to their “jammed states” [19]. However, 

these models failed to generate patterns with multihyperuniformity. Such standard jamming 

models involving interactions on a single length scale are insufficient to represent the two 

competing effects leading to the photoreceptor patterns and motivated us to develop a unique 

multiscale packing model as described in the following.

In the experimental data representing the spatial arrangements of chicken cone 

photoreceptors, each cell is represented by a point. We refer to these points as “cell centers,” 

although they may not correspond to the actual geometrical centers of the cells.

In order to modify a simple hard-core interaction, we consider two types of effective cell-

cell interactions: isotropic short-range hard-core repulsions between any pair of cells and 

isotropic long-range soft-core repulsions between pairs of like-cells (i.e., cells of the same 

subtype). The multiscale nature of the model results from the multiple length scales involved 

in these interactions for different species, as we discuss now. The strength of the hard-core 

repulsion is characterized by the radius  of a hard-disk exclusion region associated with a 

cell type i. This interaction imposes a nonoverlap constraint such that the distance between 

the cells i and j can not be smaller than , which mimics the physical cell packing 

constraint. In this regard,  will also be referred to as the radius of a cell i in the ensuing 

discussions. The relative magnitudes of  are estimated from an electron micrograph 

showing photoreceptor cell packing at the level of the inner segment [17]. The characteristic 

radius Rs of the soft-core repulsion is associated with the mean nearest-neighbor distance of 

the cells of the same type. Specifically, the pair potential between two like-cells is given by

(13)

where the parameters α > 0 and β > 0 set the scale of the interaction energy [39]. In our 

simulations, we require that the value of Rs be uniquely determined by the associated cell 

number density ρ, i.e., . This implies that a system composed of cells of 

the same type (i.e., a single-component system) interacting via a pair potential given by Eq. 

(13) at number density ρ (i.e., the number of cells per unit area) possesses the triangular-

lattice ground state, i.e., an arrangement associated with a minimal total energy (sum of the 

total interaction energy between any pairs of like-cells). In other words, when the total 

energy in a single-component system is reduced to its minimal value (e.g., zero), sufficiently 

slowly from an arbitrary initial configuration, the cells will reorganize themselves into a 

triangular-lattice arrangement.
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When the system contains multiple species, the hard-and soft-core interactions represent two 

competing effects in determining the packing arrangement of the cells (see Fig. 6). 

Specifically, the polydisperse hard-disk exclusion regions induce geometrical frustration in 

the packing, i.e., in this five-component system, it is not possible for the subset of disks with 

the same size, surrounded by disks with different sizes to be arranged on a perfect triangular 

lattice. On the other hand, the long-range soft interaction between like species tends to drive 

the cells of the same type to arrange themselves on a perfect triangular lattice. Note that 

although the relative magnitudes of  for different species (i.e., the ratio between any two 

) are fixed, the actual values of  are variable and used as a tuning parameter in our 

model. As stated above, the ratios between  are estimated from a previously published 

study [17]. Specifically, the relative sizes of the violet, blue, green, red, and double species 

are 1.00, 1.19, 1.13, 1.06, and 1.50, respectively. Given the number of cells of each species, 

the values of  can be uniquely determined from the packing fraction ϕ of the cells (i.e., 

the fraction of space covered by the cells) and vice versa:

(14)

where Ni is the number of cells of species i and A is the area of the system.

Our Monte Carlo algorithm, which involves iterating “growth” and “relaxation” steps, works 

as follows:

1. Initialization. In the beginning of the simulation, cell centers of each species are 

generated in a simulation box using the random-sequential-addition (RSA) 

process [19]. Specifically, for each species i, Ni cell centers are randomly 

generated such that these cell centers are mutually separated by a minimal 

distance μRs (0 < μ < 1). In addition, the newly added cell can not overlap any 

existing cells in the box (determined by the hard-core radius Rs), regardless of 

cell types. The initial covering fraction ϕI associated with the hard-core exclusion 

regions is determined by  via Eq. (14), and is about 80% of the RSA 

saturation density [19].

2. Growth step. At each stage n, the cells are allowed to randomly move a 

prescribed maximal distance (~0.25 ) and direction such that no pairs of cells 

overlap. After a certain number (≈1000) of such random movements for each 

cell, the radius  of each cell is increased by a small amount such that the size 

ratios of the cells remain the same. This leads to an increase of the packing 

fraction ϕn at this stage by an amount of about 1%–3%. Note that in this 

“growth” step, the long-range soft interactions between the like-cells are turned 

off.

3. Relaxation step. At the end of the “growth” step, the soft interactions are then 

turned on, and the cells are allowed to relax from their current positions to 

reduce the total system energy subject to the nonoverlap condition. The steepest 
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descent method is used to drive the system to the closest local energy minimum 

(i.e., the inherent structure [19]) associated with the starting configuration. This 

is referred to as the “relaxation” process.

4. Statistics. After the relaxation process, structural statistics of the resulting 

configuration of cell centers are obtained and compared to the corresponding 

experimental data. To ensure that the simulations match the data for the pair 

statistics to the best extent possible, we introduce a deviation metric Δ. 

Specifically, Δ is the normalized sum of the squared differences between the 

simulated and experimental S(k) and g2(r) associated with the simulated and 

actual patterns, i.e.,

(15)

where nS = 6 is the total number of species including both the five individual 

species and the overall pattern,  and S(i)(k) are the simulated functions 

associated with species i, and  and S̄(i)(k) are the corresponding 

experimentally measured functions.

5. The growth and relaxation steps described in the bullet items (2) and (3), 

respectively, are repeated until ϕn reaches a prescribed value ϕF. Specifically, the 

configuration obtained by relaxation at stage n is used as the starting point for the 

growth step at stage n + 1. The best simulated pattern (i.e., that with the smallest 

deviation metric Δmin) and the associated ϕ* value are then identified.

At a given packing fraction ϕ (or equivalently a set of ), the polydispersity of the 

exclusion regions associated with different species and the resulting nonoverlap constraints 

frustrate the spatial order in the system. For example, the long-range soft interaction drives a 

single-species system to the triangular-lattice arrangement in the absence of other species. 

On the other hand, for any ϕ > 0, it is impossible for cells of a particular species, surrounded 

by cells of other species, to sit on a perfect triangular lattice [18]. Therefore, the disordered 

point configurations obtained by minimizing the energy associated with the soft repulsive 

interactions subject to the hard-core packing constraints are the local energy minima (i.e., 

inherent structures) of the system. The extent to which the structure deviates from that of a 

perfect triangular lattice (i.e., global energy minimum) is determined by the parameter ϕ (or, 

equivalently, ). Therefore, by tuning this parameter in our algorithm, one can, in principle, 

generate a continuous spectrum of configurations of cell centers with varying degrees of 

spatial order (see Appendix). Note that in the limit , triangular-lattice arrangements 

for individual species are accessible again and the resulting configuration is a superposition 

of five triangular-lattice arrangements of the cell centers.

We note that the order of the aforementioned growth and relaxation steps can be 

interchanged without affecting the final configuration. In addition, instead of starting from a 

disordered RSA arrangement of cell centers as described above, we have also used ordered 
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initial configurations (i.e., superposition of triangular-lattice arrangements), leading to the 

same configuration at a given number density ρ. However, the initial packing density ϕI 

associated with ordered initial configurations is very low and, thus, it is computationally 

inefficient to start from such initial configurations. By tuning the “strength” of the hard-core 

interactions via the packing fraction associated with the exclusion regions, our multiscale 

packing model enables us to produce disordered point configurations with various degrees of 

hyperuniformity, examples of which are provided in the Appendix for a three-component 

system for illustrative purposes.

A. Modeling avian photoreceptor system via multiscale particle packing

By using the multiscale packing model, we were able to accurately reproduce the unique 

features of the native avian photoreceptors. We modeled the aforementioned two competing 

effects as two types of effective interactions between the cells: a long-range soft-core 

repulsion between the cells of the same type (that would lead to an ordered triangular-lattice 

arrangement in the absence of packing constraints) and a short-range hard-core repulsion 

(with polydisperse exclusion regions associated with different cell species) between any pair 

of cells that frustrates spatial ordering in the system. Given the sizes of the hard-core 

exclusion regions associated with each cell species (or equivalently the packing fraction ϕ of 

the exclusion regions), the system is allowed to relax to a state that is a local energy 

minimum for the long-range soft-core repulsive interactions between like-species. Such 

long-range interactions would drive each of the five cell species in the multicomponent 

system to the associated triangular-lattice arrangement (global energy minimum) in the 

absence of the hard-core repulsions. As we increase the strength of the hard-core repulsions 

by increasing ϕ, the degree of order in the system, which is quantified by the order metrics 

q6 and T, decreases (see Fig. 7). It is important to emphasize that these disordered 

hyperuniform avian photoreceptor patterns are not simple random perturbations of a 

triangular-lattice pattern. Statistically equivalent disordered hyperuniform patterns have also 

been obtained from disordered initial configurations (e.g., RSA packings). Thus, the unique 

structural features in these patterns are not attributed to particular initial configurations but 

rather arise from the two competing effects, which are well captured by our multiscale 

packing model.

The simulation box contains 2600 cell centers and the numbers of violet, blue, green, red, 

and double species are, respectively, 210, 355, 530, 405, and 1100. The relative sizes of the 

violet, blue, green, red, and double species are 1.00, 1.19, 1.13, 1.06, and 1.50, respectively. 

The initial packing fraction associated with the hard cores is ϕI = 0.45 and the simulation 

stops at ϕF = 0.7. At ϕ ≈ 0.58, the resulting configurations (see Fig. 8) are virtually 

indistinguishable from the actual photoreceptor patterns, as quantified using a variety of 

descriptors. Specifically, the associated structure factors (see Fig. 9) and pair-correlation 

functions (see Fig. 10) match the experimental data very well, as quantified by the minimum 

deviation metric value of Δmin ≈ 0.4 [cf. Eq. (15)]. We note that the major contributions to 

Δmin are the large fluctuations in the experimental data due to a limited number of samples. 

(The initial value of Δ is roughly 3.16.) The order metrics q6 and T of the simulated pattern 

also match those of the experimental data very well (see Table III). This is a stringent test for 

the simulations to pass. The success of the simulations strongly suggests that the disordered 
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hyperuniform photoreceptor patterns indeed arise from the competition between cell packing 

constraints and the tendency to maximize the degree of regularity for efficient light 

sampling, suggesting that the individual photoreceptor types are as uniform as they can be, 

given the packing constraints within the photoreceptor epithelium.

V. CONCLUSIONS AND DISCUSSION

By analyzing the chicken cone photoreceptor patterns using a variety of sensitive 

microstructural descriptors arising in statistical mechanics and particle-packing theory, we 

found that these disordered patterns display both overall and homotypic hyperuniformity, 

i.e., the system is multihyperuniform. This singular property implies that if any subset of the 

individual species is removed from the overall population, the remaining pattern is still 

hyperuniform. Importantly, it is highly nontrivial to devise an algorithm that would remove a 

large fraction of the points from a disordered hyperuniform system while leaving the 

remaining point pattern hyperuniform, and yet Nature has found such a design.

Until now, the property of overall hyperuniformity was identified only in a special subset of 

disordered physical systems, including ground-state liquid helium [34], one-component 

plasmas [35], Harrison-Zeldovich power spectrum of the density fluctuations of the early 

Universe [36], fermionic ground states [37], classical disordered ground states [38], and 

maximally random jammed packings of equal-sized hard particles [32,33]. All of these 

examples involve single-component systems. More recently, disordered multicomponent 

physical systems such as maximally random jammed (MRJ) hard-particle packings [27–29] 

have been identified that possess an appropriately generalized hyperuniformity property 

ascertained from the local volume fraction fluctuations. However, the multicomponent 

photoreceptor avian system pattern, which represents the first example of a disordered 

hyperuniform system in a living organism, is singularly different from any of these 

hyperuniform physical systems in that in the pattern each species and the total population 

are hyperuniform, i.e., the avian patterns are multihyperuniform. Although it is not very 

difficult to construct an overall hyperuniform system by superposing subsystems that are 

individually hyperuniform, the reverse process (i.e., decomposing a hyperuniform system 

into individually hyperuniform subsets) is highly nontrivial. It will be of interest to identify 

other disordered hyperuniform biological systems. It is likely that some other epithelial 

tissues and phyllotactic systems [19] possess such attributes. Interestingly, it has been shown 

that the large-scale number-density fluctuations associated with the malignant cells in brain 

tumors are significantly suppressed, although the cell patterns in such brain tumors are not 

hyperuniform [40].

In addition, the photoreceptor patterns possess quasi-long-range (QLR) correlations as 

indicated by the linear small-k behavior in S(k). Such QLR correlations are also observed in 

the ground-state liquid helium [34], the density fluctuations of the early Universe [36], 

fermionic ground states [37], and MRJ packings of hard particles [27–29]. In the MRJ 

particle packings, it is believed that the QLR correlations arise from the competition 

between the requirement of jamming and maximal disorder in the system [27–29]. As we 

showed employing the unique multiscale packing model, the multicomponent avian system 
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that is both homotypic and overall hyperuniform, i.e., multihyperuniform, can result from 

two competing interactions between the photoreceptors.

It is noteworthy that while hard-core exclusion and high density in a disordered particle 

packing are necessary conditions to achieve a hyperuniform state, these are not sufficient 

conditions. Figure 11 shows a nonequilibrium random-sequential-addition (RSA) packing of 

hard circular disks in two dimensions with a packing fraction ϕ = 0.54 (left panel), which is 

generated by randomly and sequentially placing hard disks in a domain without overlapping 

existing disks, until there is no room for additional disks [41]. The right panel of Fig. 11 

shows an equilibrium system of hard disks at ϕ = 0.54 (right panel). The structure factor 

values at k = 0 for the RSA and equilibrium systems are respectively given by S(0) = 0.059 

[41] and S(0) = 0.063 [42–44]. Although hard-core exclusion plays a central role in these 

two distinct high-density packings, neither packing is hyperuniform, as indicated by the 

relatively large positive values of the corresponding S(0).

To understand the origin of the unique spatial features of the avian photoreceptor patterns, 

we have devised a unique multiscale cell packing model that suggests that photoreceptor 

types interact with both short- and long-ranged repulsive forces and that the resultant 

competition between the types gives rise to the singular cell patterns. The fact that a 

disordered hyperuniform pattern corresponds to a local optimum associated with the 

multiscale packing problem indicates that such a pattern may represent the most uniform 

sampling arrangement attainable in the avian system, instead of the theoretical optimal 

solution of a regular hexagonal array. Specifically, our studies show how fundamental 

physical constraints can change the course of a biological optimization process. Although it 

is clear that physical cell packing constraints are the likely cause of the short-range hard-

core repulsion, the origin of the effective longer-range soft-core repulsion is less obvious. 

We hypothesize that repulsive forces of this type occur during retinal development and may 

be secondary to cell-cell interactions during photoreceptor neurogenesis. However, a 

comprehensive test of this hypothesis is beyond the scope of this investigation, and therefore 

its resolution represents a fascinating avenue for future research.

Recent studies have shown that disordered hyperuniform materials can be created that 

possess unique optical properties, such as being “stealthy” (i.e., transparent to incident 

radiation at certain wavelengths) [38]. Moreover, such disordered hyperuniform point 

patterns have been employed to design isotropic disordered network materials that possess 

complete photonic band gaps (blocking all directions and polarizations of light) comparable 

in size to those in photonic crystals [45,46]. While the physics of these systems is not 

directly related to the avian photoreceptor patterns, such investigations and our present 

findings demonstrate that a class of disordered hyperuniform materials are endowed with 

novel photonic properties.

Aside from capturing the unusual structural features of photoreceptor patterns, our 

multiscale packing model represents a unique algorithm that allows one to generate 

multihyperuniform multicomponent systems with varying degrees of order by tuning the 

packing fraction ϕ of the hard-core exclusion regions (see Appendix for additional 

examples). This knowledge could now be exploited to produce multihyperuniform 
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disordered structures for applications in condensed matter physics and materials science. For 

example, it would be of interest to explore whether colloidal systems can be synthesized to 

have such repulsive interactions in order to self-assemble into the aforementioned unique 

disordered arrangements and to study the resulting optical properties. It is noteworthy that it 

has already been demonstrated that three-dimensional disordered hyperuniform polymer 

networks can be fabricated for photonic applications using direct laser writing [47].
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APPENDIX

MULTIHYPERUNIFORM DISORDERED POINT CONFIGURATIONS VIA THE 

MULTISCALE PACKING MODEL

In this appendix, we provide additional examples of multihyperuniform disordered point 

configurations obtained via the multiscale packing model for the case of three components 

(red, blue, and green species). These examples illustrate the versatility and capacity of our 

model to generate multicomponent systems with varying degrees of hyperuniformity (see 

discussion below), apart from modeling the avian system. Specifically, we will show that the 

degree of hyperuniformity of the overall patterns can be controlled by tuning the overall 

final packing fraction ϕ associated with the hard-core exclusion regions for different species 

in the system. Note that in our model, in the infinite-dilute limit ϕ → 0, i.e., in the absence 

of the hard-core exclusion effects, the inherent structures associated with the remaining 

long-range soft-core repulsion are triangular-lattice arrangements of points, which are in fact 

the most hyperuniform point configurations in two dimensions [15]. As the hard-core 

exclusion regions for each species grow in size (i.e., ϕ increases), the degree of spatial order 

will be gradually reduced due to the aforementioned geometrical frustrations caused by the 

hard cores, while the system remains hyperuniform and disordered up to some packing 

fraction ϕC. Therefore, our algorithm is robust in producing multihyperuniform systems with 

a varying degree of disorder over a wide range of packing fractions. However, we emphasize 

that there exists a threshold packing fraction ϕC, above which the system ceases to be 

hyperuniform.

In our simulations, the numbers of particles for different species are chosen to be the same, 

i.e., nR = nB = nG = 500, where the subscripts “R,” “B,” “G” indicate the red, blue, and 

green species, respectively. The three species possess the same number density and thus, the 

same size Rs for the homotypic repulsion [cf. Eq. (13)]. The relative sizes of the hard core 

are, respectively, 1.0, 1.5, and 2.0 for red, blue, and green species. Initial configurations with 

an overall packing fraction ϕ = 0.3 are generated using the random sequential addition 
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process. Then, the growth and relaxation procedure is employed to generate disordered 

inherent structures associated with the soft interactions at different packing fractions.

The resulting patterns are multihyperuniform, i.e., both the individual species and the overall 

patterns are hyperuniform. However, here we will only focus on the degree of 

hyperuniformity in the overall pattern. Figure 12 shows the configurations and associated 

S(k) of the overall system for selected ϕ values. At ϕ = 0.35, the structure factor S(k) = 0 for 

k < K*, indicating that the system is stealthy [38] (i.e., the pattern completely suppresses 

scattering of the incident radiation associated with wave numbers smaller than K* and, thus, 

is transparent at the corresponding wavelengths) and yields a higher degree of order. At ϕ = 

0.55, the structure factor is quadratic in k, i.e., S(k) ~ k2 for small-k values, which indicates 

that number variance grows with the surface of the observation window, i.e., σ2(R) ~ R for 

large window sizes (i.e., large-R values). This is to be contrasted with the large-R behavior 

of σ2(R) for the photoreceptor patterns in chicken retina, i.e., σ2(R) ~ R ln R, which 

indicates that the number variance grows more rapidly than that in the three-component 

system associated with ϕ = 0.55. In other words, the three-component system at ϕ = 0.55 

possesses smaller local number density fluctuations than those in the chicken retina, 

indicating that the former is more uniform on large length scales (i.e., displays a higher 

degree of hyperuniformity) than the latter.
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FIG. 1. 
(Color online) Spatial arrangements of chicken cone photoreceptors. The leftmost panel 

shows a flatmount preparation of a post-hatch day 15 chicken retina with colored oil droplets 

within the inner segments of the five cone photoreceptor types. Size bar = 10 µm. The 

additional panels (from left to right) depict the same field of view under illumination with 

ultraviolet, blue, and green light, respectively. Oil droplet autofluorescence permits subtype 

classification of the individual photoreceptor cells and determination of their spatial 

coordinates. These figures derive from Ref. [18].
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FIG. 2. 
(Color online) Experimentally obtained configurations representing the spatial arrangements 

of chicken cone photoreceptors. Upper panels: The configurations shown from left to right, 

respectively, correspond to violet, blue, green species. Lower panels: The configurations 

shown from left to right, respectively, correspond to red, double species, and the overall 

pattern.
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FIG. 3. 
(Color online) Structure factors S(k) of the experimentally obtained point configurations 

representing the spatial arrangements of chicken cone photoreceptors. The experimental data 

were obtained by averaging 14 independent patterns. The estimated values of S(k = 0) by 

extrapolation for violet, blue, green, red, double, and the overall population in the actual 

pattern are respectively given by 2.11 × 10−3, 6.10 × 10−4, 1.06 × 10−3, 5.72 × 10−4, 1.38 × 

10−4, and 1.13 × 10−3.
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FIG. 4. 
(Color online) The number variance σ2(R) associated with the photoreceptor patterns in 

chicken retina as well as the associated fitting function of the form σ2(R) = A R2 + B R 
ln(R) + C R. We found that the values of the parameter A are several orders of magnitude 

smaller than the other two parameters, indicating that the associated patterns are effectively 

hyperuniform. Also shown in each plot is the “surface term” C R for purposes of 

comparison. The window radius R is normalized with respect to the mean nearest-neighbor 

distance d0 of the corresponding point configurations.
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FIG. 5. 
(Color online) Pair-correlation functions g2(r) of the experimentally obtained point 

configurations representing the spatial arrangements of chicken cone photoreceptors. The 

experimental data were obtained by averaging 14 independent patterns. The distance is 

rescaled by the average nearest-neighbor distance dn in the system.
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FIG. 6. 
(Color online) Illustration of the hard- and soft-core interactions in a two-species system 

containing black and red (or light gray in the print version) cells. The left panel shows the 

exclusion regions (circular disks with two distinct sizes) associated with the two types of 

cells, which are proportional to the actual sizes of the cells. The black cells have a larger 

exclusion region than the red cells. The middle panel illustrates the soft-core repulsive 

interaction (large concentric overlapping circles of the solid black disks) between the black 

cells. Such a repulsive interaction will drive the black cells to arrange themselves in a perfect 

triangular lattice in the absence of other species. The right panel illustrates the soft-core 

repulsive interaction (large concentric overlapping circles of the solid red disks) between the 

red cells.
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FIG. 7. 
(Color online) Left panel: The bond-orientational order metric q6 of the individual species as 

a function of the packing fraction ϕ associated with the exclusion regions. Right panel: The 

translational order metric T of the individual species as a function of the packing fraction ϕ 
associated with the exclusion regions.
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FIG. 8. 
(Color online) Simulated point configurations representing the spatial arrangements of 

chicken cone photoreceptors. Upper panels: The configurations shown from left to right, 

respectively, correspond to violet, blue, and green species. Lower panels: The configurations 

shown from left to right, respectively, correspond to red, double species, and the overall 

pattern. The simulated patterns for individual photoreceptor species are virtually 

indistinguishable from the actual patterns obtained from experimental measurements.
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FIG. 9. 
(Color online) Comparison of the structure factors S(k) of the experimentally obtained and 

simulated point configurations representing the spatial arrangements of chicken cone 

photoreceptors. The simulation data were obtained by averaging 50 independent 

configurations.
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FIG. 10. 
(Color online) Comparison of the pair-correlation functions g2(r) of the experimentally 

obtained and simulated point configurations representing the spatial arrangements of chicken 

cone photoreceptors. The simulation data were obtained by averaging 50 independent 

configurations. The distance is rescaled by the average nearest-neighbor distance dn in the 

system.
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FIG. 11. 
(Color online) Left panel: A random-sequential-addition (RSA) packing of hard, identical 

circular disks in two dimensions with a packing fraction ϕ = 0.54, which is close to the 

saturation state. Right panel: An equilibrium system of hard, identical disks at ϕ = 0.54. The 

fact that neither of these systems is hyperuniform, as discussed in the text, indicates that 

hard-core exclusion effects alone are not sufficient to induce hyperuniformity.
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FIG. 12. 
(Color online) Configurations and the associated S(k) of a three-component system for 

selected ϕ values. Left panel: At ϕ = 0.35, the structure factor S(k) = 0 for k < K* which 

indicates the system is stealthy. Right panel: At ϕ = 0.55, the structure factor S(k) ~ k2 for 

small-k values, which indicates that number variance σ2(R) ~ R for large window sizes. The 

system possesses different degrees of hyperuniformity that can be ascertained from the 

small-k behavior of S(k).
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TABLE II

Bond-orientational and translational order metrics q6 and T, respectively, of the chicken photoreceptor 

patterns. The experimental data were obtained by averaging 14 independent patterns.

Species q6 T

Violet 0.150 0.304

Blue 0.158 0.411

Green 0.130 0.278

Red 0.147 0.254

Double 0.184 0.390

All 0.058 0.096
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TABLE III

Comparison of the bond-orientational and translational order metrics q6 and T of the experimental and 

simulated point configurations. The simulation data were obtained by averaging 50 independent 

configurations.

q6 T

Species Expt. Sim. Expt. Sim.

Violet 0.150 0.148 0.304 0.327

Blue 0.158 0.164 0.411 0.395

Green 0.130 0.134 0.278 0.266

Red 0.147 0.149 0.254 0.263

Double 0.184 0.189 0.390 0.363

All 0.058 0.063 0.096 0.108
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