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Abstract

In a rare life-threatening disease setting the number of patients in the trial is a high proportion of 

all patients with the condition (if not all of them). Further, this number is usually not enough to 

guarantee the required statistical power to detect a treatment effect of a meaningful size. In such a 

context, the idea of prioritizing patient benefit over hypothesis testing as the goal of the trial can 

lead to a trial design that produces useful information to guide treatment, even if it does not do so 

with the standard levels of statistical confidence. The idealised model to consider such an optimal 

design of a clinical trial is known as a classic multi-armed bandit problem with a finite patient 

horizon and a patient benefit objective function. Such a design maximises patient benefit by 

balancing the learning and earning goals as data accumulates and given the patient horizon. On the 

other hand, optimally solving such a model has a very high computational cost (many times 

prohibitive) and more importantly, a cumbersome implementation, even for populations as small 

as a hundred patients.

Several computationally feasible heuristic rules to address this problem have been proposed over 

the last 40 years in the literature. In this article we study a novel heuristic approach to solve it 

based on the reformulation of the problem as a Restless bandit problem and the derivation of its 

corresponding Whittle index rule. Such rule was recently proposed in the context of a clinical trial 

in Villar et al (2015). We perform extensive computational studies to compare through both exact 

value calculations and simulated values the performance of this rule, other index rules and simpler 

heuristics previously proposed in the literature. Our results suggest that for the two and three-

armed case and a patient horizon less or equal than a hundred patients, all index rules are a priori 

practically identical in terms of the expected proportion of success attained when all arms start 

with a uniform prior. However, we find that a posteriori, for specific values of the parameters of 

interest, the index policies outperform the simpler rules in every instance and specially so in the 

case of many arms and a larger, though still relatively small, total number of patients with the 

diseases. The very good performance of bandit rules in terms of patient benefit (i.e. expected 

number of successes and mean number of patients allocated to the best arm, if it exists) makes 

them very appealing in context of the challenge posed by drug development for rare life 

threatening diseases.
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1 Introduction

Developing specific statistical learning methods for drug development for rare diseases is 

one of the most pressing modern clinical needs. Answering scientific questions for rare 

conditions has long been limited mainly by the unavailability of enough patients for running 

standard clinical trials. The number of patients required to run a trial is strongly influenced 

by regulatory agencies, such as the FDA in the U.S.A or the EMA in Europe, and ethical 

standards as those summarised in the Belmont report. The traditional rationale behind this 

minimum number comes from embracing as the main goal of the trial that of maximising the 

learning about the treatments under consideration.

The way in which such a learning goal is implemented in practice is as follows: physicians 

agree on an improvement over the control response rate Δp (or treatment effect) that would 

be beneficial to establish. Then, given that patients are randomly assigned to treatments in a 

balanced fashion, the trial’s number of participants is determined as that which ensures 

controlling for the probabilities rates of both a false positive (Type I error) and a true 

positive (Power) associated with the chosen treatment effect Δp. These rates typically are 

(two-sided) 5% and at least 80%, respectively. The logic behind this widespread paradigm is 

that because a number of patients much larger than those in the trial stands to benefit from 

the resulting learning provided by the trial, then its design should ensure conclusions drawn 

by the end of it are carefully controlled.

However, for rare conditions it occurs that the size of the trial that meets these requirements 

is either larger than the current estimation of the patient population (or patient horizon) or it 

would only be achieved after an excessively long recruitment period (after which the 

learning from the trial would most likely be rendered irrelevant for patients with the 

disease). In other words, the learning goal as a guide to trial design is usually either 

impossible or absolutely impractical to achieve in rare diseases populations. There is 

therefore a real and compelling need for a new and more adequate paradigm for generating 

clinical evidence and making treatment decisions for small populations, particularly when 

the disease is life-threatening. Such a need is starting to be acknowledged by institutions 

worldwide, e.g. the European Union has recently funded three international, 

multidisciplinary research consortia aiming at the development of efficient statistical 

methods for the assessment of the safety and/or efficacy of a treatment for small population 

groups. More importantly, this need will become increasingly pressing as genomic 

approaches continue to advance and disease categories are fragmented into finer and finer 

entities.

If such a controlled learning goal is not feasible, then a way out of the conundrum is to 

change the goal. A sensible goal of a trial involving a rare life-threatening condition is, 

instead of learning in a highly controlled way, to learn enough so as to effectively treat as 

many patients in the population as possible. In that context, the relevant statistical question is 

how much learning is necessary to best treat the whole patient population, thus moving the 

focus of the trial away from that of maximum learning with a controlled confidence level. 

The resulting paradigm provides an alternative and feasible method to evaluate new 
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therapies for rare and fatal diseases and to balance the need for experimentation with the 

desire to guide treatment selection towards the best treatment of a population.

Implementing such a dual learning-earning goal into a trial can be done in several ways. In 

the first place, it depends on the way the learning and earning phases are envisaged. In 

Cheng et al (2003) it is assumed that the learning and earning are two distinct phases whose 

sizes are decided a priori of making any observation and that the learning phase takes the 

form of a balanced randomized trial. Therefore, the optimal design question reduces to 

determining the size of the experimenting stage n such that mean proportion of successes in 

the trial and the remaining population is maximised. Assuming equipoise regarding the 

therapeutic effectiveness of the treatments involved they show that the optimal sample size 

for a randomized trial has an order of magnitude of  where N is the patient horizon.

If, however, the size of the learning phase n is not fixed in advance and the question of 

balancing learning and earning is asked after every patient (i.e., the approach is fully 

sequential) then the advantages, in terms of patient benefit, are the highest yet treatment 

allocation, as determined by decision analysis, is deterministic, tedious to implement and 

computationally intensive. Examples of papers aiming at overcoming these limitations 

which are relevant to this article, include Cheng and Berry (2007), Villar et al (2015) and 

Berry (1978). In the first two papers authors aim at introducing randomization to bandit 

based strategies. In Cheng and Berry (2007) the authors introduce randomization to 

decision-analytic rules by determining optimal allocation probabilities that deviate from a 

balanced randomized scheme and have a minimum value of r, with r ≤ 1/K and K being the 

number of treatments in the trial. In Villar et al (2015) the authors propose a fully 

randomized, adaptive group allocation procedure based on the optimal solution to the classic 
infinite horizon bandit problem. In Berry (1978) the computational and implementation 

difficulties are addressed by proposing a near-optimal heuristic strategy based on the so 

called Feldman’s rule. For a recent review paper and a discussion of other limitations to the 

application of these decision-analytic approaches known as bandit models to clinical trial 

design see Villar et al (2015).

In this paper we focus on overcoming the computational limitations of bandit-based designs 

and on the performance evaluation of index-based heuristics. We extend the ideas presented 

in Villar et al (2015) and relate then to the work in Berry (1978). We explain how to derive 

near optimal heuristics for the finite-horizon Bernoulli Multi-armed Bandit problem based 

on a Restless bandit reformulation of the problem and on the Whittle and Gittins indices. We 

illustrate how this approach manages to reduce the suboptimality gap (when compared to 

that of Feldman’s approach in Berry (1978)), being computationally feasible and relatively 

simple to interpret and implement. We compare it with other heuristics and we perform 

various exact and simulated calculations in different contexts to evaluate when their 

application is more appropriate.
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2 The Whittle Index Approach

2.1 Background

Consider a patient population of size N and K experimental treatments and a control 

treatment (either standard of care or placebo, represented by k = 0) under study. Patients are 

assigned sequentially to treatments and the outcome of a patient j allocated to some 

treatment k is observed before making the treatment decision for patient j + 1. Further, for 

simplicity, suppose that the response to treatment is random and binary, i.e. is either a 

success (positive) or a failure (negative). Denote the probability of a success using treatment 

k by pk.

The optimization problem is to find a treatment allocation rule that specifies which arm, out 

of the K + 1 possible ones, will be received by each of the N patients so as to achieve a 

chosen goal. Such a rule can be expressed by means of a deterministic sequence {ak,j, j = 1,

…, N k = 0,…, K}, with ak,j being a binary indicator variable denoting whether patient j is 

assigned to treatment k (ak,j = 1) or not (ak,j = 0). Naturally, given that only one treatment 

can be allocated per patient we impose that  for every patient j. Randomization 

of the allocation sequence could be considered by allowing for the definition of allocation 

probabilities as P (ak,j = 1) but as it turns out that the optimal policy is deterministic we shall 

not consider randomized policies in this paper.

Suppose that the objective of the problem is to maximize the mean proportion of positive 

responses in these N patients. If every pk is known, then all the information to make a 

decision is available before the start of the trial and the way to maximise the mean 

proportion of successes is to allocate all patients to the treatment with the highest success 

rate, in which case the maximum mean expected proportions of successes is p* where p* = 

maxk:0,…,K pk. If the pk’s are unknown, as patients are treated information about the 

treatments will be accumulated which may be used to better treat patients appearing later in 

time. A unified way to handle such accumulating information is to, following a Bayesian 

approach, quantify the information about every pk in the form of a probability distribution 

and then define an optimal treatment allocation design as that which maximizes the 

proportion of successes over the N patients averaged over pk .

Let the outcome of every patient j under any treatment arm k be a K + 1-dimensional 

random sequence {(X0,j, X1,j, …, XK,j j = 1,…, N} out of which only one element can be 

observed, i.e. that of the allocated treatment arm: 

where τ represents the treatment allocation rule. Applying a decision-analytic approach and 

considering the utility of the design to be the proportion of successes in the N patients, the 

value of a design τ is,

(1)
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where π is the joint prior distribution of (p0, p1, …, pK), which for Bernoulli independent 

arms is the product of Beta distributions Be(a, b). And naturally, the optimization problem is 

therefore, to find the design τ* such that

(2)

where  is the family of admissible designs, i.e. all the feasible sequences of treatment 

actions  for all j and k.

Equation (2) defines a finite-horizon “K + 1-armed bandit” problem whose exact optimal 

solution can only be found by applying a backwards induction algorithm to solve its 

associated dynamic programming formulation. This optimal procedure is computationally 

very expensive and its cost explodes as the number of experimental arms K and the 

population size N grow, being unfeasible for instances as small as K = 2 and N ≥ 100. 

Moreover, its implementation is highly difficult since it has to specify a treatment to use in 

all possible population outcome histories, i.e. 2(K + 1)N situations. This is the main reason 

why approximate and simpler methods to solve these problems have long been studied and 

proposed in the literature.

2.2 Index based strategies: the Gittins index

An elegant and computationally tractable solution to a variant of problem (2) that considers 

an infinite number of patients, i.e. N = ∞, and therefore, for the sake of tractability of the 

value function, includes a discount factor 0 ≤ d < 1 to weigh the observed successes across 

patients, was first obtained by Gittins and Jones (1974). This was a significant breakthrough, 

as the result brings to the realms of computational feasibility instances of the multi-armed 

problem that were not available before via the traditional approach. The main reason for that 

is that the solution to each of those K + 1 two-armed problems is significantly 

computationally cheaper and, as shown in Bellman (1956), it has a simple structure 

expressible in terms of an index function which depends only on the total observed number 

of successes s and failures f of the unknown process. Such function is obtained by 

comparing a known arm with success rate p to the unknown arm with expected success rate 

s/(s + f) and returning the value of p, denoted by p* that would make the decision maker 

indifferent between these two arms. This p* value is the index function which can be used 

for expressing the optimal policy as a threshold policy: allocate patients to the unknown arm 

as long as s/(s + f) > p*. Gittins and Jones (1974) showed that Bellman’s index function can 

be used to express the optimal solution to the K + 1-armed infinite discounted bandit 

problem: simply allocate patient j to the treatment with the highest Gittins index p* (for a 

given pair of s and f) at time t.

Specifically, the calibration method uses Dynamic Programming to approximate the Gittins 

index values based on this idea, as explained in Gittins and Jones (1979). This index 

computation method solves, for a grid of p values (the size of which determines the accuracy 

of the resulting index values approximations), the following problem
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(3)

The set of values of (s, f) (i.e. successes and failures observed in the unknown arm) and p for 

which the two expressions in the maximum in (3) are equal imply that the Gittins index 

value for an arm with a prior Be(s, f) and discount factor d is p.

Calculations of the Gittins indices have been reported in brief tables as in Gittins (1979). 

Improvements to the efficiency of this index computing method have since been proposed by 

Katehakis and Veinott Jr (1985); Katehakis and Derman (1986). Table 1 reports values of the 

Gittins index for different combinations of (s, f) and d = 0.999.

2.3 The Whittle index

Of course, patient populations in general (not only those in rare diseases) are never of an 

infinite size, so the infinite-horizon assumption is not a sensible one. For the rare diseases 

case, we are interested in the case where N is not only finite but relatively small to run a 

traditional randomised trial to select a best treatment. Thus, the relevant problem for optimal 

treatment allocation designs is as defined in (2), with a finite value of N. However, the 

Gittins Theorem does not apply to this case, and thus the index function as defined for the 

infinite-horizon variant does not exist (see Berry and Fristedt, 1985). Indeed, a solution 

could in theory be obtained via DP, but, for reasons already stated, this would be impractical 

even for relatively small-scale scenarios. In the infinite-horizon problem, when making the 

treatment decision for any patient j there is always an infinite number of possible sample 

observations to be drawn from any of the treatments. This is no longer the case in a finite-

horizon problem, and the value of an outcome history is not the same when the treatment 

allocation process is about to start than when it is about to end. The finite-horizon problem 

analysis is thus more complex, because these transient effects must be considered for the 

characterization of the optimal policy.

Specifically, a cut-off value similar to the Gittins index will depend on the number of 

patients treated (or equivalently, the number of patients remaining in the population to treat). 

Therefore, for every patient j we could compute an index value that will now depend not 

only on the number of observed successes and failures per arm but also on the number of 

patients treated. Such an index could be computed using the calibration method solving, for 

a grid of p values, the following DP problems

(4)
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where in this case, the set of values of (s, f) (i.e. successes and failures observed in the 

unknown arm), N, j and p for which the two expressions defining the maximum value of 

 in (4) are equal determine that the finite-horizon index value for an arm with a 

prior Be(s, f), N − j patients to treat and discount factor d is  For instance, for the last 

patient in the trial, i.e. for j = N − 1, the associated index value would just be 

the treatment’s posterior mean. Note that, if d < 1 then  whereas if d = 1 

then 

In fact as mentioned in Villar et al (2015), such index policy can also be derived based on an 

equivalent reformulation of (2) in which the information state of each arm is augmented, 

adding to the number of observed successes and failures per arm, the number of remaining 

patients that can be assigned to the K + 1 treatments. Such a reformulation is an infinite-

horizon Restless MABP (Nino-Mora, 2005). The restlessness of bandit models refers to the 

fact that each arm’s information state continues to evolve even when not selected for being 

active. In this particular case, the fact that the number of remaining patients is part of every 

arm’s information state and this varies for all arms (allocated or not) over the trial, 

introduces the restless feature first proposed by the seminal work by Whittle (1988). Index 

strategies for Restless MABP do not always exist and if they do, they are not necessarily 

optimal. Whittle (1988) deployed a Lagrangian relaxation and decomposition approach to 

derive an index function, analogous to Gittins index, which has become known as the 

Whittle index. Whittle further conjectured that the index policy for the restless variant enjoys 

a form of asymptotic optimality (in terms of the ETD rewards achieved), a property later 

established by Weber and Weiss (1990) under certain conditions. Typically, the resulting 

heuristic has been found to be nearly optimal in various models.

In general, establishing the existence of an index function for a restless MABP (i.e. showing 

its indexability) and computing it is a tedious task. In some cases, the sufficient indexability 

conditions (SIC) introduced by Niño-Mora (2001) can be applied for both purposes. 

Nevertheless, the restless bandit reformulation of (2) is always indexable. Such a property 

can either be shown by means of the SIC approach or simply using the seminal result in 

Bellman (1956), by which the monotonicity of the optimal policies can be ensured, allowing 

to focus attention on a nested family of stopping-times. Moreover, the computation of the 

Whittle index can be done as a modified version of the Gittins index (See Proposition 3.1 in 

Niño-Mora, 2011) in which the search of the optimal stopping time is truncated to be less 

than or equal to the number of remaining patients to be treated (and this is repeated for each 

patient to be treated).

Table 2, Table 3 and Table 4 include some values of the Whittle indices for different 

combinations of (s, f) and d = 0.999 when N = 200, and the number of remaining 

observations is respectively allowed to be N − j = 50, N − j = 100 and N − j = 150.
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Again, the Whittle index rule assigns a number from these tables to every treatment, based 

on the values of s and f and on the number of remaining periods n − j, and then prioritizes 

sampling the one with highest value.

2.4 Other index strategies

The index strategies described in the previous sections are an example of simple and natural 

rules that dynamically prioritize resource allocation among different stochastic projects. 

However, the class of index policies is still overwhelmingly large, and despite all being 

computationally tractable only in special cases they result in well-performing or even 

optimal policies. Index strategies, in general, define a priority index for each treatment as a 

function of its information state (observed successes and failures). The associated priority-

index heuristic allocates for each patient the treatment with currently largest index value.

In this paper we shall also consider three alternative priority-index heuristics for the finite 

horizon multi-armed bandit problem: the Myopic Index (MI), Feldman’s rule (FR) and a 

Gittins Index heuristic (GI). The MI is perhaps the simplest priority-index rule, which has 

usually been proposed as a heuristic for addressing several optimization problems. In the 

context of this problem the MI uses the posterior mean of each treatment after observing the 

outcome of a patient j to make the decision for patient j + 1.

FR is based on work by Feldman (1962) which showed that the optimal solution to a special 

case of the two-armed bandit problem in which we know the possible values for the two 

arms’ success rates are pA and pB but we do not know which arm has which success rate 

admits a simple index rule. In terms of this simple problem both FE and the optimal rule 

would allocate treatment k whenever the current probability that pk = max{pA, pB} is at least 

1/2. This is equivalent to a much simpler rule in which if s0 − f0 ≥ s1 − f1 then it is optimal to 

allocate treatment 0 and otherwise it is optimal to allocate treatment 1. Berry (1978) was the 

first to propose and assess the use of FR as a heuristic solution for the general two-armed 

bandit problem. In this paper we shall extend FR as a heuristic for the multi-armed case by 

letting the index per arm be defined as sk − fk and then applying the index rule, i.e. 

allocating the treatment with the highest index, breaking ties at random.

Additionally we will define a GI heuristic by using the Gittins index for a given discount 

factor value d to make decisions for all patients in the population. This will imply that the 

same table of values will be used across the population simplifying computations when 

comparing it with the Whittle index (WI). Notice that an alternative way to define a GI 

heuristic would be to choose a different discount factor for each patient. The rationale 

behind the choice of each discount factor of dj is that if the discount factor dj is interpreted 

as the probability that the trial will continue after each patient, then the probability that the 

remaining patient population is of size N − j (or smaller) can be computed as 

and we would like this probability to be approximately 1. For example, if j = N − 1 (the last 

patient in the population is to be treated) then dN−1 = 0 so that  Alternatively, 

if j = 0 (the first patient in the population is to be treated) and N = 100 then dN−1 = 0.9 

makes  (or in other words it makes the expected size of the remaining 
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patient population of size ). However, using this GI heuristic would result in a 

computational cost very similar to that of the WI as a different index table per patient would 

be needed.

3 Numerical Results

3.1 Two-armed trials

In Berry (1978) numerical (exact) results were first shown for FR and the optimal rule in 

context of the two-armed bandit problem in which the joint density of (p1, p2) before the 

start of the trial is the product of two uniform distributions (corresponding to the clinical 

equipoise principle by which there is genuine uncertainty in the expert medical community 

over which treatment will be beneficial, if any). The results in Berry (1978) show how this 

simple rule has a very good performance, as depicted in Table 5, its suboptimality gap for N 
= 100 is of only 1.5%.

We have extended the exact numerical results included in Berry (1978) in Table 5 by also 

including the results for the other rules considered in this paper: MI, GI(d = 0.9) and WI. 

The results indicate that the MI rule and FR are a priori practically equivalent in their 

performance (although MI appears to slightly outperform FR for N > 4). As well, the GI and 

WI are also very similar in their performance but WI always outperforms the GI approach. 

On the other hand, both GI and WI are also almost equivalent to the optimal rule. According 

to these results, the simplest approaches perform sufficiently well to justify getting into the 

complexity of applying the index policies, at least for when K = 2 and n ≤ 100. However, as 

shown in Table 6, once a fixed pair of success rates is assumed there are important 

differences that are worth pointing out, i.e. in terms of the resulting value function V* (N, π) 

and the mean proportion of patients allocated to a best arm (when it exists) p*. These 

differences in performance are explained because the results in Table 5 correspond to 

averaging over all possible values of p1, p2 whereas the results in Table 6 correspond to a 

particular point in the parameter space of (p1, p2).

Table 6 shows the results of applying each of the patients allocation rule when the true 

(though unknown to the decision maker) vector of parameters is equal to p = (0.3, 0.5) after 

104 trial replicas by simulation. The results show that the WI is superior to all other rules in 

terms of p*. These results also suggest that FR is superior to the MI rule, both in terms of p* 

and its resulting value function. The table also suggests that while for the WI and GI the 

differences tend to vanish as N grows, the opposite happens for FR and MI. Note that the 

relative increase in the mean proportion of patients assigned to best treatment of using the 

best index based approach (i.e. WI) over the simpler approaches goes from 0.08 and 0.036 

(for N = 50) to 0.124 and 0.046 (for N = 300) for the MI and FR respectively.

3.2 Multi-armed trials

Besides the need for designs specifically tailored for small populations, in some therapeutic 

areas, such as in cancer treatment, there are several possible agents awaiting trials, and thus 

a major challenge in their development is the considerable time and resources needed for 
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conducting separate randomized clinical trials. Multi-arm trials in which several novel 

treatments are compared in the same trial have many advantages: they are more efficient and 

cheaper, since a shared control group is used; more treatments can be simultaneously tested 

with a limited set of patients; and tend to be more popular with patients as a greater chance 

of being allocated to a new/superior treatment is perceived by them or their families. 

Moreover, the benefits of adaptive rules such as the ones considered in this paper should be 

the greatest as the number of arms included in the trial grows.

In this section we will illustrate this advantage through an exact computation for the case K 
= 3 and through simulation results of trials involving three and more arms. All of the index 

rules here considered are deployed as follows: for every patient allocate the treatment with 

the current highest index value, breaking ties at random.

The results in Table 7 show how the difference in the performance of the simpler heuristics 

(MI and FR) tends to be further away from the optimal value for a given number of patients 

(when compared to the two-armed values in Table 5). The suboptimality gap of the MI rule 

goes from 0.65% when K = 2 and N = 25 to 1.07% when K = 3 and N = 25. On the other 

hand, for the WI and GI this suboptimality gap also increases but it is still very close to the 

optimal value for every N . For example, the suboptimality gap of the WI rule goes from 

0.01% when K = 2 and N = 25 to 0.03% when K = 3 and N = 25.

In Table 8 we show results of simulations for larger number of arms and different 

populations sizes. The advantage of the WI and GI rules over the myopic approaches 

becomes larger as the number of arms and the patient horizon grows. For the case N = 300 

and K = 7 the absolute difference in the mean proportion of successes between WI and MI is 

approximately 0.06, which represents 18 patients. It is worth pointing out that FR 

outperforms the MI rule in every instance though the difference is less than 10−3. This 

difference could be within Montecarlo error if the exact difference is less than 10−4 as 

suggested by the results in Table 7.

3.3 Understanding the Whittle Index rule

In this section we look into the situations under which the WI rule fails to recover the 

optimal action so as to learn about the biases and mistakes than can result from its use in 

practice. For simplicity we focus on the two-armed bandit case with an initial uniform prior 

on both arms.

There are instances in which the WI rule makes a deterministic decision while the optimal 

action is to randomize the treatments. However, these instances do not affect the resulting 

value function, because both actions are equally optimal. For example, this occurs for N = 8 

and 5 patients have been treated with all of them allocated to one of the arms and 3 

successes and 2 failures observed. The optimal decision for the patient 6 is to randomise 

him/her to the two treatments with equal probability The WI rule however, chooses the more 

explored arm because its index is 0.6049 whereas the unexplored arm has an index of 

0.5909.
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The instances in which the WI rule makes a allocation that differs from the optimal one and 

it affects the resulting value function are those that actually introduce a bias or mistake. The 

first of these instances happens for N = 10. The only difference between the actions selected 

by the WI and the optimal rule occur for only two instances out of all the possible trial 

histories (410). They correspond to the case in which 7 patients have been treated and six 

have been allocated to the first arm n1 = 6, with 2 successes s1 = 2 and four failures f1 = 4 

and one observation was allocated to the second arm n2 = 1 with s1 = 0 and f1 = 1. The 

Whittle indices (for d = 1) respectively are 0.4054 and 0.4000. Therefore, the action selected 

by the Whittle rule is to allocate treatment 1 to patient 8 whereas the optimal action is to 

allocate treatment 2 (which is less explored). By symmetry the case of the same history for 

the alternate arms is the same.

Basically, the mistake happens in those instances in which the difference between the indices 

is small (in the above case of 0.0054), which means that the arms have a very similar 

posterior mean, but arms have a significant difference in how much they have been explored. 

In that case, the WI selects the arm with the highest immediate expected effect while the 

optimal action is to allocate the one with the smaller index but which has been less explored. 

This indicates that the instances in which the WI makes a wrong decision are caused by the 

WI being slightly more myopic than than the optimal rule would be. Of course, there are no 

suboptimality instances for the last patient in the trial (because both the optimal and the WI 

rules allocate that patient to the treatment with highest posterior mean) and there are no 

suboptimal instances in the first patients because the arms have not been significantly 

differently explored if they all start with the same initial priors.

3.4 Trial design, population size and learning/earning stages

The relative merits of using decision theory and a goal to maximize overall health to decide 

on a trial’s size and its design as opposed to using a traditional approach depend on the 

patient horizon. In Cheng et al (2003) the authors illustrate this by addressing the problem of 

determining the optimal size of the initial learning stage (or trial) using a decision analytic 

approach. The main result is that for a two-armed trial and a learning phase that takes the 

form of a fixed equal randomized trial, the optimal size of the initial learning phase under 

initial equipoise depends on the order of magnitude of the square root of the population size 

N.

Index based rules have a learning phase and an earning phase whose sizes vary according to 

the particular sample data that is observed in a trial realization and in the case of the WI, 

according to the patient horizon (or the number of remaining patients to treat). In this section 

of the paper we compute by simulation the size of the mean learning phases of the GI and 

WI rules in a two-armed scenario and compare then to the approach suggested in Cheng et al 

(2003).

In Figure 1 the simulations results of 104 replicas are depicted. We have defined the mean 

learning (ML) phase of the WI and GI rules as the mean number of allocations after which 

the treatment allocations are always to the same treatment (i.e. until the last patient in the 

population) when using these index rules. For the traditional fixed equal randomised trial 
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(FE) of optimal size as in Cheng et al (2003), the ML has been approximated by 

The figure shows that the GI has a larger exploration phase than the other two approaches. 

The WI has an exploration phase that is larger than the FE approach, and it is only similar to 

it when N is the smallest. It is important to note that this larger learning phase results in a 

larger expected proportion of successes not only by being larger in size but also by not being 

constrained to be balanced, i.e. the WI explores more and it does so in a unbalanced fashion.

In Table 9 and Table 10 we illustrate the same idea in different contexts. We assume 

different values for (p1, p2) and we apply the different allocations rules. We then compute 

the ML phase for the index rules, the mean proportion of patients in the population allocated 

to the best arm (p*) and the mean number of successes in the population (ENS). We do this 

for increasing sizes of the population with the disease or patient horizon.

The results in the tables show that the WI and GI reduce their learning phases’ size when the 

difference between p1 and p2 is larger. However, the GI will always have a larger average 

size of a learning phase than the WI. The results also indicate that even when the GI and WI 

result in practically identical values of ENS, the WI will have an advantage in terms of the 

proportion of patients allocated to the best treatment. The results also suggest that the larger 

the difference between the treatments and the smaller the population size, the more 

important the advantage of the index rules over a FE approach. As well, the bandit results 

perform as well as the other alternatives under the presence of equal treatments success 

rates.

4 Discussion

A common definition of a rare disease is that of a disease affecting no more than 5 per 

10,000 persons. Yet, rare diseases are not so rare. According to the EU Implementation 

report on the Commission Communication on Rare Diseases, between 27-36 million people 

in Europe are affected by a rare diseases. Further, this number is expected to raise with the 

improvements of diagnosis methods and the advance of genetics partitions diseases into 

smaller entities. Developing statistical methods specific for drug development for rare 

diseases is of critical importance and a current health policy priority due to both this 

expected increase in rare diseases prevalence and the current difficulties that limit running 

clinical trials for these conditions.

In a rare disease setting, the number of patients available for running a trial is significantly 

smaller than the number required to run a standard randomized trial. Moreover, randomizing 

patients to treatments so as to learn the most about them when few or no patients would 

benefit from that learning is highly questionable. Instead, treatment decisions for the patients 

recruited in a trial (or with the patients in the whole population, if that would be known) can 

be guided by the goal of learning about the available treatment options just enough as to 

maximize effective treatment for the largest number of patients with the disease. This goal 

can be successfully implemented assuming a decision-analytic approach that would be able 

to assist physicians both in their learning about treatments efficacy and in their treatment 

decision making.

Villar Page 12

Probab Eng Inf Sci. Author manuscript; available in PMC 2018 April 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Optimal designs, from this effective treatment perspective, have been long studied in the 

decision-analytic theoretical literature as “bandit ” models. Among other limitations to their 

use in a clinical settings (See Villar et al, 2015), computational complexity and the difficulty 

of implementation and interpretation of designs based on their optimal rule is still binding. 

Developing simple, practical and computational feasible approaches to “bandit ” problems is 

an open an active area of research in sequential allocation problems in general and beyond 

clinical trials. In this article we contributed by presenting calculations (both exact and 

simulated) that suggest that the advantages of the nearly-optimal bandit rules based on non-

myopic index policies are increased when the number of arms grows and the disease under 

study affects a relatively small estimated number of patients. The potential patient benefit 

gain resulting from treatment decisions based on these ideas suggest that their use in practice 

could help provide answers to the current challenges faced by drug development for rare 

conditions.

Further research is needed to overcome other limitations to bandit strategies besides the 

computational one and also to determine some general conditions under which arms are 

selected or dropped when using the index rules.
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Figure 1. 
The mean learning phase (or, the size of the trial phase) and the population size for the GI, 

WI and a the optimal size of a fixed equal randomized learning phase
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Table 1

The (approximate) Gittins index values for an information vector of s successes and f failures where d = 0.999 

and N is truncated at N = 1000.

f/s 1 2 3 4 5 6

1 0.9424 0.9596 0.9673 0.9719 0.9751 0.9774

2 0.8246 0.8748 0.8993 0.9145 0.9250 0.9328

3 0.7075 0.7825 0.8226 0.8483 0.8665 0.8803

4 0.6098 0.6986 0.7492 0.7834 0.8082 0.8272

5 0.5310 0.6249 0.6836 0.7236 0.7532 0.7766

6 0.4667 0.5642 0.6252 0.6696 0.7031 0.7293
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Table 2

The Whittle index values for an information vector of s successes and f failures, n ‒ j = 50, d = 1 and where 

the size of the trial is n = 200

f/s 1 2 3 4 5 6

1 0.8246 0.8792 0.9042 0.9192 0.9294 0.9370

2 0.6378 0.7373 0.7886 0.8210 0.8437 0.8607

3 0.5047 0.6209 0.6871 0.7317 0.7636 0.7882

4 0.4111 0.5292 0.6040 0.6553 0.6933 0.7233

5 0.3435 0.4603 0.5349 0.5907 0.6328 0.6660

6 0.2929 0.4048 0.4800 0.5357 0.5804 0.6162
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Table 3

The Whittle index at n − j = 100

f/s 1 2 3 4 5 6

1 0.8659 0.9071 0.9258 0.9371 0.9448 0.9505

2 0.6949 0.7797 0.8227 0.8497 0.8685 0.8826

3 0.5610 0.6674 0.7261 0.7653 0.7933 0.8146

4 0.4643 0.5754 0.6441 0.6905 0.7252 0.7521

5 0.3914 0.5040 0.5748 0.6264 0.6652 0.6956

6 0.3365 0.4458 0.5174 0.5709 0.6127 0.6460
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Table 4

The Whittle index at n − j = 150

f/s 1 2 3 4 5 6

1 0.8859 0.9207 0.9365 0.9460 0.9525 0.9573

2 0.7252 0.8019 0.8406 0.8648 0.8817 0.8942

3 0.5925 0.6930 0.7476 0.7837 0.8096 0.8291

4 0.4949 0.6018 0.6667 0.7103 0.7431 0.7682

5 0.4196 0.5291 0.5977 0.6468 0.6837 0.7127

6 0.3625 0.4700 0.5391 0.5913 0.6314 0.6633
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Table 5

The simulated expected proportion of successes of the different patient allocation rules for the two-armed 

bandit problem with uniform priors

1. Expected Proportion of Successes When
a1 = b1 = a2 = b2 = 1

n τ * WI(N) GI(0.9) FR MI

1 0.50000 0.50000 0.50000 0.50000 0.50000

2 0.54167 0.54167 0.54167 0.54167 0.54167

3 0.55556 0.55556 0.55556 0.55556 0.55556

4 0.56944 0.56944 0.56944 0.56944 0.56875

5 0.57778 0.57778 0.57778 0.57611 0.57694

6 0.58472 0.58472 0.58472 0.58403 0.58371

7 0.59028 0.59028 0.59016 0.58812 0.58910

8 0.59494 0.59494 0.59457 0.59346 0.59367

9 0.59866 0.59866 0.59841 0.59625 0.59727

10 0.60218 0.60215 0.60197 0.60017 0.60058

15 0.61410 0.61406 0.61386 0.61049 0.61164

20 0.62156 0.62147 0.62125 0.61746 0.61827

25 0.62679 0.62670 0.62636 0.62162 0.62271

30 0.63066 0.63061 0.63011 0.62515 0.62594

35 0.63371 0.63363 0.63301 0.62743 0.62840

40 0.63617 0.63609 0.63533 0.63410 0.63034

60 0.64271 0.64265 0.64131 0.63460 0.63526

80 0.64657 0.64651 0.64468 0.63757 0.63800

100 0.64918 0.64912 0.64687 0.63943 0.63975
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Table 6

The expected proportion of patients allocated to the best arm p* and the expected proportion of successes of 

the different patient allocation rules for the two-armed bandit problem starting with uniform priors when p1 = 

0.3 and p2 = 0.5.

2. Expected Proportion of patients allocated to the best arm and
Expected Proportion of successes when p1 = 0.3 and p2 = 0.5

N WI(N) GI(0.9) FR MI

p* V*(N, πWI) p* V*(N, πGI) p* V*(N, πFR) p* V*(N, πMI)

50 0.7652 0.4604 0.7364 0.4498 0.7389 0.4518 0.7085 0.4414

100 0.8538 0.4723 0.8283 0.4688 0.8094 0.4625 0.7493 0.4528

150 0.8717 0.4769 0.8573 0.4758 0.8432 0.4705 0.7892 0.4619

200 0.9051 0.4821 0.8886 0.4802 0.8584 0.4738 0.7928 0.4592

250 0.9205 0.4851 0.9029 0.4825 0.8770 0.4763 0.8207 0.4654

300 0.9284 0.4868 0.9197 0.4857 0.8877 0.4789 0.8260 0.4650
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Table 7

Exact computations: the expected proportion of successes of the different patient allocation rules for the three-

armed bandit problem with uniform priors

2. Expected Proportion of Successes When
a1 = b1 = a2 = b2 = a3 = b3 = 1

n τ * W I(N) GI(0.9) FR MI

1 0.50000 0.50000 0.50000 0.50000 0.50000

2 0.54166 0.54166 0.54166 0.54166 0.54166

3 0.56944 0.56944 0.56944 0.56944 0.56944

4 0.58681 0.58681 0.58681 0.58634 0.58634

5 0.60139 0.60139 0.60139 0.60019 0.60019

6 0.61273 0.61273 0.61273 0.61114 0.61114

7 0.62153 0.62153 0.62141 0.61939 0.61965

8 0.62894 0.62894 0.62847 0.62656 0.62685

9 0.63549 0.63549 0.63494 0.63273 0.63310

10 0.64096 0.64096 0.64051 0.63787 0.63831

15 0.66083 0.66062 0.66034 0.65607 0.65653

20 0.67329 0.67322 0.67276 0.66715 0.66744

25 0.68207 0.68190 0.68130 0.67474 0.67480

30 0.68863 0.68854 0.68766 0.68013 0.68031
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Table 8

Computations through simulations: The expected proportion of successes of the different patient allocation 

rules for the multi-armed bandit problem with uniform priors as the number of arms grows. Number of 

simulations: 104

2. (Simulated) Expected Proportion of
Successes for different K + 1 and ak = bk = 1 ∀k

K + 1 N WI(N) GI(0.9) FR MI

3 50 0.69998 0.69418 0.69139 0.68764

4 50 0.74251 0.73112 0.71733 0.72062

5 50 0.76086 0.74831 0.73494 0.73406

6 50 0.77699 0.76223 0.74734 0.74392

7 50 0.78765 0.76882 0.76882 0.74756

3 100 0.72044 0.71546 0.70069 0.69746

4 100 0.76041 0.75474 0.73722 0.73211

5 100 0.78468 0.77740 0.75286 0.74976

6 100 0.80564 0.79454 0.76554 0.76360

7 100 0.81610 0.80490 0.77173 0.76763

3 150 0.72887 0.72065 0.71434 0.70098

4 150 0.77154 0.76511 0.74128 0.73770

5 150 0.79607 0.78962 0.76022 0.75361

6 150 0.81826 0.80795 0.77028 0.76826

7 150 0.82904 0.82564 0.77969 0.77623

3 200 0.73038 0.72806 0.70869 0.70422

4 200 0.77938 0.77465 0.74327 0.73923

5 200 0.80376 0.79647 0.76827 0.75880

6 200 0.82344 0.82099 0.77627 0.77205

7 200 0.83853 0.83263 0.83263 0.78078

3 250 0.73209 0.73395 0.70784 0.70852

4 250 0.77532 0.77750 0.75175 0.74114

5 250 0.80925 0.80394 0.76483 0.76463

6 250 0.82318 0.82946 0.77777 0.77369

7 250 0.84381 0.83838 0.78587 0.78430

3 300 0.73459 0.73450 0.71403 0.71251

4 300 0.78174 0.77852 0.74749 0.74218

5 300 0.80761 0.80962 0.77007 0.76422

6 300 0.83119 0.83053 0.78250 0.77814

7 300 0.84643 0.84440 0.78740 0.78656
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Table 9

The simulated expected proportion of patients allocated to the best treatment, the mean number of successes 

and the mean learning phase of the different patient allocation rules for the two-armed bandit problem with p1 

= 0.3 and p2 = 0.5 for {N = 50, 150}

(p1, p2) N Rule P* ENSN =50 ML

(0.3, 0.4) 50 GI 0.6246 18.23 41

(0.3, 0.5) 50 GI 0.7323 22.59 37

(0.3, 0.6) 50 GI 0.8166 27.61 31

(0.3, 0.7) 50 GI 0.8692 33.04 24

(0.3, 0.4) 50 WI 0.6584 18.40 24

(0.3, 0.5) 50 WI 0.7608 22.74 19

(0.3, 0.6) 50 WI 0.8411 27.93 13

(0.3, 0.7) 50 WI 0.8883 33.41 8

(0.3, 0.4) 50 FE 0.5427 17.71 8

(0.3, 0.5) 50 FE 0.6381 21.31 8

(0.3, 0.6) 50 FE 0.6917 25.38 8

(0.3, 0.7) 50 FE 0.7712 30.47 8

(p1, p2) T Rule P* ENSN =150 ML

(0.3, 0.4) 150 GI 0.7308 55.96 112

(0.3, 0.5) 150 GI 0.8635 70.80 90

(0.3, 0.6) 150 GI 0.9210 86.92 72

(0.3, 0.7) 150 GI 0.9468 102.53 58

(0.3, 0.4) 150 WI 0.7522 55.96 59

(0.3, 0.5) 150 WI 0.8831 71.92 41

(0.3, 0.6) 150 WI 0.9363 87.79 28

(0.3, 0.7) 150 WI 0.9558 103.17 18

(0.3, 0.4) 150 FE 0.6270 54.60 13

(0.3, 0.5) 150 FE 0.7388 66.93 13

(0.3, 0.6) 150 FE 0.8245 82.72 13

(0.3, 0.7) 150 FE 0.8847 98.34 13
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Table 10

The expected proportion of patients allocated to the best treatment, the mean number of successes and the 

mean learning phase of the different patient allocation rules for the two-armed bandit problem with p1 = 0.3 

and p2 = 0.5 for N = {200, 300}

(p1, p2) T Rule p* ENS 200 ML

(0.3, 0.4) 200 GI 0.7633 75.41 142

(0.3, 0.5) 200 GI 0.8954 96.21 111

(0.3, 0.6) 200 GI 0.9373 116.99 89

(0.3, 0.7) 200 GI 0.9577 137.43 71

(0.3, 0.4) 200 WI 0.7780 75.49 76

(0.3, 0.5) 200 WI 0.8976 96.33 53

(0.3, 0.6) 200 WI 0.9454 117.26 37

(0.3, 0.7) 200 WI 0.9671 138.30 23

(0.3, 0.4) 200 FE 0.5975 73.10 15

(0.3, 0.5) 200 FE 0.7314 89.39 15

(0.3, 0.6) 200 FE 0.8390 111.33 15

(0.3, 0.7) 200 FE 0.9051 132.08 15

(p1, p2) T Rule p* ENS 300 ML

(0.3, 0.4) 300 GI 0.8112 114.32 196

(0.3, 0.5) 300 GI 0.9242 145.73 144

(0.3, 0.6) 300 GI 0.9556 176.77 116

(0.3, 0.7) 300 GI 0.9716 207.07 92

(0.3, 0.4) 300 WI 0.8066 114.16 106

(0.3, 0.5) 300 WI 0.9246 145.85 68

(0.3, 0.6) 300 WI 0.9624 176.87 47

(0.3, 0.7) 300 WI 0.9770 208.27 34

(0.3, 0.4) 300 FE 0.6223 109.12 18

(0.3, 0.5) 300 FE 0.7549 135.57 18

(0.3, 0.6) 300 FE 0.8782 167.50 18

(0.3, 0.7) 300 FE 0.9073 198.86 18

Probab Eng Inf Sci. Author manuscript; available in PMC 2018 April 01.


	Abstract
	Introduction
	The Whittle Index Approach
	Background
	Index based strategies: the Gittins index
	The Whittle index
	Other index strategies

	Numerical Results
	Two-armed trials
	Multi-armed trials
	Understanding the Whittle Index rule
	Trial design, population size and learning/earning stages

	Discussion
	References
	Figure 1
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5
	Table 6
	Table 7
	Table 8
	Table 9
	Table 10

