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Abstract

Human adenoviruses (HAdVs) are uniquely important “model organisms” as they have been used to elucidate
fundamental biological processes, are recognized as complex pathogens, and are used as remedies for human health.
As pathogens, HAdVs may effect asymptomatic or mild and severe symptomatic disease upon their infection of
respiratory, ocular, gastrointestinal, and genitourinary systems. High-resolution genomic data have enhanced the
understanding of HAdV epidemiology, with recombination recognized as an important and major pathway in the
molecular evolution and genesis of emergent HAdV pathogens. To support this view and to actualize an algorithm for
identifying, characterizing, and typing novel HAdVs, we determined the DNA sequence of 95 isolates from archives
containing historically important pathogens and collections housing currently circulating strains to be sequenced. Of
the 85 samples that were completely sequenced, 18 novel recombinants within species HAdV-B and D were identified.
Two HAdV-D genomes were found to contain novel penton base and fiber genes with significant divergence from
known molecular types. In this data set, we found additional isolates of HAdV-D53 and HAdV-D58, two novel
genotypes recognized recently using genomics. This supports the thesis that novel HAdV genotypes are not limited to
"one-time” appearances of the prototype but are of importance in HAdV epidemiology. These data underscore the
significance of lateral genomic transfer in HAdV evolution and reinforce the potential public health impact of novel

genotypes of HAdVs emerging in the population.

Introduction

Human adenoviruses (HAdVs) occupy an important
unique niche in biology and medicine as they were not
only among the first respiratory viral pathogens to be
isolated, identified, and characterized, but were also

Correspondence: James Chodosh (james_chodosh@meei.harvard.edu) or
Donald Seto (dseto@gmu.edu)

'Department of Ophthalmology, Howe Laboratory, Massachusetts Eye and Ear
Infirmary, Harvard Medical School, Boston, MA 02114, USA

“Bioinformatics and Computational Biology Program, School of Systems
Biology, George Mason University, Manassas, VA 20110, USA

Full list of author information is available at the end of the article

Ashrafali M. Ismail and Tiange Cui contributed equally to this work.

© The Author(s) 2018, corrected publication 2018

model organisms for fundamental discoveries and insights
into molecular and cellular biology, immunology, and
systems biology. These include messenger RNA splicing’,
eukaryotic DNA replication”, and antigen presentation to
T-cells’. Remarkably, this double-stranded (ds) DNA
virus, with a capsid comprising nearly one-million amino
acids and 150-megadalton molecular weight, has been
crystallized and its structure resolved at 3.5 angstroms,
allowing for insights into virus assembly and cell entry
mechanisms®. This provides opportunities for improving
and refining adenovirus-mediated gene transfer as vectors
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for vaccination and gene therapy®’; and enhancing the
role of HAdVs in oncolytics®.

As human pathogens, a wide spectrum of diseases is
associated with HAdVs, involving the respiratory, ocular,
gastrointestinal, and genitourinary systems, as well as a
metabolic disorder (obesity)’. These have been docu-
mented extensively in the literature and many pathogenic
strains have been collected into archives. Based on their
biology, pathogenic attributes, and DNA sequence simi-
larities, HAdVs are divided phylogenetically into seven
species, A through G’. Adenovirus genotypes classified as
HAdV-B, -C, and -E are associated principally with
respiratory disease; HAdV-A, -D, -F, and -G with gas-
trointestinal disease; and HAdV-D and E with ocular
diseases, including epidemic keratoconjunctivitis, a severe
ocular surface infection’. HAdV-A genotypes have his-
torical significance as oncogenic in certain rodent model
organisms®®. In immunocompetent individuals, HAdV
infections are usually self-limiting and death is relatively
uncommon’, but epidemics involving certain historically
important strains and genotypes, e.g., “Ad-7h”, recently
relabeled as type 66 (GenBank accession no. JN860676),
“prove the exception”'®'? In immunocompromised
individuals, HAdV infections are of significant concern,
causing fatalities’. Specifically, HAdV-A, -B, and -C are all
associated with infections of allogenic transplant reci-
pients’, while many novel types within HAdV-D were first
identified in patients with AIDS' and other immuno-
compromised patients as potential opportunistic patho-
gens'®. Thus, HAdV is a major public health concern in
both immunocompetent and immunocompromised
individuals.

As a model organism, adenoviruses are proving useful
for demonstrating the power and application of high-
resolution data from genomics and bioinformatics in
pathogen detection'®, analysis, and characterization.
HAdVs are examples in which high-resolution sequence
data are applied to resolve viral taxonomy'®. Whole-
genome sequencing and phylogenomics have now fully
supplanted serology as the system by which HAdVs are
typed'®"”. To date, 84 unique HAdV genotypes (http://
hadvwg.gmu.edu) are recognized by the adenovirus
research community and by NCBI, with all genome-
associated data deposited in GenBank. The availability of
high-resolution genomic data has provided insights into
the molecular evolution of this human viral pathogen.
The genome of this presumably “stable” dsDNA virus,
with respect to point mutations and genetic drift, is
remarkably “unstable” as co-infections allow for homo-
logous recombination to be a major pathway in the
molecular evolution of new types and emergent patho-
gens'*'®* This mechanism allows for “non-pathogenic”
types to be “converted” into highly contagious patho-

gens®*® and for a “renal pathogenic” type to be

Page 2 of 22

“converted” into a highly contagious respiratory patho-
gen”’, Recent genomic analyses of thirty-two newly
emergent adenoviral pathogens have demonstrated this
mechanism in six HAdV species, with most reporting on
the two HAdV species with the largest number of mem-
bers, HAAV-B (11/84; 13.1%) and -D (54/84; 64.3%).
Novel simian adenoviruses (SAdVs) also have been shown
to arise via recombination®”. These studies supplement
the high-resolution re-analysis of the original 52 serotypes
and confirm they are unique genotypes'’, even among
“major serological” cross-reacting types such as HAdV-
D15 and -D29, which were controversial as they shared
the identical serotyping epsilon antigen®®.

In order to determine the degree to which previously
untyped novel genotypes of HAdVs may be isolated from
patients, two clinical centers evaluating ocular diseases
were recruited (Sankara Nethralaya and University of
Pittsburgh). Two collections of respiratory HAdV patho-
gens were included, providing a comparison of another
disease system (Guangzhou and NHRC). To complement
these, three archives containing historically important
HAdV pathogens were included (Loveless Respiratory
Research Institute, University of Florida, and Germany).
The archives include serotyped but not genome-
sequenced deposits, for example, “Ad-7h” which caused
an unusual and atypical high rate of morbidity and mor-
tality in the 1980 and 1990s'*™". Collectively, these efforts
resulted in the first large-scale adenovirus study in which
whole-genome data and DNA sequence analyzes were
used to discriminate, type, and characterize HAdV
pathogens. Two recently recognized HAdV genotypes,
HAdV-D53 and -D58, were sampled serendipitously.
These analyses confirm genomic recombination as a
major molecular evolution mechanism in the genesis of
novel HAdV pathogens and reaffirm HAdVs as on-going
threats to public health, as well as provide an algorithm
for rapid genomic sequencing and in silico identification
and characterization of emergent viral pathogens.

Materials and methods
Sample selection and processing

Adenoviral samples were obtained from one researcher
and six contemporary collections and archives. Selection
criteria included sampling then-currently circulating
pathogens of interest to the researchers and sampling
“intriguing” historical isolates that were archived. The
Germany archive included adenoviruses collected by two
researchers (Drs. T. Adrian and R. Wigand) who have
retired and have gifted the isolates to Dr. Albert Heim.
From the Emerging Pathogens Institute (University of
Florida; Gainesville, FL), a collection that was gathered
from other researchers was made available. All adeno-
viruses were identified by serotyping methods by the
original researchers and supplied as samples from eye,
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nasopharynx, pharynx, endotracheum, and feces, with the
exception of the Germany archival samples and China
samples, which were supplied as purified DNA, and the
Florida archival samples, which were supplied as purified
viruses. Samples were processed by several study centers:
U.S. Naval Health Research Center collection (San Diego,
CA) (processed at the Lovelace Respiratory Research
Institute; Albuquerque, NM); University of Pittsburgh
collection (Pittsburgh, PA) and Sankara Nethralaya col-
lection (Chennai, India) (processed at the Massachusetts
Eye and Ear Infirmary; Boston, MA); Biosafety Level-3
Laboratory, School of Public Health, Southern Medical
University (Guangzhou, China); archives of Drs. T. Adrian
and R. Wigand (Homburg, Germany) (processed at the
Institut fiir Virologie, Medizinische Hochschule; Hann-
over, Germany); and one isolate from Dr. Leonardo Fer-
reyra (Cordoba, Argentina) (processed at the California
Public Health Department; Richmond, CA). Additional
historically important isolates were purchased from a
NIH-funded archive at the Emerging Pathogens Institute
of the University of Florida, Gainesville (Dr. Gary L. Heil).
N.B., This collection is no longer available.

Samples were processed similarly at each collaborating
laboratories'**"*”%%; for example, at the MEEI each virus
was grown in either A549 cells, a human alveolar carci-
noma cell line or HEp-2, a human laryngeal carcinoma
cell line, and purified by CsCl gradient ultra-
centrifugation. DNA was extracted either using a
phenol—chloroform method or with a QIAmp MinElute
Virus Spin Kit (Qiagen GmbH; Hilden, Germany). Most
eye specimens were unpassaged and directly used for
DNA extraction. The MEEI Human Studies Committee
exempted this study from requiring informed consent as
the samples were de-identified and would otherwise have
been discarded.

Genome sequencing

Purified genomic DNA was simultaneously PCR-
amplified and bar-coded in two separate reactions using
sequence independent single-primer amplification (SISPA)
(Djikeng et al.*). All genomes were sequenced using a
two-platform strategy: [lumina HiSeq (San Diego, CA) and
Roche 454 GS-FLX (Branford, CT). The SISPA products
were normalized and pooled into a single sample that was
purified using a PCR purification kit (Qiagen). This sample
was subsequently gel purified to select for SISPA products
that were 300-500bp in size for Illumina HiSeq-based
sequencing and 500-800 bp in size for 454 GS-FLX-based
sequencing. In preparation for sequencing, two aliquots
each were used to construct the 454 and Illumina libraries,
and sequenced on the respective platforms. Following
DNA sequencing, sequence reads from each platform were
deconvoluted by barcode identity, and the sequences
trimmed for quality and for removal of the SISPA hexamer
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primer sequences. All reads were then assembled de novo
using “clc_novo_assembly”, a command-line assembly
algorithm (https://www.qiagenbioinformatics.com/
products/clc-genomics-workbench/) and the resulting
contigs were BLAST-searched against a database of com-
plete HAdV sequences available at GenBank to find the
closest reference sequence. Both 454 GS-FLX and Illumina
sequence reads were then mapped to the selected refer-
ence genome using the “clc_ref assembly long”
command-line assembly algorithm. At loci where both 454
GS-FLX and Illumina sequence data agreed on a variation
(as compared to the reference sequence), the reference
sequence was updated to reflect the variation. A final
mapping of all next-generation sequences to the updated
reference sequences was performed with “clc_ref assem-
ble_long” command-line assembly algorithm. As most
genomes showed significant variation compared to selec-
ted reference sequences, manual reference extension and
editing was performed based on sequencing reads, fol-
lowed by another round of mapping assembly as men-
tioned above. Furthermore, to improve resulting genome
consensus and fill in sequencing gaps, custom primers
were designed using the automated primer design soft-
ware®, and targeted PCR-based DNA sequencing reac-
tions were conducted. The PCR products were sequenced
using Sanger dideoxy chemistry for short-range amplicons
(up to 1kb) or using IonTorrent sequencing platform
(Thermo Fisher Scientific) for long-range amplicons (2—4
kb). These finishing reads were then merged with initial
data using clc command-line assembly algorithm as
mentioned above. The sequences were verified for func-
tional completeness and adequate sequence coverage
using in-house QA software tools (JCVI; Rockville, MD).
Resultant finished genome sequences from this pipeline
had average genome coverages of 214.2x.

Preliminary high-throughput genome annotation and
identification of penton base, hexon, and fiber genes

The sequences were annotated with a viral annotation
software, Viral Genome ORF Reader (VIGOR)?', prior to
GenBank submission. To identify and to query for novel
penton base, hexon, and fiber genes, BLAST was used as
well as a genotyping software tool for the hexon hyper-
variable regions, loops 1 and 2. This genotyping tool was
developed by Kalpana Dommaraju (Ph.D. dissertation, in
preparation) following the criteria published by Madisch
et al.*% It also included typing of the penton base using
the hypervariable region 1 and the RGD loop sequences
and typing of the fiber by its knob sequence. Following
visual inspection and editing, genome sequence and
annotation data were deposited into the GenBank as part
of Bioproject id PRINA70469.

Following GenBank retrieval, additional higher resolu-
tion annotation of individual genomes of interest was
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performed using GATU (https://www.viprbrc.org) with
manual methods to ensure accuracy. GenBank records
will be updated to reflect these refined annotations.

Computational genome analyses

Publicly accessible software tools were used to perform
DNA sequence analyses, as described earlier”’. Exceptions
are noted below in the discussion of specific analyses. The
NIH version of BLAST was used to query for sequences
similarities against the GenBank database (http://blast.
ncbi.nlm.nih.gov/Blast.cgi).

Phylogenetic analysis

Sequences were aligned using the ClustalW tool in
the Molecular Evolutionary Genetic Analysis version
6 software package (MEGA6; www.megasoftware.net/).
Phylogenetic trees were constructed using the maximum-
parsimony method with a bootstrap test of 1000 replicates
and the Tree-Bisection-Reconnection (TBR) model. The
whole-genome tree was drawn using the “Interactive Tree
of Life” software (iTOL v3; itol.embl.de).

Nucleotide diversity

Nucleotide diversity plots were constructed using the
DNA Sequence Polymorphism software (DnaSP v5.10.01;
www.ub.edu/dnasp/). Sites with alignment gaps were
excluded. The analysis was performed with a sliding
window length of 100 bps and step size of 25 bps. Pairwise
sequence identities from multiple sequence alignments
were calculated using the Sequence Identities and Simi-
larities software (SIAS; http://imed.med.ucm.es/Tools/
sias_help.html).

Recombination analysis

Simplot, a web-accessible software tool, was used to
query the genomes and genes for nucleotide sequence
recombination. This software includes Bootscan, a tool
that was used to complete the nucleotide sequence
recombination assessment of the ClustalW-aligned
genesg?’. For genes, default parameter settings were used
for the window size (200 nucleotides [nt]), step size (20
nt), replicates used (n = 100), gap stripping (on), distance
model (Kimura), and tree model (neighbor-joining).
Similarly, whole genomes were analyzed, starting with an
initial alignment using ClustalW and following with
recombination analysis using Simplot and Bootscan. For
this much larger DNA sequence, only the window size
and step size were altered (1000 and 200, respectively),
with the remainder of the default parameters unchanged.

Homology modeling

A homology penton base protein model was built in the
Swiss-Model ExPASy software (swissmodel.expasy.org)
using the crystal structure of HAdV-C2 as the template
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(Protein Data Bank [PDB] code 1X9TA). UCSF Chimera
v1.9 (www.cgl.ucsf.edu/chimera/) was used for visualiza-
tion and root-mean-square deviation (RMSD) analysis.

Statistical analysis

Nucleotide identity differences between HAdV (A-D)
species were analyzed using Kruskal-Wallis test and the
data represented as a boxplot. A P-value of < 0.05 was
considered statistically significant. This analysis was per-
formed using GraphPad Prism v6.0 (GraphPad Software;
San Diego, CA).

Results
Large-scale genomic and bioinformatic analysis of 95
adenoviruses

Ninety-five HAdV genomes isolated from currently
circulating and historically intriguing pathogens were
sequenced, albeit ten genomes were only partially com-
pleted due to template quality and quantity. However, the
partial genomic sequences allow identification of the
“marker” genes for determining HAdV molecular types, in
accordance with GenBank- and ICTV-accepted practices
of metagenomics'”**, and provided valuable information.
As shown in Table 1, virus samples, stocks, or purified
genomic DNA were obtained from one researcher and six
collections and archives, with selection criteria deter-
mined by the collaborator and included sampling
then-currently circulating pathogens of interest and
“intriguing” historical isolates from archives. All of the
adenoviruses were identified by serotyping methods by
the original researchers and supplied as samples from eye,
nasopharynx, pharynx, endotracheum, and feces, or noted
as “unknown”.

Whole-genome analysis of sequenced HAdVs species (A-D)

Initial post-sequencing, JCVI pipeline-based, automated
annotation, supplemented with two HAdV genotyping
tools (in beta testing), provided a “first-pass” character-
ization of these genomes. These were submitted to Gen-
Bank, ahead of publication, and assigned accession
numbers, as shown in Table 1.

To provide a more thorough and individualized analysis
of each whole-genome sequence, additional computa-
tional analyses were performed. The newly obtained
sequences were typed to four HAdV species, including
species A (n=1), species B (n=35), species C (n=19),
and species D (7 =40). Upon BLAST and whole-genome
phylogenetic analysis, 67 sequences were characterized as
previously known genotypes, as shown in the whole-
genome phylogenetic trees (Fig. 1a, b). In these trees, the
newly obtained genomes are noted by their GenBank
accession numbers; there are two trees presented in order
to highlight the larger HAdV-D sample size. Representa-
tive genomes from species E, F, and G are included for
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HAdV species used for references are shown in red

Fig. 1 Human adenovirus whole-genome phylogenetic trees for (a) HAdV-A through C and (b) HAdV-D complete genomic sequences. Two
trees are presented in order to display the larger number of species D clearly. Representatives of species E, F, and G are presented for reference. Trees
were constructed using the maximum-parsimony analysis, following alignment using the ClustalW tool in the Molecular Evolutionary Genetic

Analysis version 6 software package (MEGA6; www.megasoftware.net/), with a bootstrap test of 1000 replicates and default parameters and Tree-
Bisection-Reconnection (TBR) method. Each clade is highlighted according to specific HAdV species using a color code as shown. Novel sequences
are shown in blue and displayed as GenBank accession numbers (acc. nos.). Bootstrap values are displayed on the branches and nodes for different

reference. The remaining 18 sequences showed 1.65 to
7.48% nucleotide differences and diverged into separate
subclades from existing HAdV types. These sequences
were considered as novel genotypes, and were identified
as either HAdV-B or D. One novel genome, KF633445,
clades with species B and appears to have a zoonotic
origin (data not shown).

By maximum-parsimony phylogenetic analysis, one
sequence in HAdV-A grouped with type 31, an important
pathogen in allotransplant recipients’. Within the HAdV-
B genotypes, the majority of isolates segregated with types
B3 (n=15), B7 (n=11), and B55 (# = 2). This reflected
the collections and respiratory pathogen interests of two
of the collaborators, and comprised the majority of sam-
ples in the University of Florida archive of historically
intriguing pathogens. The genotype distribution in species
HAdV-C were C1 (n=7), C2 (n=7), C5 (n=3), and C6
(n=2), again reflecting the above respiratory disease
interests. For two other collaborators, ocular disease-
associated pathogens are represented by the majority of
submitted samples; these genotypes are in species HAdV-
D (43%) and segregate with isolates associated with epi-
demic keratoconjunctivitis, including HAdV-D8 (n=5),
-D37 (n=2), -D53 (n=1), -D56 (n =4), and -D64 (n =
1), reflecting the clinical settings in which the samples
were obtained. This multi-center, large-scale genomics
study identifies a wide distribution of HAdV-A. B, C, and
D genotypes. The genomes identified are consistent with
those noted as respiratory and ocular pathogens in the
literature, and were available given the interests of indi-
vidual centers in these diseases, for example, HAdV-B7
with respiratory diseases and HAdV-D8 with ocular
diseases.

Sequence diversity of HAdVs genotypes in species A
through D

HAdV genome sequences are largely conserved from
isolate to isolate, of the same type, e.g., HAdV-B7, over
time®>™’, as expected for dsDNA genomes. An analysis
that included all of the prototype genome sequences for
HAdV-A, -B, -C, and -D genotypes shows the average
nucleotide identities within species were 85.5, 89.7, 95.5,
and 92.3%, respectively (Fig. 2a). It was reconfirmed with
this large data set that the genomic regions that primarily

influence sequence and genome diversity include the
three major capsid genes: penton base, hexon, and fiber,
along with the E3 transcription unit (at distinct loci).
These capsid genes are the same regions employed for
HAdV genotyping and identification of recombinants'®"”.

Nucleotide sequence diversity analyses and graphs
comparing the major capsid genes for each type in HAdV-
A through -D reaffirm the relationships reported in the
literature (Fig. 2b, c). The nucleotide diversity plot
(Fig. 2¢) depicts the HAdV-C penton base genes to be
relatively conserved, reflecting previous observations for
these species C genotypes®. For HAdV-D, there are two
distinct hypervariable regions (HVR-1 and 2) within the
penton base gene; these correspond to the two hyper-
variable loop domains (HVL1 and HVL2) on the protein.
In contrast, the penton base gene of HAdV-A and -B are
entirely hypervariable. This is reflected also in average
intra-species sequence divergence rates for the HAdV-A,
-B, -C, and -D penton base gene of 11.7, 9.0, 0.8, and 4.6%,
respectively (Fig. 2b).

The hexon protein contains two hypervariable loop
domains (HVL1 and HVL2) that form the “epsilon” epi-
tope, determinants that are recognized by neutralizing
antibodies and are the basis for serum or virus neu-
tralization (SN or VN) and serotyping”*”*°. For this data
set, the average nucleotide divergence rates for the hexon
gene was 16.3, 12.3, 11.7, and 6.9% for HAdV-A, -B, -C,
and -D, respectively.

The trimeric fiber protein contains a N-terminal tail, a
central shaft, and a C-terminal knob; the latter mediates
the primary interaction with host cells, i.e., cell tropism.
The fiber knob contains the “gamma” epitope, which was
useful for serotyping through hemagglutination inhibition
(HI)”. In comparison to the other major capsid genes, the
fiber was found to be entirely hypervariable in all four
HAQJV species (Fig. 2c). Notably, the fiber open-reading
frames for HAdV-B and D are just over half the length of
those for HAdV-A and C, consistent with the literature,
but all four species show a similar degree of diversity
(Fig. 2b, c).

Characterization of hypervariable capsid genes
To classify the molecular types for each adenoviral
genome and to characterize in detail the 18 novel
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Fig. 2 Nucleotide sequence identity and diversity data for HAdV species (A-D) prototype sequences. a “Box-and-whiskers” plots show
percent nucleotide identity of prototype HAdV complete genome sequences. The "box” represents the median and interquartile range (IQR), and the
“whiskers” show both minimum and maximum values. The spacing between the boxes indicates the degree of spread; as depicted, the HAdV-C and
D species are relatively homogenous. The nucleotide identities are significantly different for HAdV species analyzed (Kruskal-Wallis, P < 0.0001).

b Average nucleotide diversity of the major capsid genes between each type within HAdV-A through D. ¢ Nucleotide diversity (rr) plots showing the
average number of nucleotide differences per site along each gene for HAdV-A through D, calculated for penton base, hexon, and fiber prototype
sequences. The plot was constructed using DnaSP v5 ((http://www.ub.edu/dnasp/), with a 100 nucleotide window and 25 nucleotide step size.
Nucleotide alignments with gaps were excluded and graphs were constructed using Microsoft Excel software. The lines in the graph represent “trend
lines”. Viruses within HADV-B and -D had shorter fiber genes than HAdV-A or -C and the trend lines are denoted accordingly
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Fig. 3 Maximum-parsimony phylogenetic analysis of the penton base. Penton base gene sequences of a HAdV species A-C genotypes and
b HAdV species D genotypes are presented; two trees allow for discrimination of the larger numbers of species D genotypes. Representatives of
species E, F, and G are included for reference. Sequences obtained from this study are displayed as GenBank accession numbers. Novel HAdVs in this
data set, identified by whole-genome analysis, are marked with blue dots. A novel penton base gene (KF268355; HAdV-D72) that diverged
significantly from previously described HAdV-D sequences is identified by a red dot. Trees were constructed using the maximum-parsimony analysis,
following alignment using the ClustalW tool in the Molecular Evolutionary Genetic Analysis v6 software package (MEGA6;www.megasoftware.net/),
with a bootstrap test of 1000 replicates and default parameters, and Tree-Bisection-Reconnection (TBR) method in MEGA 6.0
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genotype sequences identified by whole-genome analysis
(Fig. 1), maximum-parsimony phylogenetic analyses were
performed for the capsid genes. The penton base phylo-
genetic tree for HAdV-A through -C and, separately, for
HAdV-D are displayed in Fig. 3a, b, respectively. All three
novel sequences in HAdV-B clustered to one of the pre-
viously known types B16, B35, and B21, with 99%

bootstrap support (Fig. 3a). Among the 15 novel
sequences in HAdV-D, 14 are clustered with the pre-
viously known types, with the majority showing 80-99%
bootstrap support (blue dots, Fig. 3b). HAdV-D72 formed
a separate subclade and is recognized as a novel genotype
(Fig. 3b). Using Simplot and Bootscan software for
sequence recombination analyses, the penton base
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(see figure on previous page)

Fig. 4 Recombination and structural modeling analysis of putative novel penton base gene in HAdV-D72. a SimPlot analysis demonstrates
the genetic distances to HAdV reference sequences across the penton base gene, in which the x-axis denotes gene nucleotide position and the
percentages of permutated trees that supported grouping are marked along the y-axis (http://sray.med.som jhmi.edu/SCRoftware/simplot/).

b Bootscan analysis demonstrates phylogenetic relationships to the reference strains. Each HAdV reference genotype is color coded; only closely
related HAdV types are presented for clarity. Penton base gene recombination between hypervariable region (HVR)-1 and the RGD motif-containing
HVR-2 is shown. The HVR-1 fragment showed high similarity with HAdV-D37, while HVR-2 was dissimilar to existing reference sequences, indicating
both recombination and a novel gene segment. Prior to recombination analysis, sequences were aligned using the ClustalW tool in the Molecular
Evolutionary Genetic Analysis v6 software package (MEGA6; www.megasoftware.net/). Default parameter settings for the Simplot software were used
for analyzing the hexon sequences: window size (200 nucleotides [nt]), step size (20 nt), replicates used (n1/4100), gap stripping (on), distance model
(Kimura) and tree model (neighbor-joining). ¢ Homology modeling of the penton base in which the HAdV-D72 amino-acid sequences (blue) is
superimposed over that of HAdV-D37 (cyan). Superimposition of structural models showed significant structural variation in RGD motif location
(indicated in red). Homology model was built in Swiss ExPASy (http://swissmodel.expasy.org) using the crystal structure of HAAV-C2 as the template

([PDB] code 1X9TA)

sequence of HAdV-D72 was found to be recombinant,
with its HVR-1 deriving from HAdV-D37 and its HVR-2
comprising a novel sequence (18% nucleotide divergence
from nearest HAdV-D15), as shown in Fig. 4a, b,
respectively. Penton base HVR-2 contains the canonical
Arg-Gly-Asp (RGD) motif that interacts with host cell
integrins to mediate virus endocytosis***'. To examine
this closer, a penton base homology protein model for this
novel sequence was generated, superimposed with HAdV-
D37 for visualizing the structural variations (Fig. 4c). The
RMSD for the two superimposed structures was 0.419
with structural distance 8.54 and Q-value 0.869. In the
structural model, crucial p-sheets for the novel RGD loop
are absent and an additional a-helix is projected. Intri-
guingly, the RGD motif falls within the crucial a-helix.
Novelties in the penton base and fiber (noted below)
genes led to the approval by the Human Adenovirus
Working Group and NCBI of a new type number (HAdV-
D72) (Accession no. KF268335).

The hexon gene sequences were analyzed by maximum-
parsimony phylogenetic analysis, with trees for HAdV-A,
-B, and -C and for HAdV-D, separately, presented in
Fig. 5a, b, respectively. Three novel HAdV-B genotypes
contain hexon sequences that clustered with previously
typed HAdV-B3, -B34, and -B21. Similarly, all HAdV-D
hexon genes clustered with previously known types.
Therefore, no unique hexon molecular types were iden-
tified in the whole and partial genome sequences of this
data set.

Phylogenetic trees for the fiber genes of viruses
sequenced in species HAdV-A, -B, and -C and for HAdV-
D, separately, are shown in Fig. 6a, b, respectively. As
displayed, the three novel HAdV-B genotypes contain
fiber sequences that clustered with the HAdV-B7 (one)
and -B16 fiber genes (two). Among the 15 novel
sequences in HAdV-D, 13 contained fiber genes with
homology to published counterpart sequences. The
remaining two sequences each formed distinct clades with
significant bootstrap support (red dots, Fig. 6b).

Calculated nucleotide sequence differences to the nearest
fiber sequences (HAdV-D67 and -D44) were 16% and 9%,
respectively. These two emergent adenoviruses, with
putatively novel fiber genes, were recognized with new
type numbers by NCBI as HAdV-D71 and -D72
(KF268207 and KF268335, respectively). It is noteworthy
that while HAdV-D72 contains both a novel penton base
protein and novel fiber protein, it has a hexon gene
sequence that is highly similar to HAdV-D30.

HAdV molecular types and novel genotypes

Eighty-five newly obtained whole-genome sequences
isolated from respiratory, ocular, and gastrointestinal
pathogens partition into four HAdV species: A (n=1), B
(n=35), C (n=19), and D (n=40). The numbers are
arbitrarily skewed due to the number of samples provided
by collaborators and the success of the sequencing run
due to the quality and quantity of the DNA. These gen-
omes and their genotype-defining markers, i.e., the three
major capsid genes, are presented in Fig. 7. It is clear that
recombination is a major evolution pathway by which
novel and emergent HAdV pathogens arise. Even with a
skewed and “small” sample size of 85, recombination is
observed in significant numbers. Of the 30 HAdV-D
whole-genomes sequenced, 22 (73.3%) were clearly
recombinants; for HAdV-B and -C, 07/35 (20%) and 01/
19 (5.3%), respectively, were clear recombinants. In
summary, 18 novel genotypes were found.

Discussion

The Human Adenovirus (HAdV) Genome Sequencing
Project was a collaborative project between the Adeno-
virus Genome Sequencing Consortium and the J. Venter
Institute (JCVI) Genomic Sequencing Center for Infec-
tious Diseases (GSC) (Rockville, MD). Using HAdV as a
model organism, several sequencing platforms, sequen-
cing strategies, and software tools were tested, modified,
and/or developed. After test runs, the optimal small-
genome sequencing strategy was a two-platform protocol:
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Fig. 5 Maximum-parsimony phylogenetic analysis for hexon. Gene sequences of hexons from a HAdV-A, -B, and -C and b HAdV-D are presented.
Trees were constructed, following sequence alignment with ClustalW, using the maximum-parsimony option of the Molecular Evolutionary Genetic
Analysis v6 software package (MEGA6; www.megasoftware.net/) and implementing a bootstrap test of 1000 replicates and default parameters.
Sequences derived from this large-scale sequencing study are identified by their GenBank accession codes. Putative novel genotypes are denoted by
blue dots. No novel hexon sequence was found
J

Ilumina HiSeq (San Diego, CA) and Roche 454 GS-FLX
(Branford, CT). The advantages of each provided for the
shortfalls inherent with the other. The protocol is
designed to identify and type rapidly an unknown HAdV
pathogen.

Whole-genome sequencing and preliminary bioinfor-
matics analysis of 95 samples were performed to
characterize the predominance of genotypes under
certain conditions and to study the molecular evolution of
HAdV pathogens, e.g., the numbers of recombinant
viruses. Of the 85 whole-genomes sequenced, 18 are of
previously uncharacterized HAdVs, all of which
evolved by homologous recombination, including three
novel HAdV-B types and 15 novel HAdV-D types.
Partially sequenced viral genomes are hallmarks of
metagenomics survey projects and have been accepted by
both NCBI and ICTV recently’. In this survey,
there are ten partial genome sequences, all of which were
from samples collected in eye clinics. The large-
scale sampling and processing, including variable viral
titers, likely contributed to the genomic DNA quality
and quantity. Even with partial sequences, three ocular
isolates were characterized as highly similar to HAdV-DS8,

a known EKC pathogen, with penton base, hexon, and
fiber sequences (P8H8F8) (KF429753, KF429746, and
KF429743). For KF429749, the penton and fiber
are also highly similar to HADV-DS8, however, the
hexon sequence is incomplete. KF429747 and KF429750
are both recombinants at the three capsid genes used
for HAdV typing, having sequence similarities
corresponding to a penton base of HAdV-D9 and a hexon
of HAdV-D15. The latter has an incomplete fiber gene
sequence and the former has a fiber sequence with
identity to HAdV-D9. KF268323 is similar to HAdV-D64
with a preliminary recombinant genotyping of
P22H19F37. Similarly, KF268326 is similar to HAdV-D17,
with a preliminary genotyping as P29D17F29. KF268200
has a preliminary genotype of P48H45 with a novel fiber.
The final partial genome KF429745 was noted with a
preliminary genotype of P9H22 and an unsequenced fiber
gene.

In the continuation of understanding sequence diver-
gence and proteotypes'®, two novel fiber genes and one
novel penton base gene were defined in two viruses within
species HAdV-D. These analyses confirm genome
recombination and lateral genomic transfer as a major
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KF429752
KF268132
KF268133

Fig. 6 Maximum-parsimony phylogenetic analysis for the fiber genes. Sequences of a HAdV-A, -B, and -C and b HAdV-D are presented as
phylogenetic trees. Sequences derived from this large-scale sequencing study are identified by their GenBank accession codes. Novel HAdV genotype
sequences identified by whole-genome analysis are denoted with blue dots. Novel fiber genes (KF268207, HAdV-D71, and KF268355, D72) with
sequences that diverged significantly with known HAdV-D type sequences are identified by red dots. Trees were constructed, following sequence
alignment with ClustalW, using the maximum-parsimony option of the Molecular Evolutionary Genetic Analysis v6 software package (MEGA6; www.
megasoftware.net/) and implementing a bootstrap test of 1000 replicates and default parameters
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molecular evolution mechanism in the genesis of novel
HAdV pathogens and provide an algorithm for rapid
genomic sequencing and in silico identification and
characterization of emergent viral pathogens. Genomics
and bioinformatics allow a thorough and high-resolution
analysis of currently circulating pathogens, in some cases,
providing insights into why a particular isolate is either
more or less pathogenic, infectious, or contagious®”. This
approach is invaluable to understanding pathogens that
were similarly historically intriguing but no longer cir-
culating. As an example, a respiratory adenoviral patho-
gen causing a fatality and isolated in the U.S. was studied
and archived in a Germany repository. It was identified as
an adenovirus that serotyped at the epsilon epitope as
both HAdV-B21 and -B16, both acute respiratory disease
(ARD) pathogens, and at the gamma epitope as HAdV-
B16. It was named “Ad21 + 16H16”, which was not
standard. Following its genome determination in this
study, subsequent analysis beyond serotyping the hexon
and fiber reveals it was an emergent and is a predicted
“coming” human pathogen. Uniquely, it contains a multi-
recombinant genome that incorporates elements of two
SAdVs along with two HAdVs, suggesting multi-
directional and reciprocal zoonosis and anthroponosis
(prototype (HQ883276 preparation).

Another goal was to assist NCBI/GenBank in standar-
dizing the HAdV genome records by providing an

example to the research community, in providing a large
set of similarly annotated and formatted HAdV genome
data, including an informative GenBank “universal” name
that included “adenovirus species/host/location/lab
name/year/type number [serological/genome markers]”;
and example of this is “Adenovirus D human/DEU/IAI-1/
2005/53[P37H22F8].”

This is the first large-scale adenovirus study in which
whole-genome data and DNA sequence analyses were
used to discriminate and to type and characterize HAdV
pathogens. In the past, only serology-based typing of the
epsilon (SN) and/or gamma (HI) epitopes were reported.
The gamma epitope is notoriously difficult to determine
let alone repeat, even by “experts”***®, Given the numbers
of recombinants, the past surveys are flawed for a deeper
understanding of this pathogen. For a comprehensive
understanding of what makes a pathogen a pathogen, and
to what degree, a solid definition of what exactly con-
stitutes a pathogen is critical. Three examples illustrate
this clearly. A novel recombinant strain of HAdV-D22,
(“22H8”) with a penton sequence identical to type 37 was
reported as a highly contagious epidemic kerato-
conjunctivitis (EKC) pathogen in Germany**. Since its
first isolation in 1960 and to date, HAdV-D22 had never
been associated with EKC*. Genome analysis showed the
emergent pathogen was a recombinant that incorporated
only the epsilon epitope of HAdV-D22 into the genome
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HAdV types | penton base hexon fiber
A31 (n=1) 31 31 31
B3 (n=15) 3 3 3
B7 (n=10) 7 7 7
B66 (n=2) 7 i 3
B11 (n=1) ikl 11 11
B34 (n=1) 34 34 34
B35 (n=1) 35 55 35
B55 (n=2) 14 11 14
B novel (n=1) 35 34 7
B novel (n=1) 16 3 16
B novel (n=1) 21 21 16
C1 (n=7) 1 1 1
C2 (n=7) 2 2 2
C5 (n=2)* 5 5 5
C5 (n=1)* 2 5 5
C6 (n=2) 6 6 6
D8 (n=5) 8 8 8
D15 (n=1) 15 15 15
D37 (n=2) S 37 s
D53 (n=1) 37 22 8
D56 (n=4) 9 15 9
D58 (n=1) 49 58 29
D64 (n=1) 22 19 37
D novel (n=1) By By 17
D novel (n=1) 38 32 27
D novel (n=1) 28 37 38
D novel (n=1) 33 15 9
D novel (n=1) 67 9 15
D novel (n=1) 23 32 62
D novel (n=1) 67 28 60
D novel (n=1) 49 46 9
D novel (n=1) 9 46 39
D novel (n=1) 48 17 30
D novel (n=1) 67 37 45
D novel (n=1) 42 38 30
D novel (n=1) 48 33 30
D71 novel (n=1) 9 20 novel (71)
D72 novel (n=1)| novel (72) 30 novel (72)
Fig. 7 Summary of genotypes and molecular types. For each isolate sequenced and providing whole-genome sequence, their capsid genes are
noted, with the number of related isolates in parenthesis as “n=". Capsid genes that were shared within each HAdV type are highlighted. HAdV
genotypes that are novel recombinants are indicated in blue and HAdV types containing novel genes indicated in red; novel genotype number is
indicated in red and in parenthesis. *The penton bases for HAdV-C species are highly conserved and, therefore, these penton base genes did not
contribute to HAdV typing in this species by whole-genome analysis

chassis that contained a penton based derived from
HAdV-D37 and a fiber transferred from HAdV-D8, both
of which are EKC pathogensm; it was named HAdV-D53
in recognition of a novel adenoviral pathogen. Further-
more, in a subsequent re-analysis of a collection of EKC
pathogens at the Japan National Institute of Infectious
Diseases, based on data from Walsh et al.*!, HAdV-D53
was found to have been a major circulating ocular
pathogen since 1996 and was the third most common

EKC pathogen, having been mis-identified “as types 8, 22,
or 37” (ref.*®). The correct identification focuses efforts to
prevent or remedy HAdV-D37-caused EKC infections to
be directed at HAdV-37 chassis rather than the non-
pathogenic HAdV-D22. A similar example was reported
for the emergent EKC pathogen and recombinant HAdV-
D64, comprising the epsilon epitope of non-pathogenic
HAdV-D19 and the EKC pathogen HAdV-D37%. A third
example is that of the “Trojan Horse” pathogen HAdV-
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B55%. This is a highly contagious ARD pathogen that is a
recombinant that presents the epsilon epitope of a renal
pathogen, HAdV-B11 in a genome and proteome of an
ARD pathogen, HAdV-B14. No other HAdV-B11 strain
or genome types are respiratory pathogens. HAdV-B11
has been associated with renal disease in immunocom-
promised renal transplant patients” and likely has limited
circulation in the general population, hence an immu-
nologically naive population as HAdV-B14 circulates
currently*” ™,

This study provides support that the novel recombinant
genotypes are relevant pathogens despite possible spora-
dic reports subsequent to the initial identification and
recognition of the prototype. As noted earlier for HAdV-
D53, recognition of a novel pathogen may be followed by
re-examination of archives and subsequent identification
of mistyped pathogens®. Interestingly, HAdV-D53 was
found in an archive of historically intriguing pathogens,
collected in Connecticut (USA; 2005). It was typed ser-
ologically and mis-identified as HAdV-D22, a non-EKC
pathogen of low virulence. The genome data (KF268197)
presented in this study shows identity to the prototype
HAdV-D53, and reinforces the importance of high-
resolution data in identifying and typing pathogens for a
better understanding of their molecular evolution, dis-
tribution, and epidemiology. This recognition of a third
sampling and third country of isolation indicates that
HAdV-D53 and other novel HAdV genotypes may be
underreported and underappreciated as important human
pathogens, particularly if only the hexon and/or fiber
serotyping epitopes are used for identity and typing.

Additionally, a specimen associated with gastro-
intestinal disease was included. It was isolated from a
stool sample of an AIDS patient (aged 46) in 1996 and was
initially typed by hexon sequencing as HAdV-F41. The
virus isolated and amplified in cell culture was thought to
be interesting as it was not serum neutralized by anti-
serum to HAdV-F41. However, upon genome sequencing,
this isolate shows sequence identity to prototype HAdV-
D58 (HQ883276), isolated in 1996 from the stool of a 31-
year-old AIDS patient who presented with severe chronic
diarrhea. Interestingly, HAdV-D58 (KF268319) contained
a serologically unique hexon and a recombinant fiber that
has a partial proximal shaft sequence derived from
HAdV-D25 and a distal shaft plus knob contributed by
HAdV-D29. A comparison of the sequences of KF268319
to the prototype reveals a nearly identical virus: Genome
(99.4%); penton base (99.3%); hexon (99.8%); and fiber
(100%). In retrospect, the patient, with chronic diarrhea,
had a co-infection of two HAdVs; apparently, HAdV-F41
did not replicate well in cell culture prior to DNA isola-
tion for sequencing. It should be noted that one objection
to using genome data for recognizing novel HAdV types,
as opposed to only hexon and fiber epitopes, was that
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many “newly-recognized” HAdV species D serotypes from
AIDS patients in the 1990s were never reported again. In
the context of HAdV evolution and pathogen genesis, this
objection is irrelevant, as demonstrated for this isolate of
HAdV-D58 and for the previously noted HAdV-D53.

Viruses represent a highly tractable model system for
studying evolutionary biology. The HAdV genome is
largely conserved, but interrupted in stereotypical fashion
by hypervariability at four major regions of the genome,
specifically the three major capsid genes and the E3
transcription unit. By comparison of genomic differences
between HAdV major capsid regions, marked differences
across species were noted. For example, the penton base
genes of HADV-C types are relatively conserved. In
contrast, HAdV-A and -B penton base genes are largely
hypervariable across their entire open-reading frames.
HAdV-D penton base genes show overall conservation
interrupted by two distinct hypervariable regions,
accounting for two distinct hypervariable loops on the
external capsid surface, HVL1 and HVL2. We previously
showed that these two hypervariable regions of the penton
base gene often undergo homologous recombination, and
at times, independent of one another’’. HAdV-D72 was
typed as a novel genotype on the basis of differential
recombination within the penton base gene, specifically
involving RGD loop (HVL2). Thus, it appears that viruses
within HAdV-D may more frequently utilize penton base
gene recombination for their evolution than other HAdV
species. Also notable was the fiber gene. Viruses within
HADV-B and -D had shorter fiber genes than HAdV-A or
-C, but for all the four species, the fiber sequences showed
a similar degree of diversity. A short trimeric fiber protein
is thought to be more rigid, perhaps with more strict
receptor interactions and cellular specificity. However, a
short fiber may permit docking of penton base proteins to
host cell integrins independent of fiber knob binding to a
primary adenovirus receptor, and allow for fiber-
independent cell entry’’. These data suggest that fiber
length matters, but in a complex fashion. Furthermore, we
and others have shown a correlation between fiber knob
amino acids and corneal tropism*>*%, Altogether, these
data are consistent with an important role for variations in
fiber length and nucleotide content in infectivity and
cellular tropism.

The range of HAdV types in circulation reflects an
indeterminate combination of asymptomatic carrier states
and the global burden of disease caused by adenoviruses,
and we lack sufficient information about the human
source of each sample and their condition to draw con-
clusions. However, HAdV-A31, the only HAdV-A iden-
tified in this study, is a pathogen of allogeneic
hematopoietic stem cell transplant recipients. In contrast,
a majority of HAdV-B types identified were -B7 and -B3,
both associated with severe respiratory infections, along
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with the HAdV-B55 discussed above. HAdV-Cs are
important pathogens in immunocompromised persons
and are primarily associated with respiratory infection.
Infections from viruses within HAdV-C are all commonly
seen in young children. In our analysis, all the HAdV-Cs
we identified had been previously characterized.

Identification of two HAdV-D types with novel fiber
genes suggests as yet unidentified parent viruses for which
the full genomes have not yet been characterized. Though
the RGD loop was not solved in the original crystal
structure (1X9T), our modeling analysis also suggested
significant structural variation in the penton base protein
RGD loop of the aforementioned HAdV-D72. The RGD
motif is thought to be crucial to adenovirus internaliza-
tion, and the RGD motif predicted within a novel a-helix
structure in HAdV-D72 likely has an impact on cellular
interactions. Though the conformation of the protein in
this disordered loop is not informative, identification of
a-helix over p-sheets in the comparative modeling ana-
lysis could be significant. This further warrants the need
for deeper high-resolution structural analysis. Notably,
the fiber protein of HAdV-D72 was also novel.

Altogether, HAdV types characterized in this survey
were all from the four HAdV species with the most
members, and were either replicates of viruses already
whole-genome sequenced and characterized or newly
identified recombinants, and two of the latter contained
novel penton base and/or fiber genes. All HAdV-Ds with
archived whole-genome sequences show evidence for
homologous recombination in at least two loci in their
genomes. In our study, recombination among HAdV-Ds
was much more common than finding novel capsid genes,
supporting the primacy of homologous recombination in
the molecular evolution of HAdV-D. Our data further
support evolution of HAdV-B by homologous recombi-
nation, but less assuredly of HAdV-C. However, the
numbers of total viruses within HAdV-C was too few to
allow for a conclusion. Finally, the clinical significance of
those novel HAdV types identified in this analysis remains
unknown. Regardless, our results taken together with
recent descriptions of putatively new HAdV types causing
serious diseases, highlights HAdV evolution as a persis-
tent threat to public health.
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