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Why was the cohort set up?

Major progress has been made over the past decade in the

understanding of the genetic background to chronic meta-

bolic disease such as type 2 diabetes (T2D) and atheroscler-

otic cardiovascular disease (CVD). These disorders show a

significant degree of heritability and disease pathogenesis

that rely on the combination of a multitude of unfavour-

able genotypes on which over-nutrition, lack of physical

exercise, obesity and smoking augment the phenotype.

Currently, the number of common genetic variants ro-

bustly associated with CVD and T2D are increasing with

the increasing size of discovery cohorts; for CVD, the

number now exceeds 50 variants1–3 and for T2D and

glycaemic traits, the corresponding number is about 75.4,5

Combining several genome-wide association studies

(GWAS) datasets which include information on highly

relevant intermediate phenotypes has potentially helped in

discovery and replication of several disease loci and identi-

fication of novel pathways and pleiotropic genes.

However, little is known about the functional conse-

quences of most of the identified gene variants. The use of

well-characterized bioresources, in which investigations

into intermediate phenotypes can be performed, will be in-

valuable in order to provide mechanistic insight into these

poorly characterized genes and thus promote translational

research.

To this end the Oxford Biobank (OBB) was set up with

the primary goal of establishing a local cohort accessible

for genomic translational research. The resource is built to

enable studies on physiological consequences of genetic

mechanisms of disease. A leading principle has been to

seek informed consent from participants to be re-

approached for future discrete projects. Therefore, based

on the information gathered during a baseline visit, ‘re-

cruit-by-genotype’ (RbG) and ‘recruit-by-phenotype’ (RbP)

projects allow for detailed investigations of associations

between genotypes and biomarkers, or monitoring of more

detailed physiological processes. The OBB serves as a re-

source for researchers to investigate mechanisms leading to

increased T2D and CVD susceptibility and to explore

novel therapeutic targets in the prevention and treatment

of chronic non-communicable diseases.

Who is in the cohort?

The OBB is a random, population-based recruitment of

healthy participants between the ages of 30 and 50 years

from the Oxfordshire general population (approximately

800 000 inhabitants). Individuals with: previous diagnosis

of myocardial infarction or heart failure currently on treat-

ment; untreated malignancies; or other systemic ongoing

disease, and pregnant women were excluded from partici-

pation. The OBB recruitment began in 1999 and includes

7640 (4316 women and 3324 men) individuals as of

October 2016, with the aim of having a local cohort of

10 000 people among whom recalling can be achieved.

This sample size is based on the ability to identify an aver-

age of 25 people who are homozygous for what is normally
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considered common genetic variants (minor allele fre-

quency greater than 0.05). For the purpose of reaching out

to even larger populations to allow for recruitment of

carriers of rare gene variants or phenotypes, the Oxford

Biobank is a partner of the National Institute of Health

Research (NIHR) Bioresource currently reaching

�100 000 people. Baseline demographics of the OBB par-

ticipants are provided in Table 1.

Recruitment

The OBB includes a randomized, age-stratified sample ob-

tained from Oxfordshire and the Thames Valley. The

Thames Valley Primary Care Agency has enabled random

recruitment by providing lists of Oxfordshire residents

registered with a local general practitioner and aged 30–50

years. An invitation letter along with the study information

and response sheet were sent to all the participants.

Subjects who expressed willingness to enrol in the OBB

were contacted by telephone or e-mail, in order to convey

a brief overview of the study aims and objectives, by

trained research nurses. Possible exclusions for active dis-

ease or previous history of T2D or CVD were confirmed

during this contact, and only eligible participants were

scheduled for a clinic visit. Eligible participants were then

scheduled to visit the Clinical Research Unit at the Oxford

Centre for Diabetes, Endocrinology and Metabolism for a

baseline investigation. Exclusion criteria were type 1 and

type 2 diabetes, established CVD, cancer, known autoim-

mune or severe inflammatory conditions, substance abuse

or psychiatric condition making participation in Stage 2

(see later) unlikely. The OBB protocol is approved by the

Oxfordshire Clinical Research Ethics Committee (08/

H0606/107þ5) and all participants have provided in-

formed consent.

How often have they been followed up?

All participants have a detailed baseline characterization

(Stage 1). Subsequently, selected volunteers are invited for

a second visit (recall) to comply with a specific research

protocol (Stage 2). Information on who is selected for such

recall studies will be determined by the research question

and the available information from the Stage 1 visit. Such

recalls could be either ‘recall-by-genotype’ or ‘recall-by-

phenotype’.

What has been measured?

The OBB has collected a broad range of metabolic-, CVD-

and obesity-related phenotypes based on blood plasma

phenotyping, genetic biomarkers, questionnaires,

anthropometric measurements and body composition as-

sessment using dual-energy X-ray absorptiometry (DXA).

A brief description of variables collected at baseline is pro-

vided below.

Anthropometry. This included height, weight, waist and

hip circumference (WC and HC) measurements, and

calliper-measured skinfold thickness of the upper arm

(over biceps and triceps), subscapular, abdominal and

thigh regions.

Questionnaire-based assessments. Information on poten-

tial risk exposures or confounders in disease pathology,

such as physical activity, smoking and alcohol intake, were

obtained using validated questionnaires. The OBB partici-

pants were also interviewed by trained nurses on family

history of any chronic disease (such as the ‘Rose’ question-

naire for angina pectoris) given that the family history is a

well-known predictor of CVD and T2D. The question-

naires were all adopted from previously used studies and

have not been internally validated.

Blood pressure. An automatic pulse-detecting sphygmom-

anometer (Omron M3) was used to record systolic and dia-

stolic blood pressure, using a standard protocol involving

four sequential measurements after 10 min in the semi-

recumbent position. The average of the last three measure-

ments was used.

Biochemistry. Venous antecubital blood was drawn after

an overnight fast and immediately put on ice. Plasma was

separated within 60 min, frozen at �20�C within 120 min

and transferred to �80�C within 4 h. Plasma samples have

been analysed for glucose, lipids/lipoproteins (cholesterol,

triglycerides, high-density lipoprotein (HDL) cholesterol,

apolipoprotein-B (ApoB), apolipoprotein A1, C-reactive

protein (CRP), insulin, total non-esterified fatty acids

(NEFA), glycerol, 3-hydroxybutyrate and lactate. A subset

of samples have been analysed for insulin-like growth fac-

tor (IGF-1) and insulin-like growth factor binding protein-

1 (IGFBP-1) (n¼�2200). Details of the platforms used for

biochemical analysis are provided in Table 2. Adiponectin

is currently being analysed in all participants. A bioreposi-

tory of aliquots (10–15 x 0.5 ml of both EDTA- and

heparin-anticoagulated plasma as well as serum) is stored

for future use.

Metabolomics. The NMR-based metabolomics platform

data containing �230 metabolites6 has been performed on

�7100 Oxford biobank plasma samples. Additionally, the

mass spectroscopy-based technology MetabolonVR is avail-

able on a select set of 2250 samples on whom detailed
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Table 1. Baseline characteristics of the OBB participants

Characteristics n Male (n¼3324) n Female (n¼4316)

Sociodemographics

Age 3324 43 (37, 46) 4316 42 (37, 46)

Smokinga

NeverþEx-smoker 3315 2901 (87.5) 4308 3929 (91.2)

Current smoker 414 (12.5) 379 (8.8)

Alcohol intakea

No alcohol 3315 26 (0.8) 4308 138 (3.2)

Moderate 2865 (86.4) 3803 (88.3)

Heavy 424 (12.8) 367 (8.5)

Physical activitya

Sedentary 3315 149 (4.5) 4308 178 (4.1)

Moderate 1983 (59.8) 3154 (73.2)

Vigorous 1183 (35.7) 976 (22.7)

Menopausea – 3412 266 (7.8)

Anthropometry

Height (cm) 3322 179 (174, 183) 4315 165 (161, 170)

Weight (kg) 3322 83.5 (75.5, 93.0) 4315 66.5 (59.8, 75.7)

Body mass index (kg/m2) 3322 26.1 (23.8, 28.7) 4315 24.1 (21.9, 27.6)

Waist circumference (cm) 3317 92 (85, 99) 4307 80 (73, 88)

Hip circumference (cm) 3292 101 (97, 106) 4306 100 (95, 106)

Supra-iliac skinfold thickness (mm) 3320 17 (12, 25) 4308 17 (11, 26)

Subscapular skinfold thickness (mm) 3283 17 (13, 22) 4271 18 (12, 24)

Triceps skinfold thickness (mm) 3312 12 (9, 18) 4309 22 (17, 28)

Biceps skinfold thickness (mm) 3324 7 (5, 10) 4316 12 (8, 18)

Thigh skinfold thickness (mm) 1388 14 (10, 20) 2263 35 (24, 53)

Systolic blood pressure (mmHg) 3324 126 (119, 134) 4316 114 (107, 123)

Diastolic blood pressure (mmHg) 3324 79 (73, 85) 4316 73 (67, 79)

Biochemical tests

Fasting glucose (mmol/l) 3317 5.3 (5.1, 5.7) 4307 5.0 (4.8, 5.3)

Fasting insulin (mU/l) 3293 12.5 (9.6, 16.3) 4271 11.0 (8.5, 14.3)

Total cholesterol (mmol/l) 3317 5.3 (4.6, 6.0) 4305 5.0 (4.4, 5.7)

Triglycerides (mmol/l) 3317 1.2 (0.8, 1.7) 4305 0.8 (0.6, 1.1)

HDL-cholesterol (mmol/l) 3317 1.2 (1.0, 1.4) 4305 1.5 (1.2, 1.8)

LDL-cholesterol (mmol/l) 3286 3.4 (2.9, 4.1) 4301 3.1 (2.6, 3.6)

Apolipoprotein B (g/l) 3317 1.0 (0.8, 1.1) 4305 0.8 (0.7, 1.0)

Apolipoprotein A1 (g/l) 2103 1.3 (1.2, 1.5) 2509 1.5 (1.3, 1.7)

NEFA (mmol/l) 3315 404 (286, 54) 4303 489 (346, 658)

hs-CRP (mg/l) 3305 0.6 (0.2, 1.7) 4290 0.5 (0.1, 1.8)

3-hydroxy butyrate (umol/l) 3314 51.2 (34.9, 85.7) 4307 64.1 (38.9, 116.2)

Lactate (mmol/l) 3290 0.85 (0.66, 1.13) 4284 0.67 (0.54, 0.94)

Glycerol (mmol/l) 3310 37.9 (27.5, 52.6) 4294 56.5 (40.3, 77.9)

IGF-1 (mg/l) 1148 208 (177, 246) 1154 205 (167, 247)

IGFBP-1 (mg/l) 1147 30 (19, 45) 1154 44 (28, 63)

DXA measurements

Fat mass (kg)

Arms 2146 2.2 (1.7, 2.8) 2871 2.6 (2.0, 3.3)

Legs 2146 6.0 (4.8, 7.5) 2871 8.5 (6.8, 10.7)

Trunk 2146 12.7 (9.1, 16.8) 2871 10.7 (7.6, 14.9)

Android 2146 2.1 (1.4, 2.9) 2871 1.6 (1.0, 2.4)

Gynoid 2146 3.3 (2.6, 4.1) 2871 4.3 (3.4, 5.4)

Total fat 2146 22.0 (16.9, 28.1) 2871 22.6 (17.6, 29.6)

Visceral fat 2146 0.9 (0.5, 1.6) 2871 0.3 (0.1, 0.6)

(continued)
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DXA-acquired body composition data are available to

study the association between specific fat depots and

metabolome

Genomics. For each OBB participant, 3 � 5-ml aliquots of

whole blood are collected and frozen at �80�C for isola-

tion of genomic DNA. Single nucleotide polymorphism

(SNP) array data have been generated using the Illumina

Infinium Human Exome Beadchip 12v1 array platform for

the first consecutive 5900 DNAs, and Affymetrix UK

Biobank Axiom Array chip on the first consecutive 7500

participants. Beyond this, high throughput custom geno-

typing is facilitated by DNA being plated into 384-well

format for typing on an Applied Biosystems 7900HT ana-

lyser using Applied Biosystems TaqmanVR SNP genotyping

chemistries, or by LGC Genomics KASPTM custom assays

using KASP genotyping chemistry.

Body composition and bone mineral density assessment.

Body composition is assessed using GE Lunar iDXA and

all data are analysed with Encore software (version 11.0;

GE. Medical Systems, Madison, WI, USA), which beyond

regional body composition also includes an algorithm for

quantification of visceral adipose tissue (VAT).

What has it found? Key findings and
publications

The specific feature of the OBB is that all participants have

provided informed consent to be re-contacted for follow-up

studies. The cohort has therefore been used for both cross-

sectional analyses as well as dedicated follow-up studies.

Findings from cross-sectional studies from the baseline

data. The 7640 participants recruited so far in the OBB

Table 1. Continued

Characteristics n Male (n¼3324) n Female (n¼4316)

Lean mass(kg)

Arms 2146 7.3 (6.6, 8.2) 2871 4.2 (3.8, 4.7)

Legs 2146 19.9 (18.2, 21.8) 2871 13.9 (12.6, 15.3)

Trunk 2146 26.9 (24.9, 29.0) 2871 20 (18.4, 21.6)

Android 2146 4.0 (3.6, 4.3) 2871 2.9 (2.6, 3.2)

Gynoid 2146 9.1 (8.4, 10.1) 2871 6.4 (5.9, 7.0)

BMD (g/cm2)*

Total 2146 1.1 (1.0, 1.2) 2871 1.2 (1.0, 1.3)

Spine 2146 1.2 (1.1, 1.3) 2868 1.1 (1.0, 1.2)

IGF-1, insulin-like growth factor-1; IGFBP-1, insulin-like growth factor binding protein-1; hs-CRP, highly sensitive C-reactive protein; BMD, bone mineral density.

All data presented as median (interquartile range) and afrequency (percentage).
aSmoking: classified as ex-smokers and current smokers.
aAlcohol intake: moderate consumption, less than 21 units in men and less than 14 units in women (per week); heavy consumption, greater than 21 units in

men and greater than 14 units in women (per week).
aPhysical activity classified as moderate and vigorous activity per week.

Table 2. List of platforms used for biochemical tests

Biochemical tests Analysis method/platform used

Fasting glucose Analysed using Instrumentation Laboratory IL TestTM kits on an ILab 600/650 clinical chemistry

analysers (Werfen, Warrington, UK)Total cholesterol

Triglycerides

HDL- and LDL-cholesterol Analysed using Randox kits adapted for use on the Ilab 600/650 analysers (Randox Laboratories,

Crumlin, Northern Ireland)Non-esterified fatty acids (NEFA)

Apolipoprotein-B

Apolipoprotein A1

Glycerol

Lactate

3-hydroxybuthyrate

C-reactive protein Analysed using a Siemens ADVIA wide range CRP kit adapted for use on the Ilab 600/650

analysers. (Siemens Healthcare Diagnostics, Camberley, UK)

Fasting insulin Millipore Human Insulin specific radioimmunoassay (Millipore UK, Watford, UK)

Adiponectin Perkin Elmer AlphaLisa Human Adiponectin kit (Waltham, MA, USA)
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have a wide range of phenotypes that allow studying spe-

cific disease characteristics in relation to both their geno-

type and their phenotype. The percentages of various

incident phenotypes at baseline, such as impaired fasting

glucose (IFG), insulin resistance (IR), undiagnosed T2D

and hypertension, overweight and obesity, are provided in

Table 3. Results from various study designs are summar-

ized below.

Genome-wide association studies (GWAS). The focus of

some of the key findings in the GWAS included identifica-

tion of novel genetic variants associated with various

disease-related phenotypes such as obesity, T2D, hypergly-

caemic and hyperinsulinaemic traits, anthropometric traits,

fat distribution and blood pressure.3,7–19 This was facili-

tated by collaborating with several international GWAS

consortia such as the WTCCC, DIAGRAM, GIANT and

the MAGIC consortia. Such efforts have helped identify

several novel genetic variants associated with T2D,18

adiposity7,13,16,20,21 and CVD traits.14,22 Notably, the dis-

covery of rs9939609 variant located in the first intron of

FTO (fat mass- and obesity-associated) gene that predis-

poses to diabetes through an effect on body mass index

(BMI),23 and the MC4R (melanocortin-4 receptor) genetic

variant in common obesity risk,24 were early contributions

of OBB data to obesity genetics.

Cross-sectional observational studies. The paradoxical

association between upper body android and lower body

gluteofemoral fat with CVD and T2D traits was shown

using precise estimates of fat depot measured by DXA data

among 3399 individuals.25 Using other imaging techniques

such as ultrasound, quantification of subcutaneous

abdominal tissue layers (SAT) into deep and superficial

SAT and their functional differences have been reported.26

Studies involving postmenopausal women showed that

abdominal obesity was characterized by increased CVD

risk factors such as VLDL1-TG and apoB production, hep-

atic fat and non-HDL cholesterol, which has important

implications for CVD risk in this group.27

Recruit-by-phenotype (RbP) studies. With the rich abun-

dance of data within the baseline OBB characterization,

participants can be selected based on pre-defined pheno-

typic traits (Table 1) for investigations of complex interme-

diary phenotypes. These include both in vivo physiological

studies and case-control studies. Several in vivo studies

using OBB have aimed at understanding adipose tissue

biology, investigations into the T2D- and CVD-protective

properties of gluteofemoral fat, and fatty acid trafficking.

Participants have been selected to take part in complex

protocols to study the metabolic physiology of the femoral

adipose tissue depot.28 Using stable isotope-labelled meta-

bolic tracers combined with arterio-venous sampling tech-

niques, it has been found that: (i) muscle and adipose tissue

handle fatty acid uptake very differently;29 and (ii) gluteo-

femoral adipose depots exhibit lower lipolytic activity30

and, in relative terms, greater extraction of lipids from

ectopic fat deposition. This could explain some of the

CVD- and T2D-protective effects seen with expansion of

this fat depot.31–34

Deep physiological characterization of patients with

rare genetic conditions requires access to carefully matched

healthy controls for which OBB participants have been

used. Examples of this includes familial combined hyperli-

pidaemia (FCHL),35 Chuvash polycythaemia,36 PTEN

mutations37 and extreme high bone mass.38 Equally, in

common disorders where pair-matching is essential for

study design, OBB participants have been recruited as con-

trols for studies of polycystic ovary syndrome39,40 and

insulin resistance.41

Recruit-by-genotype studies (RbG). The first use of OBB

for RbG studies was the in vivo physiological characteriza-

tion of adipose tissue function according to PPARG

Pro12Ala carrier status among 42 age- and BMI-matched

individuals. The matching for BMI was done to isolate the

effect of metabolic phenotype by the PPARG genotype from

a potential adiposity effect. Obese individuals carrying the

T2D-protective Ala12 variant have higher adipose tissue

blood flow than Pro12 carriers.42 The apolipoprotein-E

(APOE) epsilon 4v variant is a risk gene variant for

Alzheimer’s disease, which has been investigated for brain

blood flow in relation to memory testing in age- and sex-

matched participants from OBB.43 The physiological conse-

quences of a PPP1R3A gene variant, identified in relation to

digenic inheritance of partial lipodystrophy,44 was tested

using the RbG concept.45 Besides metabolic disorders, the

Table 3. Prevalence of incident cardio-metabolic phenotypes

at baseline screening

Phenotype Total

n*

Male

N (%)

Total

n*

Female

N (%)

Impaired fasting glucose 3317 983 (29.6) 4307 439 (10.2)

Hypertension 3324 610 (18.4) 4316 298 (6.9)

Hypertriglyceridaemia 3317 821 (24.6) 4307 295 (6.9)

Overweight 3277 1486 (45.4) 4268 1171 (27.4)

Obesity 3277 572 (17.4) 4268 641 (15.0)

Impaired fasting glucose: defined as fasting glucose� 5.6 mmol/l.

Hypertension: defined as systolic blood pressure� 141 or diastolic blood

pressure� 90 mmHg. Hypertriglyceridemia: defined based on ATP III cut-off

of >1.7 mmol/l. Overweight: defined as BMI� 25.0 to <29.9 kg/m2. Obesity:

defined as BMI� 30.0 kg/m2.

*N based on number of individuals for whom baseline values are available.
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availability of large genotype data has also enabled the use of

OBB in the investigation of other diseases. Using the RbG

approach, we recently showed a protective homozygous trait

for autoimmune diseases among carriers of tyrosine kinase-2

(TYK2).46

An updated list of publications from OBB is available at

[https://scholar.google.co.uk/citations?hl¼en&user¼xPs_

QwMAAAAJ].

What are the main strengths and
weaknesses?

The strength of the cohort is in the triumvirate of detailed

baseline characterization of a large random healthy popu-

lation, the density of the genomic characterization and the

recall capability. The cohort is not designed as a prospec-

tive follow-up cohort, and the phenotypic baseline charac-

terization is dominated by metabolic measurements. The

age range is limited to 30–50 years, and people with overt

disease are excluded. We acknowledge that exclusion of

T2DM and CVD cases enriched for genotypes of interest

may introduce spurious associations due to collider effect

and selection bias, particularly in genetic association stud-

ies and GWAS.47,48 Care would be taken to use appropri-

ate statistical methods to account for such bias. However,

these effects are likely to be reasonably small with the

upper age limit being 50 years in the cohort.

Can I get hold of the data? Where can I find
out more?

The OBB is open for collaborative studies with academic

and commercial partners after research protocols have

been accepted by the OBB steering committee. Rules of

engagement and contact with the OBB team can be found

on the website [www.oxfordbiobank.org.uk].
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