Skip to main content
. 2017 Nov 30;10(2):e1407. doi: 10.1002/wsbm.1407

Figure 1.

Figure 1

Mechanical modelling techniques across spatial scales. Each panel shows the unloaded, initial geometry, and simulated deformation of the cell or cytoskeleton. (a) a continuum mechanics model of an actin cytoskeleton cortex (red), intermediate vimentin filaments (green) and the nucleus (Reprinted with permission from Ref 10. Copyright 2011 Elsevier Ltd); (b) a dissipative particle dynamics simulation of a red blood cell passing through a narrow slit (Reprinted with permission from Ref 11. Copyright 2016 National Academy of Sciences); (c) a coarse‐grained brownian dynamics simulation of a small portion of the cell actin cytoskeleton to study the role of individual cytoskeletal proteins to the emergent mechanical behaviour of the cytoskeleton. The image shows snapshots of the cytoskeleton at different time points (Reprinted with permission from Ref 12. Copyright 2016 Nature Publishing Group).