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Abstract

Background—In an era of “big data,” computationally efficient and privacy-aware solutions for 

large-scale machine learning problems become crucial, especially in the healthcare domain, where 

large amounts of data are stored in different locations and owned by different entities. Past 

research has been focused on centralized algorithms, which assume the existence of a central data 

repository (database) which stores and can process the data from all participants. Such an 

architecture, however, can be impractical when data are not centrally located, it does not scale well 

to very large datasets, and introduces single-point of failure risks which could compromise the 

integrity and privacy of the data. Given scores of data widely spread across hospitals/individuals, a 

decentralized computationally scalable methodology is very much in need.

Objective—We aim at solving a binary supervised classification problem to predict 

hospitalizations for cardiac events using a distributed algorithm. We seek to develop a general 

decentralized optimization framework enabling multiple data holders to collaborate and converge 

to a common predictive model, without explicitly exchanging raw data.
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Methods—We focus on the soft-margin l1-regularized sparse Support Vector Machine (sSVM) 

classifier. We develop an iterative cluster Primal Dual Splitting (cPDS) algorithm for solving the 

large-scale sSVM problem in a decentralized fashion. Such a distributed learning scheme is 

relevant for multi-institutional collaborations or peer-to-peer applications, allowing the data 

holders to collaborate, while keeping every participant’s data private.

Results—We test cPDS on the problem of predicting hospitalizations due to heart diseases 

within a calendar year based on information in the patients Electronic Health Records prior to that 

year. cPDS converges faster than centralized methods at the cost of some communication between 

agents. It also converges faster and with less communication overhead compared to an alternative 

distributed algorithm. In both cases, it achieves similar prediction accuracy measured by the Area 

Under the Receiver Operating Characteristic Curve (AUC) of the classifier. We extract important 

features discovered by the algorithm that are predictive of future hospitalizations, thus providing a 

way to interpret the classification results and inform prevention efforts.

Keywords

predictive models; hospitalization; heart diseases; distributed learning; Electronic Health Records 
(EHRs); federated databases

INTRODUCTION

Motivation

As the volume, variety, velocity and veracity (the four V’s) of the clinical data grow, there is 

greater need for efficient computational models to mine these data. Insights from these 

techniques could help design efficient healthcare policies, detect disease causes, provide 

medical solutions that are personalized and less costly, and finally, improve the quality of 

care for the patients. We are motivated by problems in the medical domain that can be 

formulated as binary supervised classification problems and solved using Support Vector 

Machines; the applications range from prediction of the onset of diabetes,[1,2] prediction of 

hospitalizations for cardiac events,[3] prediction of medication adherence in heart failure 

patients,[4] and cancer diagnosis,[5] to automated recognition of the obstructive sleep apnea 

syndrome.[6]

Results in the literature suggest that sparse classifiers (i.e., those that rely on few features), 

have strong predictive power and generalize well out-of-sample,[7,8] providing at the same 

time interpretability in both models and results. Interpretability is crucial for healthcare 

practitioners to trust the algorithmic outcomes. Another major concern, especially in the 

medical domain, is the privacy of the data, attracting recent research efforts.[9–11] Two 

well-known examples of privacy breaches are the Netflix Prize and the Massachusetts Group 

Insurance Commission (GIC) medical records database. In both cases, individuals were 

identified even though the data had been through a de-identification process. This 

demonstrated that one’s identity and other sensitive information could be compromised once 

a single center has access and processes all the data. Especially under the Precision 

Medicine Initiative,[12] in the near future, these data could include individuals’ genome 

information, which is too sensitive to be shared.
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We are particularly interested in addressing three challenges tied to healthcare data: (1) data 

reside in different locations (e.g., hospitals, doctors’ offices, home-based devices, patients’ 

smartphones); (2) there is a growing availability of data, which makes scalable frameworks 

important; and (3) aggregating data in a single database is infeasible or undesirable due to 

scale and/or data privacy concerns. In particular, even though maintaining all data in a 

central location enables the implementation of anonymization measures (e.g., k-anonymity 

[13]), it introduces a single point of attack or failure and makes it possible for a data breach 

to expose identifiable data for many individuals. Furthermore, establishing a central data 

repository requires significant infrastructure investments and overcoming information 

governance hurdles such as obtaining permissions for storing and processing data. Instead, a 

decentralized computational scheme that treats the available data as part of a federated 

(virtual) database, avoiding centralized data collection, processing, and raw data exchanges, 

may address the above challenges.

Aim

The focus of this paper is to develop a distributed (federated) method to predict 

hospitalizations during a target year for patients with heart diseases, based on their medical 

history as described in their Electronic Health Records (EHRs). The records of each patient 

may lie with them in the patient’s smartphone, or may be stored in the EHR systems of 

different hospitals. In all cases, the collaboration of different parties (agents) is required to 

develop a global hospitalization prediction model. We will formulate the problem as a binary 

supervised classification problem and we will develop a distributed soft-margin ℓ1-

regularized (sparse) Support Vector Machines (sSVM) algorithm. We consider SVMs 

because they are effective classifiers [14] and perform well in predicting hospitalizations.[3] 

Furthermore, sparse classifiers can reveal relatively few predictive features and, thus, enable 

interpretation of the predictions.[15]

Health application

We focus on cardiovascular conditions because they comprise a significant portion of 

morbidity and mortality, as well as, hospitalization in the U.S. and worldwide. In the fact, in 

the U.S. alone, more than 30% (equal to $9 billion) of hospitalizations deemed preventable 

are due to cardiovascular conditions.[16] For many decades, the research interest has been 

focused on understanding the pathophysiology of these conditions and treating them 

effectively. The efforts have now shifted to the understanding of the disease process and the 

early prevention. This goal has obvious public health implications, but also socioeconomic 

significance. It is well known that preventing the progression of the disease process by 

intensified follow up and treatment can result in long-term stability and improved survival of 

the patient. Hospitalization is a well-known negative prognostic factor for cardiovascular 

disease outcome. One critical step in the effort to halt the disease process is the 

understanding of the etiology and modifiable risk factors of hospitalization.

Main contributions

We summarize our main contributions below:
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• We develop a federated optimization scheme (cPDS) for solving the sparse 

Support Vector Machine problem. Advantages include scalability and the fact 

that it avoids raw data exchanges, which is important in healthcare. We also 

demonstrate that cPDS has improved convergence rate and favorable 

communication cost compared to various centralized and distributed alternatives.

• We apply our new methodology to a dataset of de-identified Electronic Heart 

Records from the Boston Medical Center, containing patients with heart-related 

diseases. Each patient is described by a set of features, including demographics, 

diagnoses, prior admissions, and other relevant medical history.

• We use cPDS to differentiate between patients that are likely and not likely to be 

hospitalized within a target year and report and discuss the experimental results.

• The proposed cPDS framework is general and can be applied to any learning 

problem with a “nonsmooth+nonsmooth” loss function objective. Such problems 

can be found in machine learning, where we aim to minimize functions with 

non-smooth regularizers, or in distributed model predictive control.

MATERIAL AND METHODS

Objective and background

We consider a dataset extracted from an EHR system, containing patients’ demographic data 

such as age, gender, and race, physical characteristics such as weight, height, Body Mass 

Index (BMI), medical history captured by diagnoses, procedures, office visits, and a history 

of drug prescriptions, all captured by a feature vector ϕi ∈ ℝd, for each patient i = 1, …, n. 

We are interested in predicting whether or not a patient will be hospitalized in a given year, 

for instance in the next calendar year from the time the record is being examined. We denote 

a hospitalization by a label li = +1, and a non-hospitalization by a label li = −1. Using 

machine learning terminology, this is a binary classification problem. Using the popular 

Support Vector Machine (SVM) classifier,[14] we seek to find a hyperplane that maximizes 

the margin (“distance”) between the two classes, while allowing a few points to be 

misclassified (as shown in Figure 1). Further requiring that a few features are used, we end 

up with a sparse Support Vector Machine (sSVM) problem:

(1)

where (β, β0), β ∈ ℝd, β0 ∈ ℝ, identifies the hyperplane/classifier; 

 is a hinge loss function for sample i ; τ and ρ are 

penalty coefficients; ⊤ denotes transpose, and the l1-norm term ║β║1 serves to induce 

sparsity.

In the distributed context, we are interested in a setting where each agent1 holds a part of the 

data/samples, namely, a subset of {ϕi; i = 1 …, n} and {li, i = 1, …, n}, and would like to 

collaborate with others to solve Problem (1) for β and β0. Due to scalability, regulatory, and 

Brisimi et al. Page 4

Int J Med Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



privacy reasons, agents are not willing to share their raw data with each other or with a 

processing center. We will develop a decentralized algorithm that avoids raw data exchanges.

Related literature

Problem (1) involves minimization of the sum of two convex but non-smooth terms, i.e., the 

loss function and the penalty terms . When all the data are stored and 

computations are executed in a centralized unit, we can solve the problem using the interior 

point (also referred to as barrier) method or the classical subgradient method (SubGD).[17] 

Another approach with  convergence rate that can solve the sSVM and allows a 

decentralized implementation is the incremental subgradient method (IncrSub).[18] 

However, IncrSub needs to deploy vanishing step size to reach exact convergence and only 

works over networks with a ring structure. A recent fully decentralized scheme that has 

made a significant improvement over the IncrSub is the linear time-average consensus 

optimization algorithm (LAC).[19] The LAC algorithm is an iterative algorithm that takes 

smalls steps towards the optimal solution at each iteration utilizing a fixed but small step 

size and is shown to have  convergence rate. A good feature of the LAC is that it 

improves algorithmic scalability in the size of the network.

The Cluster Primal Dual Splitting

Next, we introduce the general decentralized primal-dual splitting scheme we have designed 

for solving “nonsmooth+nonsmooth” optimization problems like (1).

Let us assume there is a network of agents, each of which is holding part of the data and they 

all collectively would like to solve (1) utilizing all data. We consider two scenarios: each 

agent is holding multiple samples (semi-centralized); or one sample (fully-decentralized). In 

our healthcare context, agents in the first scenario are hospitals that process the data of their 

patients only and exchange messages with other hospitals to jointly solve (1). In the second 

scenario, each patient maintains personal data (e.g.. in a smartphone) and exchanges 

messages with other patients to jointly solve (1). A combination of these two scenarios is 

also possible. In either scenario, the m agents are connected through a communication 

network, which is modeled by an undirected graph , where  is 

the vertex set and  is the edge set. Throughout the paper, we make the assumption that (A1) 

the graph  is connected; and (A2) information exchange happens only between neighbors.

In the decentralized environment, Problem (1) can be reformulated into the following m-

cluster splitting formulation:

(2)

1We will use the generic term “agent” to represent each data/computation center. The term could refer to institutions (hospitals), or 
even individuals’ (patients’) devices such as phones, sensors, etc.
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where each agent j holds nj samples (such that ) and maintains its own copy of 

the model parameters to be estimated . Let us define a vector x = [x1; 

… ; xm] ∈ ℝm(d+1) to compactly represent all the local copies; a vector variable y = [y1; … ; 

ym] ∈ ℝn where each block  is handled by agent j, and yji = lji(φji
T 

βj + βj0), with lji, φji being the label and features of the i-th sample held by agent j, 
respectively. This relationship between xj and yj is described by the first set of constraints, 

with Γj some locally produced/tuned pre-conditioner to ensure the fast convergence of the 

cPDS algorithm. The function (fj) contains all the hinge loss functions at agent j while the 

function gj(xj) includes the regularizers over agent j. The consensus among agents is 

achieved through the second group of constraints in (2). To solve the cluster sSVM, or its 

more general form (2), in a decentralized fashion, we propose the following algorithm 

(cPDS), which finds the separating hyperplane through updates on parameters of both the 

primal problem (2), i.e., xj, yj, and its corresponding dual problem, i.e., qj, λj. The matrices 

Γj and Θj serve as algorithmic parameters that accelerate the convergence, and W = [wij] is a 

doubly stochastic weight matrix of the graph (see definition in the Appendix). In the 

algorithm, the norm  is the Θj-weighted norm of x defined as  and 

denotes the neighboring nodes of node j. We emphasize that the update of the classifier xj for 

each agent is implemented using only the local information, which constitutes a salient 

advantage of cPDS compared to other methods in the literature.

Algorithm 1

The cluster Primal Dual Splitting Algorithm (cPDS).

Cluster PDS Method

INPUT: ∀j,

Prepare data/objectives fj and gj. Set parameters Γj and Θ j.

INITIALIZE: ∀j,

, , , ,  and .

REPEAT

x – update (locally): ∀j

y- update (locally): ∀j

q-update (locally): ∀j

λ-update (requires information exchange): ∀j
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Cluster PDS Method

.

UNTIL specific criteria are met.

Theoretical comparison of methods

The table below shows comparative results that illustrate the trade-offs between different 

methods when applied to the sSVM problem. “Per iteration complexity” measures how 

many scalar multiplications are needed per iteration. “ε-accuracy iterations” measures how 

many iterations are needed to reach ε-accuracy. The details for applying cPDS to sSVM can 

be found in the Appendix.

Performance evaluation

We split the patients in our dataset into two sets: a training and a test set. Training patients 

are used to train the algorithm. In order to evaluate the accuracy of the predictions, we use 

the trained classifier to predict the label of patients (whether or not will be hospitalized) in 

the test set. We measure the performance of cPDS in terms of the Area Under the Receiver 

Operator Characteristic (ROC) curve (AUC), which plots the true positive rate (i.e., out of 

the hospitalized patients how many were correctly predicted as hospitalized) versus the false 

positive rate (i.e., out of the non-hospitalized patients how many were wrongly predicted to 

be hospitalized). The true positive rate is also referred to as sensitivity or recall and 

specificity is used to refer to one minus the false positive rate. We also report the 

computation time, i.e., the cumulative time needed at all nodes to train the model, and the 

communication cost, which is defined as 2 times the product of the number of edges, the 

dimension of the features, and the number of iterations. (Only the coefficients of the features 

are exchanged with adjacent nodes.) Note that the number of edges in the graph decides the 

amount of information exchanged.

DATA-RESULTS-DISCUSSION

Data description and preprocessing

The data used for the experiments come from the Boston Medical Center and consist of 

Electronic Health Records (EHRs) containing the medical history in the period 2001–2012 

of patients with at least one heart-related diagnosis between 2005–2010. The medical history 

of each patient includes demographics, diagnoses, procedures, vitals, lab tests, tobacco use, 

emergency room visits, and past admission records. For each patient, we set a specific target 

year and we predict hospitalization during that year based on the prior medical history. We 

follow the steps below to preprocess the data:

• Setting the target time interval to a calendar year. Based on preliminary 

experiments, we observed that there is greater variability in the results when 

trying to predict hospitalizations in periods of time shorter than a year. Thus, we 

have designed our experiment to predict hospitalizations in the target time 
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interval of a year (January 1st – December 31st). We elected to use a calendar 

year after observing that hospitalizations occur roughly uniformly within a year.

• Selection of the target year. As a result of the nature of the data, the two classes 

(hospitalized and non-hospitalized patients) are highly imbalanced. To increase 

the number of hospitalized patient examples, if a patient had only one 

hospitalization throughout 2005–2010, the year of hospitalization will be set as 

the target year. If a patient had multiple hospitalizations, a target year between 

the first and the last hospitalizations will be randomly selected. 2010 is set as the 

target year for patients with no hospitalization, so that there is as much available 

history for them as possible. By this policy, the ratio of hospitalized patients in 

the data set is 16.97%.

• Summarization of the features in the history of a patient. An effective way to 

summarize each patient’s medical history is to form four time blocks for each 

medical factor with all corresponding records summarized over one, two, three 

years before the target year and a fourth time block containing averages of all 

earlier records. This produces a 215-dimensional vector of features 

characterizing each patient.

• Removing patients with no record. Patients who have no records before the target 

year are removed, since there is nothing on which a prediction can be based. The 

total number of patients left is 45,579.

• Splitting the data into a training set and a test set randomly. As is common in 

supervised learning, the population of patients is randomly split into a training 

and a test set. Since from a statistical point of view, all the data points (patients’ 

features) are drawn from the same distribution, we do not differentiate between 

patients whose records appear earlier in time than others with later time stamps. 

A retrospective/prospective approach appears more often in the medical literature 

and is more relevant in a clinical trial setting, rather than in our algorithmic 

approach. What is critical in our setting is that for each patient prediction we 

make (hospitalization/non-hospitalization in a target year), we only use that 

patient’s information before the target year.

• Normalization of the features. All predictors are standardized before fed into our 

algorithm.

• Balancing the training set. During training, we oversample the positive class in 

order to make the two classes balanced.

Experimental results and discussion

The data are distributed between m hospitals connected through a specific graph topology. 

The cPDS algorithm is considered to converge if the normalized residual, which is defined 

as the l2 norm of the difference between the cPDS and the sSVM parameter estimates, is 

small enough. Since we do not know the true parameter values, the solution from solving 

sSVM with a centralized (barrier) method is used as a substitute for the ground truth. We 

want to investigate the impact of two factors on the convergence of cPDS:

Brisimi et al. Page 8

Int J Med Inform. Author manuscript; available in PMC 2019 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. The number of hospitals m ∈ {5,10}.

2. The graph topology: (a) random graph generated by the Erdős–Rényi model, 

where two nodes are connected with a probability p; (b) cyclic graph, where 

nodes are connected in a closed chain; (c) fully connected graph, where each 

node is connected with every other node in the graph.

Table 2 shows the comparison between cPDS and the centralized barrier method, the 

SubGD, the IncrSub descent and the LAC scheme. For SubGD and IncrSub, we use the 

steplength rule for the diminishing stepsize2. We defined in Materials and Methods the 

various performance metrics we use. AUC for all methods is similar since they solve the 

same problem. Just to provide a baseline, we note that using a classifier based on a common 

risk factor used by cardiologists yields less accurate predictions. Specifically, using the 10-

year risk factor for cardiovascular disease developed by the Framingham heart study [20], 

and comparing that risk-factor to a threshold in order to classify, yields an AUC of 0.56.

The computation cost reported in Table 2 reflects effort at all nodes (or the single node for 

centralized schemes), so it depends on both the number of iterations and the number of 

nodes (hospitals). On one hand, the more hospitals there are, the longer the computation 

time. On the other hand, the more edges in the graph, the less time needed for convergence 

because information reaches all nodes faster. The communication cost measures the number 

of messages exchanged between nodes (each message is a vector in ℝd+1) and is mainly 

impacted by the number of edges in the graph, which also depends on the number of nodes. 

In the table, LAC is much more costly than cPDS because it uses a fully distributed 

approach with n nodes, whereas cPDS uses a graph with m ≪ n nodes.

Table 3 considers only cPDS and shows the convergence time and AUC for different 

combinations of m and graph topology. Fully connected graphs have the most edges, and 

thus the highest communication cost. But the number of iterations needed for convergence is 

not significantly smaller than others. In general, the more edges there are, the faster the 

algorithm converges, since the information exchange becomes faster3. We note that when 

the number of edges is “large enough,” the number of iterations needed for convergence 

stays stable, in other words, the convergence speed comes to be saturated. This is incarnated 

in the random graph topology. When m = 5, 4 edges lead to saturation; and for m = 10, 13 

edges are needed.

In Table 4 we summarize the important features identified by the cPDS algorithm. We run 

cPDS for each of the six settings of Table 3, averaged the coefficients corresponding to the 

various features (elements of the vector β) over the six runs, and report the features with the 

largest average coefficients. Note that all features are standardized, and thus it is reasonable 

to identify important features based on the magnitudes of the average coefficients.

2Following the steplength rule, the diminishing stepsize in k-th iteration is set as , where a0 is an initial 
value of the stepsize and ε a very small number.
3Here, we define the convergence speed via the number of iterations needed for convergence.
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It is interesting that the classifier identifies many of the diagnoses and health events that are 

major public health problems and which constitute common reasons for hospitalization with 

major economic implications. Hypertension, increasing in parallel with obesity, coronary 

artery disease, as it is identified indirectly by cardiac catheterization, heart failure – a true 

epidemic as the population is getting older, as well as, cardiac arrest are some of the most 

prevalent heart-related diagnoses. It is, therefore, important to establish the ability of these 

diagnoses to predict hospitalization and use such predictions as a tool to prevent the disease 

process.

CONCLUSIONS

In this paper, we focused on developing a federated learning model that is able to predict 

future hospitalizations for patients with heart-related diseases using EHR data spread among 

various data sources/agents. Our proposed decentralized framework, the cluster Primal Dual 

Splitting (cPDS) algorithm, can solve the sparse Support Vector Machine problem, which 

yields classifiers using relatively few features and facilitates the interpretability of the 

classification decisions. cPDS has improved convergence rate compared to various 

alternatives we present. The method is applicable to any binary classification problem with 

distributed data.

A major advantage of our formulation is the flexibility to address a range of settings, from 

fully-centralized to fully-decentralized. We formulate our motivating healthcare problem as 

a binary classification problem. Information processing can happen either at the level of the 

patients, e.g., through their smartphones, or at the level of the hospitals that process data of 

their own patients. cPDS is a general framework and can be applied to any problem that has 

the structure of minimizing two non-smooth terms. A possible extension of this work could 

be the analysis of cPDS when the graph that connects the agents is time-varying.
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APPENDIX

The sparse Support Vector Machine (sSVM) Problem

sSVM finds the classifier (β, β0), β ∈ ℝd, β0 ∈ ℝ, by solving the following problem:

(3)
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The ‖ ∙ ‖1 constraint in the above formulation is forcing the classifier β to be sparse. In the 

decentralized setting with m agents, problem (3) could be reformulated into the following m-

cluster splitting form:

where each agent (hospital) j holds nj samples (such that ), and 

. The parameters γji's are arbitrary nonzero scalar constants and serve as 

algorithmic parameters.

Definition 1

[Doubly stochastic matrix] W = [wij] is defined to be a doubly stochastic matrix generated 

by the following the Metropolis rule on :

Such rule allows each agent i to generate wij, ∀j, by only using local information (its own 

and neighbors' degree information). Note we always have −Im ≺ W ≼ Im. Let us also define 

L ≜ (Im − W) ⊗ Id+1 and . Here, ⊗ denotes the Kronecker product of matrices and 

Im the m × m identity matrix. We note U has the same null space as that of L.

Insights on the cPDS Algorithm

To get some insight on how the algorithm works, let us further write (2) into an even more 

compact form.

(4)

We note that Ux = 0 is equivalent to x1 = x2 = ⋯ = xm as long as the graph is connected.

We will make two more assumptions: (A3) The functions g: ℝm(d+1) → ℝ and f: ℝn → ℝ 
are both proper, closed, and convex. (A4) The solution set χ∗ is nonempty and bounded. 

Assumption (A3) imposes a minimal requirement on the objectives to conduct convex 

analysis. Assumption (A4) is obviously satisfied by the sSVM problem.

The augmented Lagrangian function of (4) is as follows
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where r and q contain the dual variables. The idea behind our proposed algorithm is based 

on minimizing the Lagrangian function with respect to the primal variables x and y and the 

dual variables r and q. However, when doing so, the x – update is not implementable in a 

fully distributed setting. This is the key limitation that cPDS is addressing and contributing 

to the literature.

Application of cPDS on ℓ1-Regularized Support Vector Machines

We will show the details of applying the cPDS framework to solve the distributed sSVM 

problem. Assume that n samples of data are distributed among m agents that want to 

collectively agree on a global classifier to separate the two classes. Each agent is holding nj 

samples and maintains a copy (βj, βj0) of the classifier parameters to be estimated. (βj, βj0) 

are updated in each iteration of the method, using data locally stored at the agent j as well as 

information that the agent receives from its neighbors. Let ϕji ∈ ℝd and lji ∈ ℝ be the 

features and the label of sample i in agent j accordingly, and fji be the corresponding hinge 

loss for that sample. gj contains the regularizers of parameters (βj, βj0) for each agent j. 
Define aji = (ljiϕji, lji), which we will use later. In every iteration each agent updates xj = (βj, 

βj0) ∈ ℝd+1, ,  and λj ∈ ℝd+1. Let us illustrate below the cPDS updates that 

each agent is performing. For simplicity, in the implementation, we use Θj = θjId+1 where θj 

is a positive scalar maintained by agent j locally. Next we describe the updates over each 

agent j.

x – update

(5)

The simple form of the non-smooth gj allows us to get a closed form solution for this 

problem. Problem (5) can be decoupled into two problems, one that finds , whose 

solution is given by the soft thresholding function, i.e., ∀t = 1, …, d,
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with = , and  and 

one that finds , which has as an optimal solution:

y- update

To deal with the second non-smooth term, the hinge loss function, we consider three cases 

for each term: 1 − yji > 0, 1 − yji < 0, 1 − yji = 0. For each agent j, we can obtain every entry 

of yj in parallel, i.e., for all i:

• Solve

If , then ; otherwise proceed to the next step.

• Solve

If , then ; otherwise proceed to the next step.

• .

q-update: ∀i
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λ-update

Last, let us mention that the storage needed to operate cPDS for sSVM following the above 

updates is O(nd), which is the same as the other methods listed in Table 1.
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Research Highlights

• A new federated learning framework is proposed that can learn predictive 

models through peer-to-peer collaboration of federated databases without raw 

data exchanges.

• Using the EHR, it is possible to accurately predict heart-related 

hospitalizations.

• The predictive model derived improves prediction accuracy over existing risk 

metrics.

• The predictive model is sparse, identifying the most informative EHR 

variables for hospitalization prediction.
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SUMMARY TABLE

What was already known What this study added to our knowledge

Electronic Health Records 
(EHRs) can potentially be used to 
assess a person’s health and 
predict future hospitalizations. 
Some comprehensive risk metrics 
exist (Framingham risk factor) to 
assess the risk of a major heart-
related episode.

Using the entirety of the EHR, it is possible to accurately predict an 
individual’s hospitalization for cardiac events in the following 
calendar year, improving upon the accuracy of existing risk metrics 
(such as the Framingham risk factor).

Centralized machine learning 
methods are typically used to 
train predictive models 
(classifiers) from data.

A new distributed learning framework has been developed to solve 
the learning (classification) problem in a setting where data reside 
with many agents, no raw data get exchanged, and the agents 
collaborate to jointly learn the model (classifier). The distributed 
algorithms is more scalable than centralized algorithms or earlier 
distributed methods.

The new learning framework is flexible to accommodate a range of 
data aggregation levels at the nodes, from each node holding a single 
data point (e.g., an individual EHR) to a setting where each node 
maintains many data points (a hospital maintaining all the hospital’s 
EHRs).

The sparse classifiers produced by our method automatically 
concentrate on relatively few features, facilitating the interpretability 
of the classification results.
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Figure 1. 
Support Vector Machines.
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Table 1

Theoretical comparison of various methods that solve the sSVM problem.

Method Decentralized? Per iteration complexity ε -accuracy iterations

Subgradient Descent × O(nd) O(1/ε2)

Incremental Subgradient × O(d) O(1/ε2)

Linear Average Consensus (LAC) √ O(n2 + nd) O(1/ε2)

Cluster Primal Dual Splitting (cPDS) √ O((n + m2)d) o(1/ε)
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Table 4

Important features.

Important features Average 
coefficients over 
6 runs

Age 224.03

Factors - 1 year the before target year Diagnosis of Heart Failure- 1 year before the target year 225.63

Admission due to Other Circulatory System Diagnoses- 1 year before the target 
year

204.14

Admission due to Heart Failure- 1 year before the target year 183.09

Admission due to a Percutaneous Cardiovascular Procedure- 1 year before the 
target year

168.53

Admission for Cardiac Defibrillator Implant with Cardiac Catheterization – 1 
year before the target year

145.78

Admission due to Cardiac Arrest- 1 year before the target year 144.96

Systolic Blood Pressure Measured -1 year before the target year 136.71

Factors - 2 years before the target year Diagnosis of Heart Failure- 2 years before the target year 162.20

Admission due to Other Circulatory System Diagnoses- 2 years before the 
target year

139.12

Admission due to Cardiac Arrest- 2 years before the target year 127.59

Admission due to a Circulatory Disorder Except Acute Myocardial Infarction -2 
years before the target year

184.57

Admission due to Cardiac Valve or Other Major Cardiothoracic Procedure- 2 
years before the target year

175.84

Diagnostic ultrasound of heart - 2 years before the target year 137.40

Admission for Acute and Subacute endocarditis - 2 years before the target year 129.07

Admission for Acute Myocardial Infarction - 2 years before the target year 120.73

Factors - 3 years before the target year Diagnosis of Heart Failure- 3 years before the target year 178.02

Admission due to Other Circulatory System Diagnoses- 3 years before the 
target year

158.67

Admission due to a Percutaneous Cardiovascular Procedure- 3 years before the 
target year

170.34

Admission due to Cardiac Arrest-3 years before the target year 155.05

Admission for Acute and Subacute endocarditis - 3 years before the target year 135.91
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