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Abstract

Two theoretical ideas have emerged recently with the ambition to provide a unifying functional 

explanation of neural population coding and dynamics: predictive coding and Bayesian inference. 

Here, we describe the two theories and their combination into a single framework: Bayesian 

predictive coding. We clarify how the two theories can be distinguished, despite sharing core 

computational concepts and addressing an overlapping set of empirical phenomena. We argue that 

predictive coding is an algorithmic / representational motif that can serve several different 

computational goals of which Bayesian inference is but one. Conversely, while Bayesian inference 

can utilize predictive coding, it can also be realized by a variety of other representations. We 

critically evaluate the experimental evidence supporting Bayesian predictive coding and discuss 

how to test it more directly.

Introduction

From very early work in neuroscience, it has been noted that neural systems rarely represent 

measured quantities directly, as a human engineer might [1]. For instance, a digital camera 

simply records and transmits the light intensity at each pixel [2]. In contrast, the human 

retina preprocesses the signal using the surrounding pixels [3], and the recent past [4]. 

Activity in the visual cortex is also strongly modulated by the spatial and temporal context 

of stimuli [5] – to the extent that, for example, neurons in primary visual cortex (V1) even 

respond to illusory contours, stimulus features that are not physically present in the input but 

must be inferred from context [6]. Overall, there is much evidence that perception and, 

correspondingly, neural responses in sensory cortical areas are as influenced by predictions 

and expectations about stimuli as by the actual stimuli themselves [7, 8]. Indeed, while 

ascending feed-forward connections convey stimulus-related information [9], long-range 

horizontal and feed-back connections within and between different cortical areas provide a 

natural anatomical substrate for conveying such “contextual” effects. The principles for how 

these contextual signals are computed, integrated with sensory information and represented 

in neural activities have been formalised in two different, though closely related theoretical 

frameworks: predictive coding and Bayesian inference.
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Predictive coding

Predictive coding is based on the simple but powerful idea that instead of representing the 

input directly, it is often preferable to represent the prediction error, the difference (or 

sometimes the ratio [10]) between a sensory input and a prediction (Fig. 1A):

(1)

One reason for doing so is that, if the prediction is correct, no costly spikes need to be 

transmitted, thus improving efficiency [1, 2]. The spatio-temporal receptive fields of retinal 

ganglion cells offer a classical example of this; they use the past and the surround to predict 

the current light intensity in the centre, and then transmit the prediction error, the difference 

between the measured light intensity and the prediction [11, 12].

Bayesian inference

Uncertainty is a ubiquitous feature of neural processing: in many situations it is impossible 

to know the external, latent causes for incoming sensory stimuli. For example, when hearing 

leaves rustling in the night, it is vital to infer whether the latent cause was a dangerous 

predator, or simply the wind. The optimal strategy for computing such inferences is to 

follow the rules of probability, including Bayes’ rule [13]. Therefore, Bayesian inference of 

the latent causes of sensory inputs is one of the brain’s fundamental computational goals (in 

the sense of the first of Marr’s three levels [14]).

Formally, Bayesian inference uses the current input data to compute the posterior probability 

of each latent cause, P(latent|input), by multiplying the prior probability of each potential 

setting for the latents, P(latent), with the likelihood, P(input|latent), the probability of 

receiving the current sensory input under that setting of the latents:

(2)

There is considerable behavioural evidence that human and animal behaviour exploits 

Bayes’ theorem (Eq. 2) to achieve near-optimal performance in a variety of situations, from 

decision making [15], through cue combination [16], to motor control [17]. However, there 

is a much more limited understanding of how the dynamics of cortical (and potentially 

subcortical) circuits might implement Bayesian inference [18, 19].

Bayesian predictive coding

Although predictive coding and Bayesian inference agree upon the importance of combining 

external inputs with internal signals (predictions or priors), they are complementary in their 

focus and the type of data they naturally address. While predictive coding specifies that 

prediction errors, rather than raw predictions or inputs should be represented, it remains 

agnostic as to how predictions are computed in the first place and how prediction errors 

should ultimately be used. In contrast, Bayesian inference provides an optimal calculus for 
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computing predictions, but does not specify the underlying neural representation. 

Experimentally, as the examples in the previous sections illustrate, predictive coding 

describes neural responses, while Bayesian inference describes the end-result of 

computation: behaviour.

It thus seems natural to combine the strength of these two theoretical ideas, and use the 

latent variables inferred by Bayes’ theorem (specifically, a setting of latent variables that is 

representative of the posterior distribution in Eq. 2) to provide the predictions about the 

(current or future) sensory input required by predictive coding, for example as the 

expectation of the input based on our current inferences about the latent variables:

(3)

Neurons can then subtract this prediction from the actual input to form a prediction error, as 

suggested by Eq. 1. In turn, such a prediction error turns out to be a very useful input to a 

neural circuit implementing Bayesian inference, as it helps to guide network dynamics 

towards population activity patterns encoding values of the latent variables that better 

represent the sensory input [20]. A recent application of Bayesian predictive coding is the 

“free-energy principle” [21] which can be seen as a special case, using a specific class of 

dynamical probabilistic generative models, and a specific class of variational filtering 

inference algorithms.

The most prominent experimental support for such a combined Bayesian predictive coding 

scheme comes from the relative suppression of responses in V1 by extra-classical receptive 

field stimuli [22]. First, as a bar is lengthened beyond a cell’s classical receptive field, its 

response falls [23, 20]. Second, the response to a grating presented in the classical receptive 

field depends on the presence of oriented structure in the surround: having the same 

orientation in the centre and surround suppresses the response [24, 20]. In both these cases, 

the centre and the surround form a coherent structure, which allows the inferred latent 

variables to better model the presented image stimulus, and so prediction errors at the lower 

levels become smaller – thus accounting for suppressed V1 activity.

At the level of BOLD signals, V1 was activated less strongly by a coherent line drawing, 

while higher order visual cortices (the lateral occipital complex, LOC) were more activated 

by the coherent than the incoherent stimuli (Fig. 2A) [25]. Predictive coding accounts for 

these effects by hypothesising that V1 represents the difference between sensory input and a 

higher-level prediction, whereas the LOC represents the predictions themselves. Thus, as 

above, when larger-scale structure is present, prediction errors are lower, implying 

suppressed activity in V1, whereas the increased activity in LOC may be a signature of the 

improved higher-level predictions [20, 25]. It is interesting to note, however, that more direct 

electrophysiological measurements of visual cortical responses, using stimuli with more 

carefully controlled statistics, found that activity in V1 remains largely unaffected by 

manipulations of the level of naturalistic structure in the stimulus [32], even as activity in V2 

substantially increases for more naturalistic stimuli (Fig. 2B) [26].
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Furthermore, in the temporal domain, in many brain areas including cortex and retina, there 

are large, brief “transient” increases in activity following unexpected changes (including 

stimulus onset, e.g. [28]; Fig. 2C). This has been most extensively studied in primary 

auditory cortex, using a series of tones of which most have the same frequency, with a few 

“oddballs” of a different frequency. Event related potentials measured using 

electroencephalography display mismatch negativity (MMN), an elongation of the response 

to these oddball stimuli (Fig. 2D) [33, 29]. Predictive coding accounts for these effects by 

noting that, at stimulus onset, the unexpected stimulus cannot be predicted, giving rise to a 

large prediction error. This prediction error is then rapidly eliminated as new observations 

are incorporated into the predictions [29, 34].

Predictive coding: an algorithmic motif, not a computational goal

While it is natural to combine predictive coding with Bayesian inference, whereby the 

prediction is based on an inferred latent variable and the resulting prediction error is used to 

improve further predictions, this is not the only way to compute a prediction and to make use 

of a prediction error signal. Indeed, using other types of prediction, predictive coding can 

yield a useful representation that can serve a multitude of other computational goals.

First, the retina is required to transmit the entire visual input through an extremely narrow 

bottleneck: only around 106 cells [35] firing at only around 1 Hz [36]. As such, the retina 

must maximize the information about the image present in the output signal by reducing 

redundancy [11]. In certain regimes (though see below), this objective results in a predictive 

coding scheme, in which costly spikes are transmitted only when predictions based on the 

surround or recent past are violated, meaning that static scenes, or flat blocks of colour are 

encoded cheaply, thus reducing the high level of redundancy that is inherent in the similar 

responses of nearby photoreceptor cells [12].

Second, a critical problem faced by sensory systems is that self-generated signals (e.g. 

motion) can dramatically alter sensory input, swamping the more important externally 

generated signals. To compensate for these self-generated signals, it is suggested that an 

efference copy (i.e. a copy of motor commands) is sent to sensory areas, which allows the 

effect of self-generated signals to be predicted, and subtracted from the sensory signal, 

leaving only the externally generated signals [37]. These effects are particularly evident in 

the observation that one cannot tickle oneself [38], in the shift of visual receptive fields in 

anticipation of a saccade [22], and in the interaction between self-generated electrical signals 

and electrosensation in the mormyrid electric fish [39].

Third, cortical circuits must typically encode continuous quantities in the external world 

(such as trajectories of objects) using temporally punctate, all-or-none spikes. In order to 

make this analogue-to-digital conversion efficient, it has been suggested that the membrane 

potential dynamics of cortical neurons implement a predictive coding scheme, such that 

membrane potentials represent prediction errors and spikes are generated only when 

prediction errors exceed a threshold [40, 41, 42]. For self-consistency, the prediction error 

represented by membrane potentials is the difference between the continuous signal that 

needs to be represented and its representation in the spiking activity of the network itself. 
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Such a predictive coding scheme results in biophysically plausible leaky integrate-and-fire 

membrane potential dynamics and Poisson-like spiking patterns often observed in cortex.

Fourth, animals need to learn to select actions that yield high long-term rewards (an 

objective formalised by reinforcement learning [43]). One powerful solution to this 

computationally challenging problem is to maintain predictions about expected rewards, and 

compute a reward prediction error, describing whether an action gave rise to more or less 

reward than expected. Such a prediction error can be used to increase the propensity to 

perform actions resulting in higher-than-expected rewards, and also to update future 

predictions [44, 45, 46]. Neurally, there is strong evidence that this reward prediction error is 

instantiated by dopamine [47], which has indeed been shown to be a potent modulator of 

synaptic plasticity [48].

In summary, predictive coding emerges and performs a useful function not only in the 

service of Bayesian inference, but also when achieving a wide variety of different 

computational goals: maximizing information transmission, cancelling the effects of self-

generated actions, representing continuous quantities using spikes, and performing 

reinforcement learning. As such, we suggest that predictive coding should be understood not 

as a computational goal in and of itself, but as an algorithmic motif (i.e. at the second of 

Marr’s three levels [14]): a common pattern that can emerge in neural circuits subserving 

fundamentally different computations.

Even the computational goals for which predictive coding seems a natural fit are not always 

best served by it – and indeed, the brain often seems to use other strategies to achieve these 

goals. For instance, in retinal ganglion cells, predictive coding is the optimal strategy for 

transmitting information by reducing redundancy when light levels are high. However, when 

light levels are reduced and so the signal-to-noise ratio in the input is lower, the optimal 

strategy is the opposite: to sum the centre and surround [49]. This occurs because computing 

the prediction error by subtracting two noisy signals (from the centre and surround) 

increases the noise in the output signal. At high light levels, the effect of this increased noise 

is outweighed by the benefits of redundancy reduction given by predictive coding, while at 

low light levels it is more important to preserve whatever signal is there, and it is therefore 

detrimental to use a predictive coding strategy. Indeed, in low-light the retinal surround 

becomes facilitating, the opposite of a predictive coding strategy [50]. Similarly, the 

computational goal of reinforcement learning can be achieved by several algorithms that do 

not compute and represent prediction errors per se [51, 52], and whether prediction error-

based or these other algorithms should be used depends on environmental and neural 

constraints [53].

Bayesian inference without predictive coding

Just as other computational goals, Bayesian inference can also be performed by many other 

neural algorithms and representations which do not use predictive coding (Fig. 1B-D). 

Perhaps the most obvious neural representation for probabilities is simply to use neural 

firing rates themselves, such that the firing rate of each neuron represents the posterior 

probability of one possible value (or a range of values) of the latent variables, which can be 

Aitchison and Lengyel Page 5

Curr Opin Neurobiol. Author manuscript; available in PMC 2018 March 05.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



computed following Bayes’ rule (Eq. 2) by multiplying bottom-up inputs, representing the 

likelihood, with top-down biases, representing the prior (Fig. 1B) [19]. As multiplication is 

often thought to be an operation that is harder for neurons to implement than summation, it 

is preferable to work with a tightly related code in which firing rates represent log-

probabilities [19] (Fig 1C). The best known example of such a log-probability representation 

is probabilistic population codes [54]. Both probability and log-probability codes are special 

cases of neural responses representing the parameters of the posterior probability 

distribution [18]. There are several other variants of such parametric representations (e.g. 

[55]), leading to different algebraic forms of integrating inputs with predictions, but they do 

not generally lend themselves to predictive coding.

An alternative approach is to use “direct variable coding”, whereby neural activity directly 

represents latent variables. For instance, in sparse coding models of visual images (or image 

patches), the latent variables typically correspond to the intensity with which a visual feature 

(such as an oriented Gabor filter) is present in the image [56]. Thus, in a direct variable 

coding representation, neural responses directly encode these intensities: no response 

implies the feature represented by the neuron is absent, a small or a large response means the 

feature’s intensity is low or high, respectively. (Note that predictive coding schemes also use 

a one-to-one correspondence between latent variables and neurons, but they define neural 

responses as representing differences between inferred and predicted variable values [20], 

rather than the inferred values directly.)

Neural responses in direct variable encoding schemes either deterministically converge to 

the single best setting of the latent variables [56], or stochastically sample multiple different 

plausible settings for the latents [18, 57, 58, 59] (Fig. 1D). Interestingly, a prediction error-

like signal was first used for Bayesian inference in the context of such direct variable coding 

models. There, it was computed as part of the input to individual neurons and used to change 

their output iteratively so that they represented progressively better explanations of the 

current input [56]. Thus, merely computing prediction errors does not imply that there must 

be cells whose responses directly represent these prediction errors: in fact, self-consistent 

neural circuit dynamics can be constructed using pure direct variable coding [56]. In 

contrast, Bayesian predictive coding models rarely use purely prediction error-based 

representations, instead they typically use a hybrid scheme combining a population of direct 

coding neurons (which facilitate the computation of predictions), with an additional 

population of predictive coding neurons [20].

Pure direct coding models have enjoyed great success at a number of challenging supervised 

and unsupervised learning tasks, and their dynamics typically take a biologically plausible 

form, requiring neurons to integrate their inputs linearly and apply a spiking nonlinearity 

[60] or (a possibly stochastic) threshold [61, 62]. In line with the intuition that priors bias 

percepts towards expectations based on previous experience [63, 64], the resulting 

population activities exhibit an integration of top-down (conveying priors) and bottom-up 

inputs (conveying stimulus-related information) that often takes the form of a simple 

weighted average of the a priori expected value and that suggested by sensory evidence (Fig. 

1D). The integration of different (independent) sensory sources of evidence can similarly 
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result in a simple weighted averaging of inputs, again as has been observed at the level of 

perception [16].

Several predictions of direct variable coding models are well matched by experimental data. 

First, the weighted averaging of prior expectations and sensory information in population 

activity has been observed at the level of BOLD signals [65]. Second, the direct coding of 

sparse latent causes of natural images accounts for the localised and orientation-tuned 

receptive fields of V1 simple cells, with extensions of the same model – all using direct 

variable coding – also accounting for complex cell receptive fields [66, 67]. Third, as 

classical direct coding theories assume that neurons deterministically represent the single 

best setting of latent variables (the one that has the highest posterior probability), the 

responses they predict to any particular input are static (at least asymptotically) and thus 

cannot account for the ubiquitously observed variability of neural responses. However, a 

stochastic extension of these theories, in which the activity of neurons represents latent 

variable values that are sampled from the posterior distribution [18], accounts for task- [59] 

and stimulus-dependent variability [58] and for the similarity of evoked and spontaneous 

activities in V1 [57].

Finally, different combinations of these representations are also possible: for example, a 

generalisation of sampling-based stochastic dynamics with membrane-potential based 

predictive encoding of multiple simultaneous samples has been suggested to improve upon 

the time-efficiency of simple sampling-based direct variable codes [68].

Revisiting the evidence

Having understood the distinction between predictive coding and Bayesian inference, and 

the different features of experimental data they account for, it is useful to revisit the evidence 

that is traditionally considered to specifically support their combination. In particular, we 

ask whether these data exclude the possibility of Bayesian inference being implemented by a 

pure direct variable code.

A staple hallmark of predictive coding is that “interesting” or “surprising” stimuli evoke 

higher responses than expected ones [20, 29, 34]. However, some of these effects could be 

explained by attention instead, by which neural resources are directed towards more 

interesting or surprising stimuli, such that responses towards these stimuli are typically 

higher than towards unattended ones [69, 70]. Note that while attention and predictive 

coding may give rise to similar neural responses, they are fundamentally different in that 

top-down attention depends on, and can thus be modulated by the task, whereas prediction 

errors are part of a Bayesian computation so should not depend on the task (to the extent that 

the statistics of sensory inputs remain unchanged across tasks) [71]. Moreover, visual 

attention is focused at only one (or a very small number of) locations at a time [72], whereas 

prediction errors can be distributed arbitrarily across the visual field.

It may also be possible to account for these effects in Bayesian models using direct variable 

coding, rather than predictive coding, by noting that the same situations that result in higher 

prediction errors also typically evoke higher levels of uncertainty in the latent variables 
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responsible for the predictions. Under a sampling-based direct coding scheme, this 

heightened uncertainty translates into higher levels of neural response variability [18, 58]. 

Indeed, less naturalistic images (due to the application of a small aperture, or phase-

scrambling) evoke more unreliable responses in V1 [73, 32]. In turn, when a signal is passed 

through a non-linearity (in our case this could be the spiking non-linearity, Fig. 2F, or the 

BOLD response non-linearity [74]), an increase in the variance of the original signal will 

also change the mean of the transformed signal. Thus, the increased uncertainty due to an 

unexpected stimulus may also account for larger mean responses as measured 

electrophysiologically or in the BOLD signal.

While large transients following stimulus onset are commonly considered to be another 

signature of predictive coding [75], they have also been accounted for in a model using pure 

direct variable coding [31] (Fig. 2G). This model uses “non-equilibrium” (technically, “non-

normal”) population dynamics that are particularly efficient for implementing sampling-

based direct variable codes [76], and have been suggested to capture essential aspects of the 

dynamics of cortical circuits, due to the interactions between separate populations of 

excitatory and inhibitory neurons [77]. Large transient responses to any sharp transition 

(including stimulus onset) are a fundamental characteristic of such non-normal dynamics 

[78].

Finally, extra-classical receptive field effects, such as surround suppression, have also been 

explained in models using another canonical algorithmic motif: divisive normalization [79]. 

In divisive normalization, cells compute a ratio between their direct (bottom-up) inputs and 

the summed activity of a pool of neurons. (This is different from divisive predictive coding 

in that all neurons use a single global divisor, rather than each neuron’s activity being 

divided by its own specific prediction.) Divisive normalization can describe a range of 

effects, including saturation, cross-orientation suppression, and surround suppression [79], 

and it is modulated by attention [80], locomotion [81], and even disease [82]. In the context 

of Bayesian computations, divisive normalization implements inference in a powerful 

statistical model of natural images [83, 84, 85], which, critically, assumes a direct variable, 

rather than a predictive code. Indeed, inference in such a model not only accounts for the 

extra-classical receptive field effects commonly characterised by simple laboratory stimuli 

[84, 58], but also the degree of surround suppression observed in response to natural images 

[85].

In summary, while predictive coding is an attractive algorithmic idea that accounts for a 

remarkable range of phenomena, the experimental evidence for it seems inconclusive in the 

sense that it does not rule out Bayesian inference with a direct variable code, potentially in 

combination with a variety of non-probabilistic processes including attention and adaptation.

Conclusions

Our review suggests three major directions for future research. First, we have suggested that 

predictive coding, like divisive normalization, can be used to implement many different 

computations, and thus should be understood as a neural motif: an algorithmic step that 

emerges in a variety of different brain areas and computations. While the study of motifs is 
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well-developed in molecular biology [86], it remains little studied in neuroscience 

suggesting a potentially fruitful direction for future research. Second, we have seen that 

while the evidence in favour of any particular implementation of Bayesian inference is 

inconclusive, these implementations do make different predictions that could be addressed 

experimentally. Examples include the singular focus of attention, compared to the 

potentially broad distribution of prediction errors, and the fact that predictive and direct 

coding make opposite predictions about the effect of prior expectations: with direct coding 

suggesting that a weighted average of expectations and sensory data is taken, and predictive 

coding suggesting they are subtracted. Third, in order for (pure) predictive coding to remain 

a viable candidate algorithm for Bayesian inference in the brain, it will be necessary to show 

that it can account for the data that direct variable codes have already successfully explained, 

such as the stimulus-dependent variability of cortical responses. Alternatively, if hybrid 

direct-predictive coding schemes are pursued, further work will need to identify phenomena 

that are specific to predictive coding neurons, and it will be necessary to clarify how the 

functional division between direct and predictive coding neurons maps on to anatomically 

and physiologically defined cell types in the cortex.
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Highlights

– Predictive coding occurs in many different computations not just Bayesian 

inference

– Bayesian inference can be, but does not need to be implemented by predictive 

coding

– Data suggesting Bayesian inference is achieved by predictive coding is 

inconclusive

– Making predictions does not necessarily imply predictive coding
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Figure 1. 
Neural arithmetics corresponding to different representational schemes. A. Predictive 

coding: the difference between the input and a prediction is computed, and the resulting 

prediction error is represented in the response of neurons. B. Probability coding: the 

response of each neuron represents the posterior probability associated with a particular 

value (or range of values) of the latent variable(s). Thus, to compute their firing rate, neurons 

need to multiply their inputs, representing the likelihood, and the prediction, representing the 

prior. C. Log-probability coding: the response of each neuron represents the logarithm of the 

posterior probability associated with a particular value of the latent variable(s), thus it needs 

to sum its inputs, representing the log likelihood, and the prediction, representing the log 

prior. D. Direct variable coding: the response of each neuron represents the value of a 

different latent variable. The resulting population codes typically interpolate between what 

would be dictated by inputs or predictions alone.
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Figure 2. 
A. Stimuli having progressively more high-level structure (top) give rise to less BOLD 

activity in human V1 (bottom left), and more activity in higher-level visual areas (lateral 

occipital complex, LOC, bottom right). Adapted from [25]. B. Stimuli (right) matching low-

level (frequency structure) and high-level structure in natural images [26, 27] evoke near-

identical average responses in macaque V1 (top left; if anything, the stimuli with higher-

level structure gave slightly higher responses), despite activity in V2 increasing substantially 

(bottom left). The horizontal black bar denotes stimulus presentation, the grey bar is a noise 

control. Adapted from [27]. C. Stimulus-induced transients in macaque V1 responses at the 

onset of a static visual stimulus presented between 0–400 ms. The magnitude of the transient 

scales with contrast (colour code). Adapted from [28]. D. Mismatch negativity (MMN) in 

human auditory cortex. Two types of auditory tones were presented, a standard stimulus at 

1000 Hz that was presented 80% of the time, and a deviant stimulus at a variety of 

frequencies that was presented 20% of the time. The event-related potentials for the two 

stimuli (black: standard 1000 Hz, red: deviant 1032 Hz) diverge around 200 ms after 

stimulus onset (S, horizontal black bar). Adapted from [29] using data from [30]. E. 
Nonlinear signal transformations result in changes in mean output even when only the 

variance of the input changes. Bottom: two membrane potential distributions with identical 

means, but one with less variability (red) than the other (blue). Top-left: firing rate 

nonlinearity mapping from membrane potential (x-axis) to firing rate (y-axis). Right: the 

resulting distributions over firing rates, and their means (horizontal lines). Notably, while the 

mode of the broader (blue) distribution is smaller than the mode of the narrower (red) 

distribution, the long tail of the broader distribution increases the mean above that of the red 

distribution. F. Stimulus-induced transients in a sampling-based direct variable coding model 
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of V1 using non-equilibrium dynamics. The magnitude of the transient scales with contrast 

(colour code). Adapted from [31], c.f. panel C.
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