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A B S T R A C T

Background. In spite of its invasive nature and risks, kidney
biopsy is currently required for precise diagnosis of many
chronic kidney diseases (CKDs). Here, we explored the hypoth-
esis that analysis of the urinary proteome can discriminate

different types of CKD irrespective of the underlying mecha-
nism of disease.
Methods. We used data from the proteome analyses of 1180
urine samples from patients with different types of CKD, gener-
ated by capillary electrophoresis coupled to mass spectrometry.
A set of 706 samples served as the discovery cohort, and 474||
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|samples were used for independent validation. For each CKD

type, peptide biomarkers were defined using statistical analysis
adjusted for multiple testing. Potential biomarkers of statistical
significance were combined in support vector machine (SVM)-
based classifiers.
Results. For seven different types of CKD, several potential uri-
nary biomarker peptides (ranging from 116 to 619 peptides)
were defined and combined into SVM-based classifiers specific
for each CKD. These classifiers were validated in an independ-
ent cohort and showed good to excellent accuracy
for discrimination of one CKD type from the others (area under
the receiver operating characteristic curve ranged from 0.77 to
0.95). Sequence analysis of the biomarkers provided further
information that may clarify the underlying pathophysiology.
Conclusions. Our data indicate that urinary proteome analysis
has the potential to identify various types of CKD defined by
pathological assessment of renal biopsies and current clinical
practice in general. Moreover, these approaches may provide
information to model molecular changes per CKD.

Keywords: biomarkers, chronic kidney disease, peptides, pro-
teome analysis, urine

I N T R O D U C T I O N

The prevalence of chronic kidney disease (CKD), defined as
structural kidney damage or significant loss of glomerular filtra-
tion rate (GFR) (<60 mL/min/1.73 m2 for at least 3 months)
[1], is estimated to be 8–16% worldwide, with an increasing
trend [2, 3]. Therefore, CKD is now recognized as a global pub-
lic health problem. The frequencies of the various types of CKD
vary between countries, likely due to differences in genetically
determined mechanisms of disease, environmental influences
and criteria for performance of a kidney biopsy. A correct
assessment of a CKD patient requires a precise diagnosis to
guide the most appropriate treatment.

The diagnostic workup comprises assessment of clinical
features (e.g. nephritic syndrome, isolated hematuria, rapidly
progressive glomerulonephritis), histological findings [e.g.
IgA nephropathy (IgAN)], biological mechanisms (e.g. hemo-
lytic uremic syndrome) and possibly genetic factors (e.g.
mutation in Col4a5). However, kidney biopsy is usually not
applied to diagnose CKD in patients with diabetes and iso-
lated hypertension as it is an invasive procedure with inherent
risk and likely to provide no additional information for the
clinical management [4]. As a consequence, misdiagnosis may
occur. As an example, the existence of hypertensive nephrop-
athy (nephrosclerosis) has been called into question [5].
With the exception of diabetes-associated CKD, the determi-
nation of the cause of renal disease is necessary and becomes
more challenging. A variety of diagnostic tests may be pur-
sued to refine the clinical diagnosis, with biopsy remaining
the gold standard to assess diagnostic and prognostic histo-
logical features. However, kidney biopsy is an invasive proce-
dure, and its diagnostic accuracy is sometimes limited [6].
Moreover, characterization of the urinary proteome may pro-
vide useful information about response to treatment.

Recommendations for development of biomarkers using pro-
teomics applicable for clinical care have recently been pub-
lished [7, 8].

We have demonstrated before that analysis of the urinary
proteome using capillary electrophoresis coupled to mass spec-
trometry (CE-MS) enables discrimination between patients
with and without CKD [9], as well as prediction of progression
of CKD, irrespective of the underlying disease mechanism [10].
The CE-MS technology allows the analysis of naturally occur-
ring peptides (without tryptic digestion). This approach is often
also called peptidomics, which is a subfield of proteomics.
Using CE-MS, specific biomarkers for different types of CKD,
such as ANCA-associated vasculitis, IgAN and diabetic nephr-
opathy (DN), were defined [11–13]. In the present study, we
assessed the value of the urinary proteome, as defined by CE-
MS analysis, for the noninvasive discrimination of various types
of CKD. Our results support the presence of urinary peptides
with discriminatory power for different types of CKD. If the
findings are validated in additional studies, such an approach to
define CKD based on urinary profiles may be especially helpful
at early stages of clinical disease, when a biopsy is not feasible
due to small kidneys or comorbidities, or if a patient declines
biopsy.

M A T E R I A L S A N D M E T H O D S

Patient cohort

Urinary proteome datasets were extracted from the Human
Urinary Proteome database [14–16], which currently includes
data from analysis of more than 35 000 urine samples. All data-
sets of patients with CKD were selected irrespective of the diag-
nosis. However, if the specific CKD was represented by <30
datasets, patients with this type of CKD and the corresponding
datasets were excluded. Following this selection procedure,
1180 datasets of patients representing eight major causes of
CKD were extracted.

The study adhered to the regulations on the protection of
individuals participating in medical research and was per-
formed in accordance with the principles of the Declaration of
Helsinki. All datasets had been anonymized. The study was
approved by the local ethics committee in Hanover (No. 3096-
2016).

The diagnoses were biopsy-proven except for DN and hyper-
tensive nephrosclerosis (N). The patients from the cohort had
been diagnosed at 32 different centers; the type of CKD had
been established according to local clinical care and the best
adherence to international guidelines. The patient cohorts have
been described in greater detail in prior studies [9–12, 17–25]
and included patients with primary focal segmental glomerulo-
sclerosis (FSGS, n ¼ 110), IgAN (n ¼ 179), minimal-change
disease (MCD, n ¼ 35), membranous nephropathy (MN, n ¼
77), DN (n ¼ 422) and N (n ¼ 154), lupus nephritis (LN, n ¼
92, WHO Classes II, III and IV) and vasculitis-induced kidney
disease (vasculitis, n ¼ 111). A subset of the total dataset of 706
samples was used for discovery, and a separate group of 474
samples was used for validation.
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Biomarker selection and classifier generation

For the definition of specific biomarkers for different types
of CKD, peptides detected with a frequency of >30% in at least
one of the groups were included. For statistical analysis, the
non-parametric Wilcoxon test (R-based statistic software, ver-
sion 2.15.3) was used. The calculated P-values were corrected
using the false-discovery rate procedure introduced by
Benjamini and Hochberg [26]. An adjusted P-value of 0.05 was
set as the significance level. Potential biomarkers of statistical
significance were combined in support vector machine (SVM)-
based classifiers [27].

The sensitivity, specificity and area under the receiver oper-
ating characteristic (ROC) curve (AUC) of the generated classi-
fiers were calculated using MedCalc version 12.7.5.0 (MedCalc
Software bvba, Ostend, Belgium).

R E S U L T S

The demographic patient data for the discovery cohort are given
in Table 1. For biomarker definition in the discovery cohort,
data for each CKD type were compared with that for all other
CKDs in the cohort. Only peptides that remained significant
after correction for multiple testing were retained. Using this
approach, 287 disease-specific biomarkers were defined for
FSGS, 291 for MCD, 311 for MN, 172 for LN, 509 for renal vas-
culitis and 116 for IgAN. Data for DN and N (DN&N) were
pooled as these diseases were not typically diagnosed by biopsy;
the patients do not receive cytotoxic or immunological agents
but are treated to maintain blood pressure and glycemic control.
In addition, the initial proteomics experiments for urine sam-
ples from patients with DN&N showed very similar results.
Comparison of DN&N with the other CKDs resulted in the def-
inition of a total of 619 DN&N-specific biomarkers. The bio-
marker candidates for all of the CKDs are listed in
Supplementary data, Table S1.

These discriminatory peptides for each type of CKD were
compared with diagnostic peptide biomarkers for these diseases
reported in earlier studies: specifically, a comparison was made
to the previously identified CKD273 classifier that identifies
CKD patients irrespective of diagnosis [9]. As shown
(Supplementary data, Figure S1), 30% of the peptides over-
lapped between the CKD273 classifier and the DN&N-specific

classifier. The CKD273 classifier includes peptides that overlap
with peptide biomarkers of all seven types of CKD
(Supplementary data, Figure S1), as expected for a classifier that
identifies any type of CKD. A comparison of the peptides spe-
cific for the discrimination of vasculitis with those of a previous
study [11] resulted in an overlap of 60%. Of the peptides specific
for IgAN, 12% were also reported in a previous study by Julian
et al. [13], and of the earlier reported DN biomarkers [12], 22%
were identical to the DN&N-specific peptides in the present
study.

Next, we combined the defined biomarkers for each CKD
into a disease-specific classifier, using an SVM algorithm. For
the generation of the classifiers, only datasets of the discovery
cohort were used. These seven different classifiers were applied
to the datasets of the independent validation cohort (n ¼ 474,
Table 1), in each case comparing a single CKD with all other
types of CKD. The AUCs of the ROC analyses of the different
classifiers ranged from 0.77 to 0.95 (Table 2 and Figure 1). The
highest AUCs were achieved in the diagnosis of DN&N and
vasculitis (above 0.90), whereas the classifier for MCD had the
lowest AUC (0.77).

Amino acid sequences were obtained for 38% of the defined
biomarkers (from 34.4% of the MN-specific biomarkers to
61.2% of the IgAN-specific biomarkers) (Supplementary data,
Table S1). In total, 487 of the defined biomarkers were
sequenced, 327 (67%) of which were significantly increased or
decreased for a single CKD. Because of the low number (17%)
of male patients in the LN group compared with the other
groups, the 70 sequenced biomarkers were compared with pre-
viously defined gender-specific peptides [28] to rule out the

Table 1. Distribution of samples between the discovery and validation sets

Disease Discovery set (n ¼ 706) Validation set (n ¼ 474)

Sample
number

Gender
(% male)

Age
(years)

eGFR
(mL/min/1.73 m2)

Sample
number

Gender
(% male)

Age
(years)

eGFR
(mL/min/1.73 m2)

FSGS 79 62 41.3 6 21.8 45.1 6 26.7 31 55 29.1 6 23.2 46.9 6 32.7
DN&N 288 66 65.4 6 13.8 40.0 6 22.9 288 57 64.7 6 10.7 55.6 6 22.8
IgAN 122 65 42.6 6 16.0 50.8 6 29.8 57 63 37.0 6 14.2 94.7 6 30.0
MCD 25 72 35.1 6 15.2 85.8 6 35.9 10 40 45.7 6 23.2 103.4 6 53.9
MN 55 74 52.0 6 15.2 68.5 6 32.4 22 67 50.9 6 16.4 89.6 6 22.3
LN 63 17 39.8 6 12.6 57.1 6 23.5 29 13 35.6 6 13.4 99.3 6 17.6
Vasculitis-induced kidney disease 74 58 64.5 6 10.3 41.3 6 22.4 37 44 58.8 6 14.6 70.2 6 13.7

The ‘6’ values indicate standard deviation.

Table 2. Number of defined specific biomarkers and AUC in the validation
set for each type of CKD

Disease Number of biomarkers
(with sequencing information)

AUC (95% CI)

FSGS 287 (107) 0.88 (0.80–0.96)
DN&N 619 (248) 0.92 (0.89–0.94)
IgAN 116 (71) 0.82 (0.76–0.87)
MCD 291 (121) 0.77 (0.63–0.92)
MN 311 (107) 0.87 (0.80–0.95)
LN 172 (70) 0.82 (0.75–0.90)
Vasculitis-induced
kidney disease

509 (203) 0.95 (0.92–0.98)
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|possibility that the identified biomarkers for LN were female

gender specific. An overlap was observed for only three collagen
fragments, which therefore were excluded from further analysis.

Next, we assessed the abundance of the sequenced markers
for each CKD in more detail, using data from the discovery
cohort. First, we investigated the abundance of individual pepti-
des across all causes of CKD. To ease comparison, all fragments
of the same protein with the same regulation direction (either
increased or decreased abundance in one CKD versus the
others) were combined. Using the signal intensity (amplitudes)
of the individual biomarker peptides, a mean fold change for
the respective protein and disease was calculated. Only proteins
with a fold change of at least 2 were considered. The proteins
for each CKD type that met these criteria are listed in Table 3,
and the data are depicted in Figure 2 (the four lowest adjusted
P-values are in red).

As shown for DN&N, a decrease of hemoglobin was
observed in comparison to the findings for the other types of
CKD. Five different hemoglobin peptide fragments were signifi-
cantly decreased in the DN&N group displaying low adjusted
P-values (<1.0 � 10�14, Figure 2A). In addition, a decrease of
small proline-rich protein 3 and leucine-rich repeat-containing
protein 25 and an increase of clusterin and apolipoprotein frag-
ments (with equal P-values) were observed in DN&N
(Figure 2A). For FSGS, increase of collagen fragments and
decrease of fibrinogen, polymeric immunoglobulin receptor
and Golgi-associated olfactory signaling regulator were
observed (Figure 2B). In contrast to the DN&N group, for
IgAN, the most characteristic feature was the increase of hemo-
globin, leucine-rich repeat-containing protein 25 and small
proline-rich protein fragments, while sodium/potassium-ATPase

was also increased (Figure 2C). The lowest P-values for the LN
cohort were observed for increased collagen, uromodulin and
protein S100-A9 fragments, and for decrease of clusterin
(Figure 2D). In the MCD group, the lowest P-values were
observed for multiple increased (n ¼ 73) and to a lesser extent
decreased (n¼ 15) fragments of collagen, but also increased frag-
ments of uromodulin, and apolipoprotein C-IV (Figure 2E and
Table 3). Also, a strong decrease of two fragments of beta-2-
microglobulin (mean fold change of �128.0) was observed. In
the MN group (Figure 2F), the lowest P-values were calculated
for increased fragments of cystatin-A, biorientation of chromo-
somes in cell division protein 1, uromodulin and plasminogen. In
the vasculitis group, the lowest P-values were observed for the
increased hemoglobin, sodium/potassium-ATPase, collagen and
small proline-rich protein 3 fragments (Figure 2G).

When analyzing the data in such a way, multiple differences
and similarities between the different types of CKD became
apparent (Supplementary data, Table S1). For example, frag-
ments of hemoglobin, small proline-rich protein 3 and leucine-
rich repeat-containing protein 25 were strongly decreased (fold
changes >40) with the lowest P-values in the DN&N group (P
< 1 � 10�14), whereas the abundance of fragments of the same
proteins was increased in the IgAN and vasculitis groups.
Further similarities between CKD patients with vasculitis or
IgAN were observed, including increases in abundance of 16
hemoglobin fragments with markedly low P-values (P ¼ 2 �
10�14 and 2.7 � 10�12) and of peptides derived from titin,
sodium/potassium-ATPase subunit gamma and alpha-1-
antichymotrypsin. In contrast, the abundance of fibrinogen and
complement C3 fragments showed different trends in IgAN
and vasculitis samples. The amounts of fibrinogen and

FIGURE 1: ROC analysis of the classification results for each developed classifier applied to independent samples from the validation set, for
each type of CKD.
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Table 3. Proteins with a minimal fold change of 2 for each type of CKD in comparison with other types of CKD

Protein name Number of protein fragments P-value (adjusted) Mean fold change

DN&N
Uromodulin 11 2.33E-08 �2.71 (61.40)
Hemoglobins 5 <0.1E-13 �43.53 (623.86)
Alpha-2-HS-glycoprotein 4 1.33E-06 2.16 (60.49)
Apolipoprotein 3 8.57E-12 2.67 (60.88)
Clusterin 3 8.59E-12 3.32 (61.06)
Small proline-rich protein 3 2 <0.1E-13 �54.96 (673.57)
Serum albumin 2 6.19E-03 �3.68 (60.51)
Leucine-rich repeat-containing protein 25 1 <0.1E-13 �50.80
Receptor-type tyrosine-protein phosphatase U 1 8.68E-03 2.24
Insulin 1 3.96E-03 2.54
CD99 antigen 1 4.00E-09 2.69
Peptidase inhibitor 16 1 4.06E-09 3.06
Ubiquitin-like protein ATG12 1 1.65E-10 4.13

Focal segmental glomerulosclerosis
Collagens 41 3.91E-05 2.47 (61.33)
Fibrinogens 5 2.09E-04 �2.31 (60.88)
Clusterin 2 2.85E-02 �2.67 (61.52)
Uromodulin 2 1.25E-02 �2.19 (60.88)
Alpha-1-antitrypsin 2 4.91E-03 2.92 (61.81)
Polymeric immunoglobulin receptor 1 1.14E-03 �2.97
Golgi-associated olfactory signaling regulator 1 1.49E-04 �2.23
E1A-binding protein p400 1 2.76E-03 �2.09
Annexin 1 1.78E-02 2.11
MORN repeat-containing protein 3 1 2.16E-03 2.90
Potassium voltage-gated channel subfamily KQT member 5 1 2.37E-02 2.96
Sorting nexin-9 1 3.64E-02 5.96

IgAN
Hemoglobins 20 2.72E-12 4.91 (62.15)
Fibrinogens 2 2.78E-02 �2.19 (62.10)
Complement C3 1 7.43E-03 �4.87
Apolipoprotein A-IV 1 3.37E-02 �3.53
Sodium/potassium-transporting ATPase subunit gamma 1 3.50E-02 �2.86
Clusterin 1 2.94E-02 �2.00
Alpha-1-antitrypsin 1 1.96E-02 2.20
Alpha-1-antichymotrypsin 1 3.99E-02 2.40
Sodium/potassium-transporting ATPase subunit gamma 1 1.82E-06 3.46
Titin 1 8.44E-06 3.51
Small proline-rich protein 3 1 6.50E-12 6.04
Leucine-rich repeat-containing protein 25 1 4.06E-09 7.80

LN
Collagens 55 2.14E-11 2.21 (61.22)
Uromodulin 4 7.44E-04 2.08 (60.63)
Protein S100-A9 1 8.65E-04 3.07
Clusterin 1 3.13E-02 �2.25
Beta-2-microglobulin 1 3.26E-02 �6.45
Alpha-2-HS-glycoprotein 1 3.42E-02 �2.93

MCD
Collagens 73 1.11E-05 2.53 (61.15)
Collagens 15 2.59E-04 �3.76 (63.56)
Uromodulin 10 2.17E-05 3.46 (62.01)
Fibrinogen alpha chain 4 7.74E-04 �10.94 (613.24)
Beta-2-microglobulin 2 6.63E-03 �127.65 (60.53)
Clusterin 2 6.91E-03 �20.83 (622.14)
Keratin 2 6.63E-03 2.43 (60.28)
Vesicular integral-membrane protein VIP36 2 1.02E-02 �16.39 (616.92)
Alpha-2-HS-glycoprotein 1 4.35E-02 �18.17
Complement C3 1 4.04E-02 �110.40
Golgi-associated olfactory signaling regulator 1 4.85E-02 �2.10
Inner nuclear membrane protein Man1 1 3.21E-02 �3.67
Neurosecretory protein VGF 1 1.55E-02 �4.65
Polymeric immunoglobulin receptor 1 3.75E-03 �4.99
Serum albumin 1 7.95E-03 �3.21
Zinc finger protein ZFPM2 1 1.36E-03 �12.93

Continued
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and increased in the vasculitis group. Decreased abundance of
fragments of fibrinogen and Golgi-associated olfactory signaling
regulator was observed for MCD and FSGS. Increase in abun-
dance of clusterin fragments was observed in the MCD, MN
and LN groups.

D I S C U S S I O N

CE-MS analysis has previously led to the identification of a mul-
tipeptide urinary classifier (CKD273) for the diagnosis of CKD

irrespective of the underlying mechanism of disease [9, 10, 23,
29]. Additional studies have shown that CKD273 is superior to
albuminuria in early prediction of CKD progression [10, 18, 22,
25]. Further studies using CE-MS urinary proteome analysis
have also shown that biomarkers can display a response to treat-
ment: in DN a response to angiotensin receptor blockers [30,
31] or in ANCA-associated vasculitis a response to immuno-
suppression [11]. In the study presented here, we have tested
the hypothesis that urinary peptides hold information on dis-
ease etiology and can be employed to differentiate between dis-
tinct types of CKD. This hypothesis also dictated the study
design: focusing on comparing one group with all other CKD

Table 3. Continued

Protein name Number of protein fragments P-value (adjusted) Mean fold change

Apolipoprotein C-IV 1 4.45E-04 2.82
Far upstream element-binding protein 2 1 9.95E-03 3.22
PAX-interacting protein 1 1 1.73E-02 2.08

MN
Collagens 28 1.07E-04 �2.31 (61.01)
Uromodulin 8 1.40E-05 2.35 (60.70)
Alpha-1-antitrypsin 8 1.94E-04 2.37 (60.60)
Alpha-1B-glycoprotein 4 1.73E-04 2.48 (60.87)
Cystatin-A 1 1.77E-11 5.91
Biorientation of chromosomes in cell division protein 1 1 3.80E-09 8.72
Plasminogen 1 3.58E-05 3.03
Neurosecretory protein VGF 1 4.45E-05 �4.11
Small proline-rich protein 3 1 9.01E-05 2.69
Fibrinogen beta chain 1 7.43E-04 2.45
E1A-binding protein p400 1 8.46E-04 �2.30
Microtubule-associated protein tau 1 1.39E-03 �2.41
Apolipoprotein C-IV 1 2.81E-03 2.90
Fibrinogen alpha chain 1 1.43E-02 �4.06
Zinc finger protein ZFPM2 1 1.43E-02 �3.84
Truncated apolipoprotein A-I 1 1.43E-02 2.01
Keratin; type II cytoskeletal 4 1 2.61E-02 2.10
AP-3 complex subunit delta-1 1 2.79E-02 �2.22

Vasculitis-induced kidney disease
Collagens 77 4.25E-11 2.16 (61.35)
Collagens 49 3.16E-09 �2.96 (63.95)
Hemoglobins 22 1.99E-14 5.15 (62.44)
Beta-2-microglobulin 7 1.51E-07 3.17 (61.96)
Fibrinogens 3 1.78E-04 2.55 (60.42)
Serum albumin 3 1.85E-03 �2.51 (61.79)
Sodium/potassium-transporting ATPase subunit gamma 2 2.83E-13 4.62 (64.10)
Gelsolin 2 1.60E-06 2.57 (61.19)
Alpha-1-antichymotrypsin 2 1.50E-04 3.56 (63.51)
Small proline-rich protein 3 1 2.71E-10 3.12
Runt-related transcription factor 1 1 1.41E-09 7.45
Espin 1 1.28E-08 4.03
NACHT; LRR and PYD domains-containing protein 12 1 4.11E-08 2.97
Titin 1 1.15E-07 4.06
Beta-2-microglobulin 1 1.51E-07 �2.12
Stabilin-2 1 8.62E-05 �2.29
Microtubule-associated protein tau 1 1.40E-04 �3.64
Alpha-2-HS-glycoprotein 1 1.61E-04 �10.84
Apolipoprotein A-IV 1 2.33E-04 �2.43
Leucine-rich repeat-containing protein 25 1 1.21E-03 2.74
POTE ankyrin domain family member F 1 1.63E-03 �2.26
pre-rRNA processing protein FTSJ3 1 3.17E-03 �3.96
Uncharacterized protein 1 4.91E-03 6.27
Complement C3 1 7.12E-03 5.78
Protein S100-A9 1 1.64E-02 �2.43
Histone-lysine N-methyltransferase 2A 1 2.42E-02 �2.69

Data listed are the number of significant protein fragments for each protein, the lowest observed P-value and the estimated mean fold change (6 standard deviation).
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types, without involving healthy controls. This also explains to
some extent the varying degree of overlap (ranging from 12 to
60%) of the presented discriminatory peptides with previously

reported biomarker findings for these diseases (11, 50–52; dis-
cussed also below). Interestingly, a substantial overlap between
the peptides identified here and the CKD273 [32] classifier

FIGURE 2: Regulation of the specific proteins in individual types of CKD. The mean fold change and standard deviation (when more than one
fragment was observed) of proteins with a mean fold change of >2 based on discovery data for the DN&N group (A), FSGS (B), IgAN (C), LN
(D), MCD (E), MN (F) and vasculitis-induced kidney disease (G) are shown. The four proteins (except panel A where five proteins are marked
because two proteins have equal P-values) for which the fragments had the lowest adjusted P-values are marked in red.
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|could be detected for all types of disease (Supplementary data,

Figure S1), further supporting that the CKD273 classifier is a
general classifier for the diagnosis of all CKD types.

The wider clinical use of urinary proteomics and the increas-
ing body of knowledge showing that it is fulfilling its expecta-
tions as an informative tool in establishing diagnosis and
prognosis, and also guiding the approach to treatment in
patients with renal diseases, have brought some investigators to
opposite opinions regarding the value of urinary proteomics
versus kidney biopsy in clinical practice [33, 34]. Despite con-
trasting viewpoints expressed in these papers, Glassock [33] and
Mischak [34] agreed that biomarker-based analyses should
focus on the correct diagnosis of a specific kidney disease

among patients with similar manifestations rather than the dis-
crimination between CKD patients and healthy individuals
[33]. The value of CE-MS-based proteomics to differentiate
types of CKD etiologies has been shown, but mostly in small
patient populations. Julian et al. demonstrated signatures spe-
cific to IgAN (n ¼ 10 patients) compared with other renal dis-
eases [13], Haubitz et al. were able to differentiate IgAN (n¼ 45
patients) from MN (n ¼ 13 patients) and healthy controls [35],
and Rossing et al. described specific urinary peptides enabling
discrimination of DN (n ¼ 44 patients) from other types of
CKD [12]. Also, biomarkers specific for ANCA-associated vas-
culitis (n ¼ 10 patients) have been identified [11]. Of note,
many of the biomarker peptides identified in the present study

FIGURE 2: Continued.
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|for the diagnosis of specific types of CKD were also identified in

these previous studies (between 12 and 60%), further validating
the value of some of these urinary peptides as specific bio-
markers. The present study was designed with the aim to iden-
tify specific urinary peptide markers for the main types of CKD,
using datasets from a large cohort of 1180 individuals with
CKD. These urinary biomarkers for each CKD type were com-
bined into diagnostic classifiers that allowed separation of one
CKD type from the others. The DN&N group was distinguished
from all other causes of CKD with an AUC of 0.92. DN&N are
typically diagnosed without biopsy in clinical practice, and the
therapeutic approach is based on nonspecific approaches for
nephroprotection [4]. The diagnosis, which is based on albumi-
nuria and other microvascular complications, may not be cor-
rect [36]. Therefore, it is important to differentiate this
diagnosis from other types of renal disease that currently are
defined by biopsy and require more disease-specific therapeutic
interventions. In cases for which the benefit of a biopsy may not
outweigh the risk, the approach developed in this study could
change the diagnostic strategy, by introducing a urinary
proteome-based test before deciding whether to perform a
biopsy. Our findings support performance of a prospective
study of urine-based proteomics to improve the diagnostic
strategy in kidney diseases.

Although the classifiers defined in this study are composites
of multiple peptides specific for a single CKD type, similarities
in the individual biomarkers between some CKDs were
observed. Such information may be helpful to describe disease
progression and development of kidney damage in each specific
CKD type, on a molecular level, and, especially if complemented
by supporting tissue data, also for the development of new ther-
apeutic approaches potentially targeting several types of kidney
disease.

Different clusterin fragments seem to play an important role
in the discrimination between DN&N and other types of CKD.
Three fragments of clusterin are increased in the DN&N group
and appear to be specific. Chu et al. have shown that urinary
levels of clusterin discriminated patients with DN from healthy
controls [37]. In the FSGS, IgAN, LN and MCD groups, all clus-
terin fragments were decreased, with a mean fold change of >2.
Schanstra et al. observed a negative correlation between the uri-
nary level of clusterin fragments and estimated glomerular fil-
tration rate (eGFR) [10]. This finding may reflect that more
than 50% of the patients in that study had DN. Ghiggeri et al.
analyzed levels of clusterin in serum and urine; in both speci-
men types, clusterin levels were reduced in active MN and FSGS
and in children with nephrotic syndrome [38]. Also, a study of
patients with systemic lupus erythematosus (SLE) showed low
serum levels of clusterin, especially in those with proteinuria
[39].

Also characteristic for the DN&N group is the lower levels of
hemoglobin fragments compared with those in patients with
other types of CKD. On the other hand, higher urinary levels
of hemoglobin fragments were observed in the IgAN and vascu-
litis groups, as expected in patients with hematuria.
Characteristically, higher urinary levels of hemoglobin frag-
ments in vasculitis patients have been previously described by
Haubitz et al. [11]. We observed similar patterns for

hemoglobin fragments in patients with IgAN. More similarities
in the profiles of IgAN and ANCA-associated groups in com-
parison with other types of CKD were observed. These findings
may reflect that patients with severe IgAN frequently exhibit
histological features similar to those of patients with ANCA-
associated vasculitis, such as prominent glomerular inflamma-
tion that may include crescents [11, 40].

MCD and FSGS also showed similarities in their proteomic
signatures. A decreased amount of fibrinogen appears to be
common to both diseases. MCD and FSGS share some ultra-
structural features, such as foot process effacement, yet their
immunofluorescence features and pathophysiologies likely have
important differences. MCD typically has no glomerular scar-
ring or immunofluorescence staining, whereas FSGS has seg-
mental glomerulosclerosis and positive IgM and C3
immunofluorescence [41]. MCD and FSGS are primary podo-
cytopathies and thus may belong to the same clinical spectrum
in which a more severe injury leads to loss of podocytes in
FSGS. However, a renal biopsy early in the clinical course of
patients with FSGS may not demonstrate the glomerular scar-
ring typical of FSGS, leading to an incorrect diagnosis of MCD.
Glucocorticoid therapy is much more effective for patients with
MCD than for patients with FSGS [42]. Therefore, novel thera-
peutic approaches for patients presenting with nephrotic syn-
drome typical of MCD or FSGS would be welcome [43] as a
reliable diagnostic tool. Our data confirmed some similarities
between the urinary proteomic patterns for MCD and FSGS;
nonetheless, we confirmed molecular differences (e.g. the strong
down-regulation of beta-2-microglobulin in MCD or up-
regulation of alpha-1-antitrypsin in FSGS [32, 44], Table 3).
Future studies should explore whether the urinary proteome
differentiates patients with glucocorticoid-responsive disease
from those who are glucocorticoid resistant.

One of the most specific peptides that distinguished LN
from other types of CKD was the S100-A9 fragment. This cal-
cium- and zinc-binding protein plays a prominent role in the
regulation of inflammatory processes and the immune
response. Significantly higher levels of this protein as well as of
S100-A8 in serum samples of SLE patients compared with
healthy controls have been reported by Soyfoo et al. [45].

Collagen fragments have been reported as major constitu-
ents of diagnostic classifiers for a majority of CKD types (11, 44,
50–52, 66). Even though significant changes in abundance of
many collagen fragments were observed, the main CKD type-
specific associated fragments were not part of the collagen fam-
ily (Table 3). This may be explained by the differences in the
design of the present study (focusing on differences between
patients with various types of CKD) versus the previous ones
(focusing on differences between patients with CKD and
healthy controls). Furthermore, the present study focused
mostly on analysis of samples from patients at advanced stages
of CKD (where biopsy data are typically available). In this
regard, recent studies support that urinary collagen fragments
are early biomarkers for CKD (in patients with GFR >60 mL/
min/1.73 m2) and are not among the most prominent bio-
markers in more advanced stages [46]. Collectively, these obser-
vations explain the modest biomarker value of collagen peptides
in the present context of discriminating different CKD types.
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The study presented here has certain shortcomings: first, the
urine data/samples were selected retrospectively from previous
studies. Second, the diagnosis of DN&N relied on clinical crite-
ria rather than on a kidney biopsy, and the criteria differed
somewhat between the clinical centers. However, this approach
corresponds to the standard clinical practice, and it is fair to
assume that only a minority of samples may be misclassified. It
appears interesting to investigate if the use of the classifier pro-
vides information on whether the particular patient fits into the
‘DN&N’ standard or whether a renal biopsy should be recom-
mended in search of other causes of CKD. However, this must
be assessed in a separate study. In addition, data on treatment at
the time of sampling as well as information on the disease class/
subtype within each group of CKD patients (e.g. in some LN,
the WHO class was not specified) were not always available.
However, the large number of subjects in the study ensures that
missing data in some patients should not have a significant
impact on the interpretation of the results. There was a signifi-
cant difference in the renal function between the patients in the
discovery and the validation sets, with patients in the former
having more advanced CKD. This design, however, ensures that
the disease in the discovery phase would have sufficient impact
on the selection of biomarkers, which may not be the case at an
early stage of disease. The fact that the classifiers also performed
well in patients with earlier stages of disease (as evident from
the validation set) may be seen as a further strength of the
approach.

The study also has several important strengths. Most impor-
tantly, the large number of subjects (1180) in the study allows
for a comprehensive analysis of urine samples from patients
with a wide range of manifestations of various types of CKD.
The results were verified in an independent validation set, fur-
ther supporting the weight of the findings. In addition, several
of the identified biomarkers are associated with apparent mech-
anisms of disease.

In conclusion, urinary proteome analysis clearly differenti-
ated various types of CKD. These findings indicate the value of
these urine peptide-based signature panels in the differential
diagnosis of certain types of CKD. They may also serve as an
excellent basis for bioinformatic assessment of the different
types of CKD, to understand molecular pathophysiology and
identify the best-suited therapeutic targets [47, 48]. In contrast
to kidney biopsy, urinary proteome analysis offers the possibil-
ity of being applied early in the course of the disease when the
benefit of intervention is optimal and of being repeatable with-
out any risk for the patient and, thus, can be used to monitor
progression of disease and/or treatment response. A proteomic
analysis of urine may be of immediate use to guide treatment of
specific patients, especially at an early point of disease initiation
and progression. A potential next step to be taken may be the
assessment of the exact benefit of this approach in a multicenter
randomized controlled trial.
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