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It is not fully understood how seizures terminate and why some seizures are followed by a period of complete brain activity suppression,

postictal generalized EEG suppression. This is clinically relevant as there is a potential association between postictal generalized EEG

suppression, cardiorespiratory arrest and sudden death following a seizure. We combined human encephalographic seizure data with

data of a computational model of seizures to elucidate the neuronal network dynamics underlying seizure termination and the postictal

generalized EEG suppression state. A multi-unit computational neural mass model of epileptic seizure termination and postictal recovery

was developed. The model provided three predictions that were validated in EEG recordings of 48 convulsive seizures from 48 subjects

with refractory focal epilepsy (20 females, age range 15–61 years). The duration of ictal and postictal generalized EEG suppression

periods in human EEG followed a gamma probability distribution indicative of a deterministic process (shape parameter 2.6 and 1.5,

respectively) as predicted by the model. In the model and in humans, the time between two clonic bursts increased exponentially from

the start of the clonic phase of the seizure. The terminal interclonic interval, calculated using the projected terminal value of the log-

linear fit of the clonic frequency decrease was correlated with the presence and duration of postictal suppression. The projected terminal

interclonic interval explained 41% of the variation in postictal generalized EEG suppression duration (P50.02). Conversely, postictal

generalized EEG suppression duration explained 34% of the variation in the last interclonic interval duration. Our findings suggest that

postictal generalized EEG suppression is a separate brain state and that seizure termination is a plastic and autonomous process,

reflected in increased duration of interclonic intervals that determine the duration of postictal generalized EEG suppression.
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Introduction
Epilepsy is a paroxysmal neurological condition, character-

ized by sudden transitions from normal brain functioning to

ictal states with synchronized neuronal oscillatory activity.

Knowledge about seizure initiation or the transition from

normal to ictal states is increasing, but less is known

about seizure termination. Most convulsive seizures lead to

a postictal state that is clinically and electrographically dis-

tinct from the ictal and interictal states. In the EEG this

manifests as slowing, or as total suppression of the back-

ground activity, termed postictal generalized EEG suppres-

sion (PGES) (Lhatoo et al., 2010; So and Blume, 2010;

Surges et al., 2011). During a PGES event, people are

mostly immobile and in an unconscious state (Semmelroch

et al., 2012; Seyal et al., 2013; Tao et al., 2013). This event

is thought to be an extreme expression of the postictal state.

As these events consistently preceded cardiorespiratory arrest

in most reported ictal recordings of sudden unexpected death

in epilepsy (SUDEP) they are likely to be of clinical relevance

(Ryvlin et al., 2013). PGES frequently follows non-fatal con-

vulsive seizures. Whether PGES is also a risk factor for

SUDEP is a matter of debate (Lhatoo et al., 2010; Surges

et al., 2011; Lamberts et al., 2013a).

Seizure termination may occur either due to a random pro-

cess involving external perturbations or fluctuating state par-

ameters, or to a deterministic, autonomous neuronal

mechanism driven by the ictal condition itself (Lopes da

Silva et al., 2003a, b; Kalitzin et al., 2010; Kramer et al.,

2012; Stamoulis et al., 2013). Our objective was to clarify

the type of dynamics underlying termination of convulsive

seizures and the subsequent postictal state. We developed a

computational neural mass model that autonomously transi-

tioned between seizures and normal states. With the findings

from this model we attempt to understand features of state

transitions in EEG recordings of human convulsive seizures.

Computational models of seizures, based on neuronal

lumps, have previously been used to describe global dy-

namics of state transitions. Seizure transitions are thought

to occur in bistable systems where a stable ‘attractor state’

corresponds to normal activity and a second, transient quasi-

stable ‘limit-cycle state’, represents seizures. Probability dis-

tribution statistics, particularly the gamma distribution, can

be used to distinguish between stochastic, random walk type

of processes and deterministic processes (Doob, 1953;

Suffczynski et al., 2006). Seizure onset of some types of

seizures was shown to have properties of a random walk-

type stochastic process, while seizure termination may be

influenced or even governed by deterministic processes

(Koppert et al., 2011). This was consistent with experimental

and clinical data (Suffczynski et al., 2006; Colic et al., 2013).

In these studies, postictal states were not considered. We

extend these findings to account for seizure termination

and the postictal period. The computational model presented

here is an extension of a model of multiple bi-stable units

(Koppert et al., 2014), with added activity-driven connectiv-

ity dynamics. This model displays transitions from ictal to

postictal and from postictal back to normal states. Critically,

we tested and validated the hypotheses derived from this

computational model against EEG recordings of convulsive

seizures from 48 people with refractory epilepsy. A better

understanding of the dynamics of seizure termination may

help the development of new approaches to prevent the

severe complications associated with PGES.

Materials and methods

The computational model

Computer simulations were carried out using a simplified
lumped neuronal mass model created in Matlab� (release
2014b, The MathWorks Inc., Natick, MA, USA). The purpose
of this abstract model is to explain the general dynamics of state
changes in neuronal populations including pyramidal cells and
interneurons while preserving essential properties of realistic
neuronal networks (Kalitzin et al., 2014; Koppert et al., 2014).

The model consists of 128 fully interconnected units, with
equal connectivity between any two units. Each single unit is a
simple system that can have two dynamic states, depending on
the chosen parameters. The first is a harmonic oscillator rep-
resenting the normal, non-excited state of a neuronal mass.
The second is a limit cycle attractor with permanent stable
oscillations representing a micro-seizure (Izhikevich, 2001;
Kalitzin et al., 2010). For certain parameter ranges both
states co-exist (bistability), for other parameters values the
unit is in one of the states. In the bi-stable regime the transi-
tions between the two states can be induced by external inputs
or by random fluctuations. In this study we use an analytical
model that provides bistability in a relatively simple way. The
model represents the collective dynamics of multiple pairs of
excitatory and inhibitory populations, each represented by a
complex variable Zm;m ¼ 1::M. These degrees of freedom in-
corporate the excitatory and inhibitory population dynamics
as real and imaginary components correspondingly
[ZmðtÞ ¼ ExcmðtÞ þ iInhmðtÞ]. The original definition of the
model (Koppert et al., 2014) is:

d

dt
Zm ¼ �jZmj

4Zm þ bjZmj
2Zm þ cZm þ i!Zm

þ gð1þ iÞ
XN

k¼1

CmkZk þ �z� tð Þ ð1Þ

In the above equation, b, c and ! are parameters of the
single unit dynamics, the matrix Cmk represents the
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interactions between the units k and m, N is the total number
of units in the network; g is a connectivity scaling coefficient,
and � tð Þ is a random complex variable with normal distribu-
tion of unit variance; � tð Þ and the scaling coefficient �z intro-
duce noise in the system. The factor (1 + i) reflects complex
interactions between inhibitory and excitatory subunits in the
system. The overall layout of the network and schematic flow
of interactions is shown in Fig. 1. Parameters c and b represent
the global balance between excitation and inhibition within a
single oscillatory unit (Koppert et al., 2014). Depending on
these parameters, the unit can be in a steady state, a limit
cycle or both (bistability).

We selected the parameters (c ¼ �2:26;b ¼ 3; ! ¼ 0) such
that each individual unit is in one state—that of a fixed
point harmonic oscillator (normal, non-seizure state). The be-
haviour of the connected system is therefore a collective emer-
gent property, influenced by the connectivity strength
determined in parameter g.

We carried out two series of model simulations. First, a
series of simulations for an array of units with different
levels of connectivity [range (0,1/128), 101 values] was done
under stationary parameters without external input or noisy
perturbations. The purpose of these ‘stationary state’ simula-
tions was to explore the diversity of asymptotic states of the
model, depending on the connectivity parameter g and the
initial conditions. For each connectivity value, 129 simulations
were performed with increasing numbers of units (from 0 to
128) in an activated state of limit cycle as initial condition. The
connectivity matrix for all simulations in this study was chosen
arbitrarily Cmk ¼ 1;m 6¼ k;Cmm ¼ 4 to represent the relative
difference in local versus global connectivity.

The second series of simulations was performed to obtain
dynamical seizure transitions and postictal states. Noise was
added to the system, and a parameter evolution rule was intro-
duced, consisting of negative feedback plasticity that drives the
connectivity parameter g to lower values whenever the global
synchronized activity of the system exceeds a threshold
(Equation 2). In addition, homeostatic point stochastic dy-
namics were introduced for the parameters b and c to account
for random-walk type of fluctuations of the operational point
of the model.

dg

dt
¼ �g g0 � gð Þ � b� j hZkikjð Þ þ �g�ðtÞ

dc

dt
¼ �c c0 � cð Þ þ �cmðtÞ;

db

dt
¼ �b b0 � bð Þ þ �b�ðtÞ�

�ðxÞ � e
x�x0

s
.
ð1þe

x�x0
s Þ

ð2Þ

In Equation 2 �g and b are rate constants that determine the
relaxation of the g-parameter and its corresponding reaction to
increased coherency between the units. �c and �b are rate con-
stants for the fluctuating {c,b}-parameters to a fixed homeo-
static point fc0;b0g ¼ �2:26; 3f g. The second term in Equation
2 is a shortened version of an external unit, that according to
previous results, can be activated by the network when the
phase coherency of the system exceeds a certain level

(Koppert et al., 2014). The last terms � tð Þ;m tð Þ; �ðtÞ in
Equation 2 represent noise and are independent random vari-
ables with normal distributions of unit variance. To reduce the
complexity of the model we emulated the activation process by
an effective sigmoid function, as defined by the last line of
Equation 2. We performed 100 simulations initializing the
system with all units having positive real values of 41. This
started the simulation with the system in a limit cycle with all
units recruited, i.e. a ‘seizure’. We recorded the time (number
of simulation steps) it took for the limit cycle (‘seizure’) to be
destroyed by the change in connectivity g and the time it took
to return to a level of excitability in the ‘normal’ range,
which we defined as an excitability threshold 50% higher
than that of the homeostatic point. This was used as an esti-
mate of the duration of the model postictal period reflecting
PGES (Fig. 2).

For this second set of simulations we chose �g; �c; �b

� �
¼

0:002; b ¼ 0:007 g0 ¼ 0:0045;x0 ¼ 0:1 and s = 0.05,
which provided a single homeostatic point. The simulations
were done with noise levels of �z ¼ 3; �c ¼ 2; �b ¼ 2;
�g ¼ 0:02.

Statistics of state durations

It was previously shown that differences in the distributions of
durations between stable and transient states can be revealed
using a gamma-type probability density function as a fitting

Figure 1 Schematic representation of the model neuronal

network. The model consists of 128 fully interconnected units,

representing neuronal lumps including pyramidal neurons and

interneurons. Any two units are equally interconnected. The col-

lective output of all units is filtered through a sigmoid function or

coherency detector (input-output function in inset and Equation 2).

The horizontal axis represents the collective output of the model,

the vertical axis is the detector response. The output of the co-

herency detector is used as input for the dynamics of the con-

nectivity parameter g, which is common for all units.
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template (Equation 3) (Suffczynski et al., 2006; Colic et al.,
2013).

NðTÞ ¼ N0T ��1e�
T b=

ð3Þ

Where N0 is the normalization constant, � is the time-decay
constant and � is the shape parameter, which separates
random from deterministic processes. In short, �41 is ex-
pected for the distribution of stochastic processes (� = 1 cor-
responds to a Poisson process), while �41 may be a
consequence of a process with deterministic state-termination
mechanism (Doob, 1953; Suffczynski et al., 2006).

To study the dynamics underlying the transitions in our
model, we simulated 110 ‘seizures’ followed by 110 model
‘postictal’ periods. The segmentation of these epochs was per-
formed using the thresholds of the envelope of the averaged
signal from the unit output.

Human EEG recordings

We screened the video-EEG reports of subjects aged 415
years who underwent presurgical evaluation at a tertiary refer-
ral centre and selected those that mentioned the recording of a

convulsive seizure. Only the first convulsive seizure recorded
from each individual was selected to avoid effects of seizure
clusters. For most, anti-epileptic drugs were tapered during the
recording to maximize the likelihood of an ictal recording. In
view of the changes to anti-epileptic drug regimens, we chose
not to include periods between two seizures.

In total, 56 convulsive seizures were identified. One record-
ing was excluded due to insufficient postictal recording time
and two due to inadequate EEG quality. Data from this data-
base were published previously (Lamberts et al., 2013a, b).
From the 53 remaining recordings, convulsive seizures with
an asymmetric partial ending (unilateral clonic movements
and/or partial epileptic activity, four seizures) or convulsive
seizures ending with generalized activity without convulsive
movements (one seizure) were excluded, leaving 48 seizures.
Subject characteristics are shown in Table 1.

The scalp EEG recordings used the international 10%–20%
system at a sampling rate of 200 Hz (Stellate Harmonie,
Stellate Systems).

Two experienced clinical neurophysiologists (R.D.T.,
D.N.V.) independently marked the start of the seizure, the
tonic phase, the clonic phase, the end of the seizure, and the
start and end of PGES periods. These were defined as periods
immediately postictal (within 30 s), with generalized absence of

Figure 2 Output from the computational model. Results from simulations of the system (Equation 1). The system output is generated for

129 values of the connectivity parameter g, ranging from 0 to 128 on the horizontal axis, and for 0 to 128 initially excited units, indicated on the

vertical axis. The background colour represents the number of excited units that remain self-sustained according to the dynamics of the

coupled system of oscillators. All simulations were first done without noisy input and without changes of the connectivity parameter g. The blue

region corresponds to a non-excitable state (‘postictal’); yellow to a limit cycle state (total synchronization or ‘seizure’); and the gradually

coloured state in the middle, to ‘normal functioning’, where the system sustains its initial state. Introduction of noise and plasticity of connectivity

g through the coherence detector (Equation 2), makes the system transition between the different states (red line). The model simulation

starts in a ‘seizure’ state. The connectivity parameter g is activated above a certain level of synchrony (the input from the coherency detector from

Fig. 1). This ‘seizure’-induced plasticity of the connectivity parameter g causes termination of the ‘seizure’ and drives the return through a

‘postictal’ period to the ‘normal’ state which we defined as an excitability threshold 50% higher than that of the homeostatic point, indicated

in red.
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electroencephalographic activity 410 mV in amplitude, allow-
ing for muscle, movement, breathing and electrode artefacts
(Lhatoo et al., 2010). All PGES periods longer than 1 s were
scored (Surges et al., 2011).

The beginning and end of every epileptic discharge (on the

EEG) and corresponding artefact of the clonic movement ver-
ified with video (‘clonic discharge’) was marked in the EEG by
an observer (P.R.B.) who was not a neurophysiologist and as
such effectively blinded for the presence of PGES, as the dis-
tinction of artefacts and real activity in EEG is difficult to the
untrained eye. The EEG signal was visually inspected using a
0.3 Hz low-pass and 35 Hz high pass filter. Sensitivity was
5–7.5 mV and a longitudinal bipolar montage was used

(‘double banana’).
The time of the markers was imported in Matlab� (release

2014b, The MathWorks Inc., Natick, MA, USA). The differ-
ence between the onset of each two adjacent ‘clonic discharges’
was calculated in milliseconds.

EEG analysis

The change in clonic frequency in the EEG was quantified by

fitting a linear equation to the logarithm of the interclonic
interval. If the times of successive clonic discharges for a
given seizure are tk (marked by visual inspection of the EEG
traces), then exponential slowing down can be formulated as
(Equation 4)

ICIk � tkþ1 � tk ¼ C0ea�k ; �k �
ðtkþ1þtkÞ

�
2

ð4Þ

The linear fit between the logarithm of the interclonic inter-
val and the middle time of the interval between each two suc-

cessive clinic discharges �k provides the quantity that

characterizes the decrease of the rate of ‘clonic discharges’.

log ICIð Þ � a�k þ log C0ð Þ þ " ð5Þ

In Equation 5 the fitting parameters and log C0ð Þ are ob-

tained using the standard MatLab fitting routine polyfit
applied to linear order (n = 1). The last term in Equation 5
is a random variable representing the deviation from the fit.

Its variation r ¼ var "ð Þ is the residual variance after the fit. The

residual variance was used to estimate the ‘goodness of fit’
(GOF) of the exponential fit. From Equation 5 it follows that

var log ICIð Þð Þ �
var ICIð Þ

ICI
¼ var "ð Þ ¼ r; GOF � 100 1� rð Þ; ð6Þ

The total effect of ictal slowing for each seizure is quantified
as

ICIterminal � C0eaTseizure ð7Þ

In the above definition the C0 and a parameters are derived

for each case from the linear fit procedure in Equation 5, and

Tseizure is the total duration of the seizure. The actual values of
the first and last interclonic interval measured experimentally

are influenced by noisy perturbations. We therefore use the

projected terminal interclonic interval values assuming that
the noisy component, ", in Equation 5 has been largely filtered

out by the fitting procedure. We call the quantity defined in

Equation 7 projected terminal interclonic interval (ICIterminal).

Table 1 Subject characteristics

PGES + PGES– Test

Variables n = 37 n = 11

Gender

Male (%) 20 (54) 8 (73) F, P = 0.319

Female (%) 17 (46) 3 (27)

Age at time of EEG, years, median (range) MW, P = 0.081

36.1 (15–61) 28.3 (16–43)

Duration of epilepsy, years, median (range) MW, P = 0.581

18.4 (2–46) 21.3 (4–42)

Epilepsy classification

Symptomatic (%) 27 (70) 11 (100) F, P = 0.089

Cryptogenic/idiopathic (%) 10 (30) 0 (0)

Ictal EEG onset

Temporal (%) 18 (49) 5 (45) F, P = 1.00

Extra-temporal (%) 19 (51) 6 (55)

Frequency of CS

1–2 CS/year (%) 20 (54) 5 (45) F, P = 0.736

43 CS/year (%) 17 (46) 6 (55)

Total duration of seizure MW, P = 0.573

S, median (range) 122.3 (63–444) 221.2 (45–828)

Duration of TC phase MW, P =0.202

S, median (range) 66.01 (32–118) 73.8 (36–100)

Duration of PGES

S, median (range) 55.7 (2–252) NA

F = Fisher’s exact test; MW= Mann-Whitney U-test; TC = tonic clonic; CS = convulsive seizure.
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To test whether the PGES durations (set to zero if no PGES

is detected) TPGESf g and the corresponding ICIterminalf gof the

convulsive seizure are functionally related, we used the unidir-
ectional h2 non-linear association measure (Kalitzin et al.,
2007). The association index estimates the variance of one

time series, x, that can be explained by the variance of a
second time series, y, and in this way quantifies the exactness

of the best functional map between the two time series.

h2 x; yð Þ ¼ 1�
varðxjyÞ

varðyÞ
ð8Þ

The unidirectional nature of the index Equation 7, [or the

non-symmetric relation h2 x; yð Þ 6¼ h2 y;xð Þ], reflects the fact
that not all functions are invertible. A surrogate-based test

that establishes the statistical significance of the h2 index was
derived (i.e. estimates the probability of obtaining the given

association index by chance). In the present study we chose

the number of bins, the only instrumental parameter needed,
as 10. For the statistical significance validation of the associa-

tive index, we applied 100 000 surrogate tests. The distribu-

tions of the ICIterminal quantities 	 from Equation 7 and the
GOF values from Equation 6 as functions of the PGES dur-

ation were estimated. The set TPGESf g was divided into

bins with unequally spaced borders at 0, 10, 50, 100, 200
and 500 s. Significant differences in the corresponding distribu-

tions were detected using the non-parametric Kruskall-Wallis

test.

Results

Characteristics of the neuronal mass
model under stationary parameters

To elucidate the type of dynamics underlying seizure ter-

mination and PGES, we created a computational model,

which we first analyzed under stationary parameters. The

entire system has three different dynamic regimes depend-

ing on the connectivity g, shown in Fig. 2 (Koppert et al.,

2014). For lower values of g the system is not excitable.

This state represents PGES, as an extreme of the postictal

state (blue region on the left in Fig. 2). For higher values of

g, the system is in a stable state depending on the initial

conditions or external perturbations. This represents

normal brain functioning. Finally, when g is large, the

system has only one asymptotically stable state (attractor),

which is a limit cycle of all units oscillating synchronously,

representing an epileptic seizure. We reproduced the above

model in the interaction term as previously with only the

real components of the units (Koppert et al., 2014). Each

individual unit has one state (embedded properties), while

the system of connected units can have different states. We

identify these states and the transitions between them as

‘emergent properties’ of the model.

Characteristics of the neuronal mass
model with activity-dependent plastic
feedback parameter dynamics

To make the model transition autonomously between seizures,

postictal periods and normal periods, we introduced random

noise and a negative feedback plasticity rule that drives the

connectivity g to smaller values whenever the global synchro-

nized activity of the system exceeds a certain threshold

(Equation 2). When random fluctuations bring the system

above the ‘recruitment threshold’, the system enters full syn-

chrony or a ‘seizure’ state. Figure 2 shows a simulated trajec-

tory (red line with arrows) as an example of a succession of

these dynamic states: from the seizure state and to the non-

excitable postictal state and back to the normal state. The

transition to the postictal state is determined by the influence

of the connectivity change (Equation 2) causing a transition to

a temporary state of low inter-unit connectivity, with low

values of the connectivity parameter g, where the system is

silent and non-excitable. The connectivity then gradually in-

creases again until the system is in its normal state. The system

stays in its homeostatic domain (‘normal operation’) most of

the time, but it can make a transition to a fully synchronized

state (‘seizure’) because of external input or random noise fluc-

tuations exceeding the recruitment threshold.

Predictions about seizure
termination according to the
neuronal mass model

Our computational model has three essential features that

were used to analyze the human EEG data of convulsive seiz-

ures. First, the shapes of the distributions and the parameter

values suggest that the duration of the ‘ictal’ [� = 237.6, 95%

confidence interval (CI) 180.1–313.5] and ‘PGES’ (� = 21.2,

95% CI 16.1–27.9) epochs have deterministic properties. In

Fig. 3, the distributions of the epoch lengths and their corres-

ponding gamma-distribution fits are shown. This leads to the

first hypothesis (Hypothesis 1): the durations of the convulsive

seizure and PGES events in humans display distributions cor-

responding to deterministic termination processes. The second

feature of the model is that seizure termination is influenced

by the connectivity parameter g. This suggests the existence of

a measurable quantity, reflecting changes in connectivity,

which changes during a seizure until its termination. In our

model, we coupled the evolution of connectivity parameter g

to the global level of synchronization of the system as

expressed in the first line of Equation 2, enabling the

measurement of the interval between modelled clonic bursts

or interclonic interval. Figure 4A shows that the interclonic

interval increases as a function of the time elapsed from

the start of the seizure. The connectivity changes exponentially

as the seizure progresses [log(interclonic interval) � time], and

the terminal value of the interclonic interval correlates
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strongly with the duration of the ‘PGES’ state in the model

(Fig. 4B, h2 = 0.82). Figure 4C shows the relation between

connectivity parameter g and PGES duration, and between

the terminal interclonic interval and the terminal value of g

(Fig. 4D). It was previously observed that interclonic intervals

increase in a logarithmic fashion [i.e. interclonic inter-

val� log(time)] towards the end of a convulsive seizure

(Jirsa et al., 2014). Our second hypothesis (Hypothesis 2),

derived from our model and from clinical observations is

that the interclonic intervals increase exponentially towards

the end of the seizure (Conradsen et al., 2013; Beniczky

et al., 2014). This may be an epiphenomenon of the decrease

of the connectivity g facilitating the termination of the seizure

in the model. Lastly, our third and most important hypothesis

(Hypothesis 3) is that the interclonic interval at the end of a

convulsive seizure is associated with the duration of the

following PGES period. This is motivated by the observation

in our model that the dynamics of the connectivity parameter

g during a seizure are involved in seizure termination and lead

to a ‘PGES’ state of suppressed activity (Fig. 2). The duration

of this period is determined by the time needed for the con-

nectivity parameter g to re-enter the normal operational state.

In the absence of noisy input, this time depends on the value

of the connectivity parameter g when the seizure terminates.

Accordingly, the model shows that the duration of the

postictal period is related to the connectivity parameter at

the end of the seizure reflected by the oscillatory frequency

of the model, which, in Hypothesis 2, corresponds to the

interclonic interval.

In the next section, these three features deduced from our

neuronal model are tested in human EEG recordings of

convulsive seizures.

Gamma distribution of human
seizure and PGES durations

Of the 48 convulsive seizures, 37 ended with PGES

(Table 1). Analogous to the model data, the duration of

the seizures and PGES periods was assessed. The distribu-

tion of the durations and corresponding gamma-distribu-

tion fits are shown in Fig. 5. The seizure duration varied

from 45 to 828 s and PGES periods lasted 2 to 252 s. The

distribution of the durations of PGES (� = 1.537, 95% CI

1.014–2.32) in human EEG suggests a deterministic pro-

cess. We confirm previous observations of a deterministic

process probably underlying convulsive seizure duration

(� = 2.660, 95% CI 1.823–3.880). Both findings are in

line with Hypothesis 1 from the model.

Clonic slowing at the end of a
convulsive seizure follows an
exponential pattern

The convulsive seizures in our sample ended with a clonic

frequency between 0.5 and 1.5 Hz, estimated by visual

Figure 3 Gamma distributions of ictal, postictal and normal period durations in the model. Histograms and fitted gamma functions

for the distributions of the ‘seizure’ (top) and ‘postictal’ (bottom) durations as simulated using the model. The estimation of the shape parameter �

for the fitted gamma-distribution as well as the 95% CIs are presented in the text boxes. The data were obtained using the standard MatLab�

function gamfit.
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inspection of EEG traces of epileptic discharges and video

recordings of corresponding clonic movements (‘clonic dis-

charge’). The clonic frequency decreased exponentially in

most seizures. Examples of the linear fit of the logarithm

of the interclonic interval from single seizures, as a function

of time from clonic phase start, are shown in Fig. 6. The

averaged goodness of fit for all 48 convulsive seizures was

73%, with standard deviation 14%. This validates

Hypothesis 2 from the model. We compared the exponen-

tial fit of the interclonic intervals in our sample of 48 seiz-

ures to the logarithmic fit previously reported (Jirsa et al.,

2014) and to a power law fit. The results are shown in

Supplementary Figs 1–3. The systematic errors of these

three fits were similar. The Wilcoxon signed rank test

showed that in our sample, the exponential fit was equal

to the power law fit, but explained the clonic slowing down

Figure 4 Relation between the interclonic interval, connectivity and PGES in the model. (A) Scatter plot showing the rela-

tion between the ICI (vertical axis, logarithmic scale) determined by the strength of the connectivity parameter g during simulated seizures and

the time elapsed since the beginning of the simulated seizure (horizontal axis, in simulation steps). The different data points at each time

point represent different simulations. The figure shows that the interclonic interval is relatively constant at the start of the model seizure, but

varies at the end of the seizure. (B) The relation between the model terminal interclonic interval (ICIterminal, horizontal axis) value and the

duration of the PGES state in the model (vertical axis). The non-linear correlation coefficient h2 shows that the terminal interclonic interval

value explains 82% of the variability of the PGES duration. (C) Scatter plot showing the relation between the durations of the simulated

PGES states (vertical axis, in simulation steps) and the value of the connectivity parameter g at the end of the preceding seizure (horizontal axis,

dimensionless units). (D) the relationship between the terminal value of the connectivity parameter g and the terminal interclonic interval in

the model.
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better than the logarithmic fit, even if by a moderate

margin (Supplementary Fig. 4).

Clonic slowing is associated with
PGES duration

The exponential fit of clonic slowing was used to estimate

the terminal value of the connectivity parameter at the end

of real seizures, in analogy with the model. This value (pro-

jected terminal interclonic interval, ICIterminal) was then cor-

related with the occurrence and length of PGES. A scatter

plot depicting the ICIterminal and PGES lengths is shown in

Fig. 7. If there was no PGES the value of PGES was set to

zero. ICIterminal explained 41% of the variance in PGES

duration: h2 = 0.41, P50.02. PGES duration explained

34% of the variance in ICIterminal: h2 = 0.34, P50.01

(Fig. 7). This is in keeping with Hypothesis 3, that the

ICIterminal, possibly reflecting the decrease in connectivity,

is correlated with PGES occurrence and duration. The

larger the total deceleration effect, the longer PGES lasts.

Several seizures in our sample with a marked interclonic

interval increase, however, did not end with PGES, but

there were no seizures without interclonic interval increase

that ended with PGES. This makes clonic slowing a highly

sensitive predictor of PGES in our data sample. The stron-

gest association is seen between clonic slowing leading to a

long ICIterminal and long PGES. The goodness-of-fit

increased when seizure termination is followed by a

longer PGES period. This corroborates with Hypothesis

3, i.e. that deterministic dynamics, typical of long

ICIterminal, also determine the presence and duration of

PGES. In line with previous studies (Lhatoo et al., 2010;

Surges et al., 2011; Semmelroch et al., 2012; Seyal et al.,

2012), there was no correlation between the duration of the

seizure and the ICIterminal in our sample (h2 = 0.15,

P = 0.46).

Discussion
We combined computational modelling and human EEG

recordings of convulsive seizures, to show that (i) probabil-

ity distributions of the durations of ictal and postictal per-

iods are indicative of deterministic processes; (ii) the

interclonic interval increases in an exponential manner

during human seizures, which is in accordance with the

model and may reflect a decrease in neuronal network con-

nectivity that in our model leads to seizure termination and

PGES; and (iii) the projected terminal interclonic interval

(ICIterminal) is associated with the occurrence and duration

of PGES. The results are in agreement with the hypothesis

that a neuronal mechanism that underlies transitions from

ictal to postictal and from postictal to normal states may be

Figure 5 Gamma distribution of ictal and PGES period durations in human EEG data. Histograms and fitted gamma functions (solid

lines) for the distributions of the seizure (top) and PGES (bottom) durations as visually detected from the human EEG recordings. The three

numbers in the legends give the parameter � (from Equation 3) for the fitted gamma-distribution and the corresponding 95% CI as obtained from

the standard MatLab� function gamfit.
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Figure 6 Linear fit of the interclonic interval in human seizures. Scatter plots of interclonic intervals (circles) and best linear fit (solid

line) between the time from the beginning of the convulsive phase (in seconds, horizontal axis) and the logarithm of the interclonic intervals

[log(ICI), vertical axis]. The figure illustrates the six first seizures from the dataset, the fitting algorithm was applied to all 48 cases.

Figure 7 Relation between interclonic interval and postictal period duration in EEG recordings. Scatter plot showing the relation

between the terminal interclonic interval (ICIterminal) values (in milliseconds, horizontal axis) and PGES duration (in seconds, vertical axis).

Convulsive seizures that were not followed by a PGES event were accounted as 0 s. The non-linear association index h2 was determined and

shows a relatively small, but statistically significant functional relation (P50.05, indicated by an asterisk) between PGES duration and ICIterminal in

both directions.
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activated in response to total synchronization during a con-

vulsive seizure.

Gradual slowing of epileptic bursts and clonic frequency

towards the end of seizures is frequently observed, but not

fully understood (Panayiotopoulos et al., 2010; Truccolo

et al., 2011; Conradsen et al., 2013). Our findings suggest

that this phenomenon may be related to plastic changes in

functional connectivity. Several studies report on dynamical

changes during the ictal state. Animal models of focal epi-

lepsy have shown that the excitatory-inhibitory balance

changes during a seizure, in line with the dynamics in our

study (Žiburkus et al., 2013; Boido et al., 2014). Towards

the end of a seizure, both excitatory and inhibitory neuron

populations become increasingly active; this may lead to

increased burst activity and longer interburst intervals

(Boido et al., 2014). Interneurons also receive strong exci-

tatory input, leading to continuous activation of the inhibi-

tory inputs to pyramidal cells, and seizure termination

(Žiburkus et al., 2013). Recent studies showed changes in

high-frequency oscillatory dynamics and increased spatial

and temporal correlation in human EEGs during the ictal

state, providing additional evidence for plastic changes to-

wards the end of a seizure leading up to seizure termination

(Kramer et al., 2012; Stamoulis et al., 2013).

Transitions from ictal to postictal states are clinically im-

portant in view of SUDEP following PGES and status epi-

lepticus. Cardiorespiratory mechanisms, possibly mediated

by brainstem dysfunction were suggested to play a role in

SUDEP (Ryvlin et al., 2013; Mueller et al., 2014; Aiba and

Noebels, 2015). The successful modelling of the transition

from ictal to postictal state in our neural mass model sug-

gests that a PGES state can be caused by neuronal mech-

anisms, although other factors may contribute. Neuronal

exhaustion was previously suggested as a possible mechan-

ism of PGES, but seizure duration as such, was not asso-

ciated with PGES in our sample and others, making

neuronal exhaustion an unlikely cause of seizure termin-

ation and PGES (Lhatoo et al., 2010; Surges et al., 2011;

Semmelroch et al., 2012; Seyal et al., 2012; Freitas et al.,

2013; Lamberts et al., 2013a, b). It is possible that several

pathways lead to PGES: in addition to EEG suppression

induced by diffuse cortical inhibition, EEG suppression

can also be induced by hypoxia, hypotension and asystole,

which may all occur in the postictal state (Surges and

Sander, 2012; Bozorgi et al., 2013; Moseley et al., 2013;

Ryvlin et al., 2013; van Dijk et al., 2014; Massey et al.,

2014).

Our results show characteristics of global seizure dy-

namics, but cannot exactly predict what neurophysiological

substrate causes both seizure termination and PGES. A var-

iety of different mechanisms and mediators may be

involved, such as adenosine and potassium. An in vitro
study showed that synchronous high-frequency firing of

neurons, analogous to the ictal state, causes release of ad-

enosine (Lovatt et al., 2012). In vivo, adenosine concentra-

tion rises sharply during the last phase of a seizure in swine

and humans, reaching a maximal level after seizure

termination (Van Gompel et al., 2014). A model in which

the transition from high frequency to low frequency dis-

charges in the course of a seizure is mediated by an increase

in the Ca-dependent K + current, leading to an increase of

extracellular K + has been proposed (Somjen et al., 2008).

The authors show that an overload of [K + ]o can initiate

spreading depression, and thus termination of seizure dis-

charges (Somjen et al., 2008). Another computational study

linked seizure termination and postictal depression to the

complex interaction between sodium, potassium and chlor-

ide concentrations (Krishnan and Bazhenov, 2011). These

two studies demonstrate processes at a microscopic level,

which are analogous to the transition from seizure to PGES

at a macroscopic level that we describe. These processes

may account for the reported decrease of functional con-

nectivity and excitability. The translation from the micro-

scopic level of modelling to the macroscopic level is a

matter of further study. Further investigations are needed

to determine the exact role of these processes in causing

seizure termination and PGES in vivo. We hypothesize that

a neuronal seizure termination mechanism serves to restore

normal function and to protect the brain from damage

arising from neuronal exhaustion and metabolic depletion.

Such a mechanism may also prevent status epilepticus or

seizure clusters. If this ‘neuronal emergency brake’ is acti-

vated too strongly or persistently, PGES occurs.

Excessive clonic slowing in relation to PGES may be con-

sidered a feature of a critical transition, in line with obser-

vations of slowing as a generic feature and possible early

warning signal in systems approaching a critical transition

or ‘tipping point’ (Scheffer et al., 2009). Our finding that

PGES was always preceded by a marked exponential de-

crease of clonic frequency is important as it may lead to the

development of an algorithm for real-time anticipation of

potentially fatal seizures using motion-detection sensors,

including remote video detection (Kalitzin et al., 2012,

2016).

Any computational model of complex systems as the

human brain can only account for a limited number of

properties. Our model is an abstract representation of neur-

onal dynamics. It is, however, capable to predict relevant

phenomena, such as the gradual change of the ictal state

towards its termination. When using computational models

it is essential to distinguish between ‘embedded’ (created

and pre-tuned) and ‘emergent’ (predictive) properties of

the model. In our model, the oscillatory state of the indi-

vidual units is embedded, while the collective dynamics and

the transitions between states are emergent properties, with

potential predictive value. We consider the existence of os-

cillatory states, interpreted as model seizures and their de-

terministic termination mechanism as a built-in property.

The existence of ‘PGES’ states and their transient dynamics,

however, are emergent properties of the collective system

dynamics. The same holds true for the association between

the duration of the PGES state and the value of the

connectivity parameter g at seizure termination. These

emergent properties can be qualitatively explained by the
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phase-space structure shown in Fig. 2, which can be inter-

preted as an emergent property in its entirety as it cannot

be reduced to the dynamics of the individual units. The

predictive power of our model is also due to its autono-

mous nature. Many computational models of the epileptic

condition require the adjustment of their parameters in

order to change behaviour from ‘seizure’ to ‘normal’.

Such models can describe the individual states but will

not provide predictions, or emergent features, from the dy-

namics of the transition between those states. Our model

describes the transitions from ictal to postictal and back to

a normal state as an autonomous process without any pre-

defined parameter alterations. The only precipitating factor

affecting the deterministic transitions is the stochastic noise

present in the system. Parameter and dynamic variables

fluctuations alone would result in random-walk type tran-

sitions that are described by gamma distributions with

�4 1. The case � = 1, or Poisson distribution, is character-

istic for random transitions with no memory from the past

states while �51 represents the more realistic case where

the system may still float away from the transition region.

A deterministic component that introduces an additional

time scale would result a shift of the � parameter to

�4 1 values. We did not provide simulation results with

various mixing levels of stochasticity versus determinism as

this was not the primary objective of our study. The valid-

ation of the hypotheses generated by our model with the

human data is not a claim of uniqueness of the model but a

consistency check. Indeed, any distribution on the positive

time axis can be represented as a superposition of an infin-

ite number of exponential functions (Laplace representa-

tion) and a (normalized) superposition of exponential

distributions, possibly due to a decay process of a multi-

state system, may also result in a gamma fit with �41.

Other types of plastic change may exist in addition to the

plasticity of the connectivity parameter we used in the

model. We tested several types of plasticity mechanisms,

affecting either the unit excitability or the inter-unit con-

nectivity or both. All lead to (i) deterministic seizure ter-

mination; and (ii) a transient postictal state with suppressed

activity and excitability. In all cases, the duration of the

postictal supressed state was associated with the terminal

value of the plasticity parameter. It is, however, the par-

ticular choice of Equation 2 and the interaction term in

Equation 1 that relates the interclonic interval increase

during the seizure to the change in connectivity parameter

g. Other parameter choices did not produce the same effect.

Our model may be used as a starting point to reconstruct

the exact properties of the mechanism of seizure termin-

ation, using a more detailed model. Our results may not

apply to all seizure types. A different type of model, for

example, predicts a logarithmic [ICI� log(t)] evolution of

the interclonic intervals preceding a homoclinic bifurcation

at seizure offset (Jirsa et al., 2014). It was validated in a

clinical sample, which does not appear, however, to have

been selected based on the same seizure criteria as ours (see

‘Materials and methods’ section). The underlying

pathophysiological mechanisms of seizure termination

may therefore differ. Interestingly, in our sample the sys-

tematic errors of the logarithmic and power law fits dif-

fered little from the exponential fit (Supplementary

material). Fits based on exponential equations were previ-

ously rejected as they can underestimate the interspike

interval near the end of seizures and, in certain models,

predicted that spikes would continue after the end of the

seizure (Jirsa et al., 2014). In our model the parameter

evolution law of connectivity parameter g is only valid

during the seizure periods; thus our model did not predict

that spikes continue after seizures termination. The expo-

nential fit also did not underestimate the terminal value of

g linked to the interclonic interval, and correlated with the

duration of subsequent PGES. The exponential law is co-

variant with the reference time, as ICIt ¼ ICIuet�u ¼

ICI0et; ICI0 ¼ ICIue�u. The log(t) evolution, however, de-

pends on the exact determination of seizure termination

time. If the interclonic intervals are increasing exponentially

towards the end of the seizure, their inverse, the instantan-

eous clonic frequency F = 1 / ICI is decreasing exponen-

tially. We confirmed this hypothesis in a recent study

using optic flow video sequences (Kalitzin et al., 2016).

Previous work showed that the probability distribution of

the duration of absence seizures in humans and rodent and

computational models of epilepsy can, in some cases, also

follow a stochastic pattern (Suffczynski et al., 2006). This

suggests that the termination mechanism may be defective

in certain circumstances, causing seizures to terminate due

to random fluctuations.

A computational model is a homogeneous system. We

validated its predictions using seizures recordings from dif-

ferent individuals, in whom different mechanisms may con-

tribute to seizure termination. This probably explains the

difference in strength of the association between the last

interclonic interval and PGES in the model and in

humans. Ideally, a large number of seizure EEG recordings

from the same individuals would be needed to confirm this

hypothesis.

The sample size of our human EEG data is limited and

surface EEG for postictal assessment presents some draw-

backs. Artefacts (e.g. nursing interventions, muscle activity

and breathing activity) may have contaminated the EEG,

thereby preventing precise estimation of PGES duration.

Despite being a well-defined neurophysiological state that

is easier to quantify than postictal slowing in general, PGES

duration is inevitably a semi-exact outcome measure. One

way to circumvent this is to use intracranial EEG record-

ings, but because of sparse spatial sampling this will lack a

global measure of cortical activity. In our subjects, anti-

epileptic drugs were tapered in the course of seizure moni-

toring. Such tapering may increase the occurrence of PGES

(Lamberts et al., 2013a), and may theoretically alter mech-

anisms of seizure termination.

Our study demonstrates the power of combining com-

puter modelling and neurophysiological observations to

formulate testable hypotheses leading to new approaches
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to elucidate epileptic seizure mechanisms in human EEG

data.
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