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Abstract

Background: Findings in the observational retail food environment and obesity literature

are inconsistent, potentially due to a lack of adjustment for residual confounding.

Methods: Using data from the CARDIA study (n¼12174 person-observations; 6 examin-

ations; 1985–2011) across four US cities (Birmingham, AL; Chicago, IL; Minneapolis, MN;

Oakland, CA), we used instrumental-variables (IV) regression to obtain causal estimates of the

longitudinal associations between the percentage of neighbourhood food stores or restaur-

ants (per total food outlets within 1 km network distance of respondent residence) with body

mass index (BMI), adjusting for individual-level socio-demographics, health behaviours, city,

year, total food outlets and market-level prices. To determine the presence and extent of bias,

we compared the magnitude and direction of results with ordinary least squares (OLS) and

random effects (RE) regression, which do not control for residual confounding, and with fixed

effects (FE) regression, which does not control for time-varying residual confounding.

Results: Relative to neighbourhood supermarkets (which tend to be larger and have

healthier options than grocery stores), a higher percentage of grocery stores [mean-

¼53.4%; standard deviation (SD)¼31.8%] was positively associated with BMI [b¼ 0.05;

95% confidence interval (CI)¼0.01, 0.10] using IV regression. However, associations were

negligible or null using OLS (b¼�0.001; 95% CI¼�0.01, 0.01), RE (b¼�0.003; 95%

CI¼�0.01, 0.0001) and FE (b¼�0.003; 95% CI¼�0.01, 0.0002) regression.
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Neighbourhood convenience stores and fast-food restaurants were not associated with

BMI in any model.

Conclusions: Longitudinal associations between neighbourhood food outlets and BMI

were greater in magnitude using a causal model, suggesting that weak findings in the lit-

erature may be due to residual confounding.

Key words: Instrumental-variables regression, neighbourhoods, retail food environment, obesity, weight,

endogeneity

Background

In response to inequities in access to healthy food choices,

policy makers have sought to modify the retail food envir-

onment in low-income areas.1,2 Theoretically, such efforts

would influence where residents shop, what they consume

and ultimately weight status. However, such experiments

have not been successful in reducing obesity,1,3–7 despite

some mixed supporting evidence from observational re-

search. For example, findings from observational studies

suggest a positive association between density of fast-food

restaurants, convenience stores and grocery stores with

body mass index (BMI),8–13 and a negative association be-

tween full-service restaurants and supermarkets with

BMI.8–10,13 Yet Cobb et al., in a systematic review, re-

ported that associations between the retail food environ-

ment and obesity are predominantly null.10

Inconsistencies in observational research may be due to a

lack of adjustment for unmeasured confounding such as: un-

measured preferences for residing near certain food outlet

types; placement of food outlets in areas with higher de-

mand;14 reverse causality; or differential measurement error.

Non-causal methods (i.e. any model that ignores time-

invariant and time-varying residual confounding), such as

ordinary least squares (OLS) and random effects (RE) regres-

sion, implicitly assume that omitted variables (e.g. residential

preferences) are independent of explanatory variables, and

thus may produce biased estimates in the presence of residual

confounding.15 Fixed effects (FE) regression controls for

observed and unobserved time-invariant characteristics15 but

ignores unobserved time-varying characteristics. In contrast,

instrumental-variables (IV) regression is a causal approach

that corrects for time-varying and time-invariant residual

confounding by using proxies for exposures and eliminating

the correlation between exposures and unmeasured charac-

teristics.16,17 A few cross-sectional studies on fast-food res-

taurant availability and BMI have used IV regression

finding estimates of greater magnitude relative to OLS re-

gression18–20 but these studies did not address possible sub-

stitution effects (e.g. higher relative availability of full-service

versus fast-food restaurants).

To address these gaps, we used 25 years of data from

the Coronary Artery Risk Development in Young Adults

(CARDIA) study and IV regression to quantify associations

between different types of neighbourhood food outlets and

BMI over time, while accounting for correlation between

measured exposures and unmeasured characteristics. We

compared the magnitude and direction of estimates from a

causal approach (IV regression) with estimates derived

from non-causal models (OLS, RE and FE regression) to

assess the extent of bias. Based on previous work,18–20 we

Key Messages

• Findings in the observational retail food environment and obesity literature are inconsistent, potentially due to a lack

of adjustment for residual confounding.

• We sought to assess the presence and extent of bias from residual confounding by comparing estimates derived

from causal models (instrumental-variables regression) with estimates derived from non-causal methods, including

ordinary least squares and random effects regression, which do not account for residual confounding at all; and fixed

effects regression, which only corrects for time-invariant residual confounding.

• Overall, estimates derived from non-causal models were attenuated relative to a causal modelling strategy, which

suggests that non-causal models may underestimate the effect of the neighbourhood retail food environment on

weight status.

• Using causal model strategies in future studies is important for informing efforts to modify neighbourhood retail food

environments to improve health outcomes.
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hypothesized that non-causal models would underestimate

the impact of the retail food environment on obesity, pos-

sibly due to a lack of adjustment for unobserved bias.

Methods

Study sample

CARDIA is a prospective study of the development and

risk factors of cardiometabolic disease in Black and White

young adults. In 1985–86, 5115 CARDIA participants

were recruited from four US metropolitan areas

(Birmingham, AL; Chicago, IL; Minneapolis, MN;

Oakland, CA); enrolment was balanced by age (18–24

years or 25–30 years), race (White or Black), gender and

education (� high school or > high school). Follow-up

examinations were conducted in 1987–88 (Year 2), 1990–

91 (Year 5), 1992–93 (Year 7), 1995–96 (Year 10), 2000–

01 (Year 15), 2005–06 (Year 20) and 2010–11 (Year 25),

with retention of 91%, 86%, 81%, 79%, 74%, 72% and

72% of participants, respectively.

Individual-level data

Self-reported socio-demographics were collected at each

examination, using a standardized questionnaire, including

age, gender, race (Black, White), current educational attain-

ment (years), marital status and number of children. Total

family income (categorical responses) was collected starting

with Year 5, so we used income values from Year 5 as a

proxy for baseline values (no other Year 5 data were used).

Self-reported physical activity (PA) was assessed at each

examination using the CARDIA PA History question-

naire21 which captures frequency of participation in 13

categories of exercise in the previous 12 months. Alcohol

consumption in the past year was assessed using a self-

reported questionnaire at each examination.

Outcome variables. Height and weight were measured to

the nearest 0.5 cm and 0.1 kg, respectively, by trained

study staff and used to calculate BMI (kg/m2). Waist cir-

cumference (WC) was measured in duplicate at the mini-

mum abdominal girth.

Neighbourhood-level data

Using Dun & Bradstreet (D&B) Duns Market Identifiers

File (Dun & Bradstreet, Inc., Short Hills, NJ),22 a commercial

dataset of US businesses with fair reliability and validity,23–25

we obtained the counts of PA facilities and food outlets at

each examination year. We classified food outlets according

to 8-digit Standard Industrial Classification (SIC) codes in

Years 7, 10, 15, 20 and 25 (Appendix 1, available as

Supplementary data at IJE online). Only 4-digit codes were

available in 1986, so we used matched business names and a

prediction model to supplement classification at baseline

(Appendix 2, available as Supplementary data at IJE online).

We also used data from several commercial sources to

calculate measures related to neighbourhood socio-

demographics, employment density, street connectivity

and consumer prices (Appendix 2). Using a geographic

information system (GIS), we matched neighbourhood-

level measures to CARDIA respondents’ residential

addresses at baseline and Years 7, 10, 15, 20 and 25.

Analytical sample

Participants who resided in one of the four baseline cities

in each examination year were eligible for the current

study (n¼ 4316, 2462, 1728, 1481, 1202 and 1119 at

baseline and Years 7, 10, 15, 20 and 25, respectively). We

excluded one participant who withdrew from the study

and two participants who changed gender. We also

excluded women who were pregnant at the time of exami-

nation (n¼ 6, 33, 9, 4, 3 and 1 at baseline and Years 7, 10,

15, 20 and 25, respectively) and those with missing BMI

data (n¼ 13, 23, 15, 5, 10 and 3 at baseline and Years 7,

10, 15, 20 and 25, respectively). Our final sample sizes

were 4294, 2404, 1702, 1470, 1189 and 1115 individuals

at baseline and Years 7, 10, 15, 20 and 25, respectively

(n¼ 12 174 person-observations).

Using multilevel mixed effects linear regression (-mixed- in

Stata 14.0) with baseline study centre, gender, race, age and

year, we imputed missing values for individual-level income

(n¼ 755, 55, 25, 26, 34, and 31 at baseline and Years 7, 10,

15, 20 and 25, respectively), marital status (n¼ 6 at baseline),

alcohol intake (n¼ 2, 12, 18, 4, 21 and 11 at baseline and

Years 7, 10, 15, 20 and 25, respectively) and PA (n¼ 1, 47,

23, 6, 12 and 312 at baseline and Years 7, 10, 15, 20 and 25,

respectively). Using the mean of non-missing values across all

years, we also imputed missing values for census-derived socio-

demographics (n¼ 4), food outlets (n¼ 4) and road connectiv-

ity (n¼ 5) at baseline and Years 7, 10 and 15.

To account for potential selection bias due to out-

migration over time, we used gender, race and baseline

study centre to predict the probability of being in the sam-

ple at the end of follow-up. We used the inverse of the

probability to weight all models (-pweight-).

Statistical analysis

Exposure specification

To create our explanatory variables (Y vector in equations

below), we used the count of each food outlet type within
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a 1-km street network distance from respondents’ residen-

ces, which captures walking distance to food outlets.26 We

calculated the percentage of convenience stores, grocery

stores and supermarkets out of total food stores (sum of

convenience stores, grocery stores and supermarkets). We

also calculated the percentage of fast-food restaurants and

full-service restaurants out of total restaurants (sum of

fast-food and full-service restaurants). Thus, modelling a

10% increase in one type of food store (or restaurant)

equals a 10% decrease in the other food stores (or restau-

rants). We also modelled the total count of food outlets as

endogenous variables, to account for variation in the

denominator of our central exposure variables (i.e, having

fewer or more alternatives might influence choice of food

outlet). Endogenous variables (including exposures) are

related to and determined by other variables in the

model.27

Covariates

We adjusted for several exogenous variables (X vectors in

equations below), including age and age-squared (continu-

ous), race (White, Black), gender, educational attainment

(< high school, � high school), income (�
$42 500, > $42 500), baseline study centre, year and

market-level cigarette and fast-food prices (Appendix 2).

Exogenous variables are theoretically and statistically asso-

ciated with endogenous variables, and not determined by

other variables in the model.

Based on previously established methods,28 we calcu-

lated total PA intensity scores (exercise units) using a sum-

mary of the frequency and intensity of participants’

moderate and vigorous activities. We treated total

PA, alcohol intake (yes/no), marital status (yes/no) and

number of children as endogenous (W vectors in equations

below).

Instrumental variables

Valid instruments (Z vectors in equations below) should be

theoretically and statistically associated with endogenous

variables, and have no direct associations with the out-

come (outside their influence on endogenous variables) nor

with error terms in regression equations. Our set of instru-

ments included: population density; percentage neighbour-

hood White population; percentage neighbourhood

population � 18 years; distance to nearest employment

subcentre; count of public and fee-based PA facilities;

market-level wine and beer prices; and street connectivity

(Appendix 2). We theorized that this set of variables was

directly associated with neighbourhood food outlets and

other endogenous variables, but not directly associated

with BMI or error terms in the model.

Empirical model

The general specification for the IV model (Supplementary

Figure 1, available as Supplementary data at IJE online) is

shown below:

Wit ¼ a1Zit þ b1Xit þ l1i þ e1it (1)

Yit ¼ a2Zit þ b2Xit þ c1Wit þ l2i þ e2it (2)

Bit ¼ d1Yit þ b3Xit þ c2Wit þ l3i þ e3it (3)

In equation 1, Wit represents a vector of endogenous

variables, which influence BMI and retail food environ-

ment variables, and are also influenced by exogenous vari-

ables; Zit represents a vector of exogenous instrumental

variables; and Xit represents a vector of non-instrument

exogenous variables. In equation 2, Yit represents a vector

of endogenous retail food environment variables. In equa-

tion 3, Bit is BMI at each examination. Across equations,

i equals 1,. . ., N participants; t equals 1,. . ., Ti years; and li

and eit represent unobserved time-invariant and time-

varying error components, respectively. The equations cap-

ture both the direct and the indirect effects of vectors on

endogenous variables (e.g. a2 represents the direct effect of

Zit on Yit, and a1 represents the indirect effect of Zit on Yit

via Wit).

Estimators and empirical tests of IV assumptions

We used a generalized method of moments (GMM) estima-

tor for IV regression, which is a single-equation estimation

approach based on a two-stage least-squares estimator.29

The GMM estimator allows for a cluster-corrected weight-

ing matrix, which is more efficient than other IV estima-

tors. We used -ivregress- with the ‘gmm’ option in Stata

(version 14.0).

We used the Sargan-Hansen J test of over-identifying

restrictions to test the assumption that our IVs were exoge-

nous (i.e. not related to or determined by other variables

also in the model). Failure to reject the null hypothesis

(P< 0.05) indicates that our IVs were exogenous and that

it was valid to exclude them as predictors of BMI. We used

the Durbin-Wu-Hausman test to evaluate whether our the-

oretically endogenous variables were in fact endogenous

(i.e. related to and determined by other variables in the

model). Rejecting the null hypothesis (P< 0.10) implies

that our assumption about endogeneity was correct. We

obtained goodness-of-fit statistics to evaluate the explana-

tory power of our IVs. An F statistic with a critical value

greater than 10 indicates that our IVs were strong predic-

tors of endogenous variables.30 We used the -estat- post-

estimation command for all empirical tests.

We then compared IV estimates with non-causal estima-

tors, including: OLS regression (with robust variance) and

RE regression, which do not account for endogeneity (i.e.
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unmeasured confounding, reverse causality and differential

measurement error);15 and FE regression, which controls

for time-invariant endogeneity only15 (Supplementary

Table 1, available as Supplementary data at IJE online).

We adjusted for all covariates in each model. We did not

include food purchasing and consumption measures

because these constructs are on the causal pathway and

adjustment would theoretically attenuate estimated effects.

We considered comparing IV estimates with Heckman

selection models, but we were unable to identify an exclu-

sion restriction (i.e. a variable that predicts the probability

of being obese, but not linear BMI); as well as propensity

score-matching methods, but this approach does not

account for unobserved bias.31–33

Sensitivity analyses

To determine whether estimates from the central analysis

were robust to our measure of obesity, we replicated all

analyses with WC as the outcome. We considered using

lagged IVs and endogenous variables, but decided that loss

of explanatory power and uneven intervals between exami-

nations justified using contemporaneous exposure and out-

come variables.

Results

Mean BMI was 24.5 kg/m2 (SD¼ 5.1) and 31.0 kg/m2

(SD¼ 8.0) at baseline and Year 25, respectively, with a

mean of 27.3 kg/m2 (SD¼ 6.9) across follow-up (Table 1).

Over time, the percentage of neighbourhood full-service

restaurants, convenience stores and supermarkets

increased, the percentage of fast-food restaurants and gro-

cery stores decreased and total food outlet counts

increased.

We failed to reject the null hypothesis of the test of

over-identifying restrictions (P¼ 0.667), and rejected the

null hypothesis of the Durbin-Wu-Hausman test

(P¼ 0.001). Taken together, these results suggest our

model was appropriately specified. The Fstatistic value for

each endogenous variable was greater than 10 (Table 2),

suggesting that our combined IVs strongly identified

endogenous variables.30

Estimates of retail food environment exposures in rela-

tion to BMI were approximately 10–20 times smaller in

magnitude using non-causal (versus causal) models (Table

3). For example, a 10% increase in the percentage of gro-

cery stores (relative to supermarkets) was associated with a

0.50 kg/m2 (95% CI: 0.10, 1.00; P¼ 0.026) increase in

BMI over time using IV regression (assuming a linear

Table 1. Descriptive statistics for participants over the study period: CARDIA baseline and Years 7–25 (1985/86–2010/11)

Baseline Year 7 Year 10 Year 15 Year 20 Year 25 Baseline to Year

25 (average)

N (person-observations) 4294 2404 1702 1470 1189 1115 12 174

Individual-level socio-demographics

[% or mean (SD)]

White 44.0 41.2 32.2 32.3 31.1 31.0 37.9

Female 53.8 54.5 56.3 56.5 59.7 58.1 55.6

Education�high school 58.1 58.7 64.6 70.5 73.2 75.6 63.7

Income�$12 000 33.8 38.4 37.5 25.3 25.4 28.5 32.3

Marital status (yes) 21.7 37.8 36.4 38.8 39.1 37.3 32.2

Children (yes/no) 34.0 57.9 64.0 69.7 73.1 74.7 54.8

Alcohol intake (yes) 59.9 55.3 51.0 48.8 50.2 49.7 54.5

Total physical activity (exercise units)a 418 (305) 332 (272) 326 (285) 328 (279) 304 (266) 307 (269) 356 (290)

Age, years 24.8 (3.7) 32.0 (3.7) 35.0 (3.8) 40.0 (3.8) 45.2 (3.7) 50.1 (3.8) 33.8 (9.2)

BMI (kg/m2) 24.5 (5.1) 27.1 (6.5) 28.3 (7.1) 29.5 (7.5) 30.3 (7.2) 31.0 (8.0) 27.3 (6.9)

Neighbourhood-level food outlets within

1 km [mean (SD)]

Fast-food restaurants, % per total restaurants 65.0 (46.0) 45.5 (34.8) 43.3 (36.9) 41.9 (35.3) 41.8 (30.9) 40.1 (29.6) 50.8 (40.1)

Full-service restaurants, % per total restaurants 2.6 (9.9) 39.5 (33.5) 32.6 (33.2) 34.4 (32.7) 41.6 (30.9) 43.2 (30.5) 25.5 (31.8)

Convenience stores, % per total food stores 29.6 (28.3) 37.8 (25.9) 38.7 (29.4) 36.8 (28.9) 37.7 (27.8) 37.0 (29.6) 34.8 (28.4)

Grocery stores, % per total food stores 60.5 (33.1) 53.7 (28.1) 49.2 (31.8) 49.4 (31.6) 46.0 (29.6) 45.4 (31.2) 53.4 (31.8)

Supermarkets, % per total food stores 1.5 (6.3) 3.4 (8.6) 3.6 (9.5) 3.8 (9.8) 5.6 (11.9) 6.6 (11.6) 3.3 (9.0)

Total restaurants, countb 2.8 (4.5) 10.3 (17.5) 6.0 (11.4) 6.7 (13.0) 12.0 (25.6) 11.8 (22.3) 6.9 (15.1)

Total food stores, countb 5.4 (4.3) 11.2 (8.4) 7.0 (6.2) 6.5 (5.9) 8.2 (8.7) 7.6 (7.6) 7.4 (6.9)

aWe calculated total PA intensity scores (exercise units) using a summary of the frequency and intensity of participants’ moderate and vigorous activities.
bValues represent the mean for all CARDIA participants per year and thus do not equal 100% for total restaurants or total food stores.
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relationship). On the other hand, a 10% increase in the

percentage of grocery stores was associated with a negli-

gible decrease in BMI using RE regression (b¼�0.03;

95% CI: -0.10, -0.001; P¼ 0.037) and FE regression

(b¼�0.03; 95% CI: -0.10, -0.002; P¼0.031).

The percentages of convenience stores (relative to super-

markets) and fast-food restaurants (relative to full-service

restaurants) were not associated with BMI in any model,

but the magnitude of coefficients was also larger using IV

regression.

Sensitivity analyses

The magnitude and direction of estimates derived from

models with WC were similar to those obtained in BMI

analyses (Supplementary Table 2, available as

Supplementary data at IJE online). Goodness-of-fit statis-

tics (Supplementary Table 3, available as Supplementary

data at IJE online) and empirical tests of overidentifying

restrictions (P¼ 0.646) and endogeneity (P¼ 0.001) were

also similar to BMI analyses.

Discussion

With clinic-based, anthropometric measures and detailed

neighbourhood environment data, we used IV regression

to estimate causal effects of the retail food environment on

BMI over time. We also compared the magnitude and

direction of causal IV estimates with non-causal models,

including OLS and RE regression, which do not account

for residual confounding, and with FE regression, which

only corrects for unmeasured time-invariant characteris-

tics. Controlling for unmeasured characteristics with

causal models in neighbourhood environment studies is

important because omitted variables (e.g. unmeasured

preferences) may bias relationships between environmental

variables and health outcomes.

Although selection bias usually biases OLS estimates

upwards,35 we found that longitudinal associations

between food outlets and BMI were attenuated using non-

causal (versus causal) models. The smaller magnitude of

non-causal model estimates also suggests that the error

terms corresponding to retail food environment exposures

and BMI were negatively correlated, possibly due to a mis-

match between unmeasured preferences and environment

(e.g. individuals with a preference for locating near super-

markets might locate in areas with few supermarkets for

reasons unrelated to the retail food environment).

Furthermore, the observed differences between FE and IV

regression suggest that bias may be time-varying, such as

unmeasured preferences for larger residences over time.35

Overall, our findings are consistent with previous studies

showing that using IV regression resulted in stronger asso-

ciations between environment variables and health out-

comes than did OLS regression.18–20 Given the rich

empirical literature comparing causal and non-causal

methodologies across several other disciplines,36,37 we

argue that our findings would consistently apply to future

studies and are not a unique feature of the CARDIA study.

Our causal model results suggest that the percentage of

grocery stores (relative to supermarkets) was positively

albeit weakly-associated with BMI over time. Others sug-

gest that grocery stores (which are larger and have higher

sales38) have a lower ratio of healthy to unhealthy shelf

space than do supermarkets.39 Therefore, it is hypotheti-

cally possible that decreasing the number of smaller gro-

cery stores while simultaneously increasing the number of

supermarkets, possibly via changes to zoning ordinances,2

may contribute to reducing population-level BMI (though

we acknowledge that such efforts are not trivial). On the

other hand, natural intervention studies suggest that modi-

fying the retail food environment may not meaningfully

reduce obesity whereas price interventions to improve

healthy eating have been more successful.40 Although we

posit that changes to BMI would operate through changes

in food consumption, in an earlier study we did not find an

association between the availability of grocery stores and diet

outcomes (unpublished); however, it is possible that a shorter

follow-up period and a smaller sample size undermined our

ability to detect statistically significant associations.

Although our instruments strongly identified obesity

outcomes, we acknowledge that there are many challenges

with causal models, including availability of longitudinal

data, lack of temporal variation in retail food environment

exposures and difficulties in identifying valid and robust

IVs. The latter can be partially addressed with full-

information IV regression, which is preferable in the

Table 2. Goodness-of-fit statistics for evaluating strength of

identification of endogenous variables with body mass index:

CARDIA baseline and Years 7–25 (1985/86–2010/11)

F statistic P-valuea

Convenience stores, % per total food stores 106.0 < 0.001

Grocery stores, % per total food stores 87.9 < 0.001

Fast-food restaurants, % per total restaurants 78.9 < 0.001

Total food stores, count 272.3 < 0.001

Total restaurants, count 183.9 < 0.001

Marital status (yes, no) 12.6 < 0.001

Number of children 17.3 < 0.001

Alcohol intake (yes, no) 29.1 < 0.001

Physical activity (exercise units) 19.7 < 0.001

aRejecting the F test indicates that our set of instruments provides good

identification for that endogenous variable.
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presence of weak instruments.41 We also acknowledge that

the retail food environment is only one risk factor for

weight gain, and additional risk factors should be consid-

ered in future research, including factors related to food

availability and prices in school, professional and recrea-

tional environments (i.e. not retail food outlets). We also

lacked data related to zoning ordinances and land use poli-

cies, which may restrict the placement of healthy food out-

lets (e.g. supermarkets) in neighbourhoods,42 especially in

low-income areas,43 though we controlled for neighbour-

hood income. Although we observed missing values and

classification errors in D&B, we used a prediction model

and matched business names to mitigate inaccuracies at

baseline (Appendix 2).

Our findings suggest that residing in a neighbourhood

with a greater availability of grocery stores (relative to

supermarkets) associates with higher BMI over time, after

accounting for residual confounding. Our observation of

attenuated estimates from non-causal (versus causal) mod-

els suggests that the more widely used non-causal models

may underestimate associations between environmental

exposures and health outcomes. Thus, it is important to

recognize that null or weak findings in the predominantly

non-causal literature may have been subject to residual

confounding.

Supplementary Data

Supplementary data are available at IJE online.
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IV regressiond P-value OLS regressione P-value RE regressionf P-value FE regressiong P-value

N (person-observations) 12 174 12 174 12 174 12 174

Full-service restaurants, %

per total restaurantsh

0.00 � 0.00 � 0.00 � 0.00 �
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hOmitted from the model (referent).
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