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Abstract

Background: The population attributable fraction (PAF) is used to quantify the contribu-

tion of a risk group to disease burden. For infectious diseases, high-risk individuals may

increase disease risk for the wider population in addition to themselves; therefore meth-

ods are required to estimate the PAF for infectious diseases.

Methods: A mathematical model of disease transmission in a population with a high-risk

group was used to compare existing approaches for calculating the PAF. We quantify

when existing methods are consistent and when estimates diverge. We introduce a new

method, based on the basic reproduction number, for calculating the PAF, which bridges

the gap between existing methods and addresses shortcomings. We illustrate the meth-

ods with two examples of the contribution of badgers to bovine tuberculosis in cattle and

the role of commercial sex in an HIV epidemic.

Results: We demonstrate that current methods result in irreconcilable PAF estimates,

depending on how chains of transmission are categorized. Using two novel simple for-

mulae for emerging and endemic diseases, we demonstrate that the largest differences

occur when transmission in the general population is not self-sustaining. Crucially, some

existing methods are not able to discriminate between multiple risk groups. We show

that compared with traditional estimates, assortative mixing leads to a decreased PAF,

whereas disassortative mixing increases PAF.

Conclusions: Recent methods for calculating the population attributable fraction (PAF)

are not consistent with traditional approaches. Policy makers and users of PAF statistics

should be aware of these differences. Our approach offers a straightforward and parsi-

monious method for calculating the PAF for infectious diseases.
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Introduction

The population attributable fraction (PAF) describes the

contribution of a risk factor to the burden of disease or

death, for example the proportion of lung cancers attribut-

able to smoking1,2 or the proportion of global deaths at-

tributable to alcohol.3 The PAF combines prevalence of

exposure and relative risk. High PAFs can result from high

relative risks and low population exposure or from lower

relative risks but more widespread exposure,4 therefore

providing a more balanced measure of the likely impact of

public health interventions aimed at particular risk factors

than relative risks alone.

Recently, PAFs have been used to quantify the contribu-

tion of risk factors to infectious disease burden, for ex-

ample the contribution of malnutrition to childhood

infections,5 the contribution of commercial sex work to

HIV epidemics6 or the contribution of prisons to tubercu-

losis incidence.7 Some approaches have applied method-

ology developed for non-communicable diseases.7–9

However, it has been argued that doing this results in

an underestimate of PAF, as onward transmission to the

general population is not captured 5,6,10 and the disease

risk is not independent across groups.11 Simulation

models have been used to estimate the PAF of a risk

group by ‘turning down’ the risk factor and observing

the relative decrease in incidence5,12 or cumulative

incidence.6,10,13

In some situations, simulation models result in PAF

estimates that are orders of magnitude greater than

conventional estimates.10,14 The differences are ascribed to

the fact that simulation models account for onward trans-

mission, whereas conventional estimates do not. However,

it is not clear when or whether the different approaches

are reconcilable, nor what aspects of the simulation

approach lead to the greatly increased values. In this

paper, we develop an analytical framework to compare

existing methods for calculating the PAF for infectious

diseases. Based on shortcomings of existing methods, we

propose a new method rooted in population dynamic

theory, which bridges the divide between current

approaches.

Methods and Results

Comparing existing methods

In order to compare different methods, we formulate each

one in terms of the proportion of the population with a

risk factor, p, the relative risk of disease due to the risk fac-

tor, r, and—for the simulation model methods—the repro-

duction number in the general (non-risk) population, R.

Traditional method used for non-communicable

diseases

The most common formulation of the PAF was introduced

by Levin in 19532 as the ratio of excess cases due to a

risk factor to the total number of cases, described in terms

of the proportion of the population with a risk factor, p,

and the relative risk of disease due to the risk factor, r:

PAFtrad ¼
pðr� 1Þ

pðr� 1Þ þ 1
: (1)

As the proportion of the population with a risk factor p

tends to 1, the PAF tends to 1� 1=r; therefore only very

large relative risks lead to a PAF near 1.

Method of simulated epidemics with and without

a risk group

Paynter5 and others12 have estimated PAF as the ratio of

excess cases to total cases, where the number of excess

cases is estimated by using a mathematical model to simu-

late disease transmission with and without a risk factor,

and taking the difference in incidence.

Given a population in which a risk group experiences a

relative risk of disease r, let the incidence rate in the popu-

lation at time t be incðr; tÞ. Then the PAF using the differ-

ence of incidences method is given by:

PAFi ¼
incðr; tÞ � incð1; tÞ

incðr; tÞ : (2)

Key Messages

• Recent methods for calculating the population attributable fraction (PAF) for infectious diseases are not consistent

with traditional approaches.

• We introduce a parsimonious method for calculating the PAF for infectious diseases.

• Compared with traditional estimates, assortative mixing reduces the PAF, whereas disassortative mixing increases

the PAF.
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A similar approach is to use a mathematical model to

simulate the change in cumulative incidence over time

when the effect of the risk factor is ‘turned down’ by set-

ting the relative risk to one.6,13 If the cumulative incidence

in a population at time t is

ðt

0

incðr; sÞds, then this estimate

of PAF is given by:

PAFc ¼
t incðr; tÞ �

ðt

0

incð1; sÞds

t incðr; tÞ : (3)

At the start of the epidemic, incðr;0Þ ¼ ð1� pÞRþ prR

and incð1;0Þ ¼ R, therefore after one generation, the

methods are equivalent and PAFi equals PAFtrad. However,

in order to capture the impact of susceptible depletion,

PAFi and PAFc are estimated by running a transmission

model to equilibrium with and without the risk group.

In order to compare these methods with the traditional

PAFtrad, we assume that a proportion of individuals

are susceptible to infection, S, and the rest of the popula-

tion are infectious, I. Assuming homogeneous mixing,

the incidence rate at equilibrium is given by

incðr; tÞ ¼ cI�=S� ¼ cR0I�, where R0 is the basic reproduc-

tion number, and S� and I� are the equilibrium proportions

of susceptible and infectious individuals.

If the risk factor in question only affects susceptibility

to disease (as is the case for PAFtrad), the basic reproduc-

tion number is R0 ¼ prRþ ð1� pÞR, where R is the basic

reproduction number in the non-risk group. Substituting

into equation (2) at equilibrium gives a formula for calcu-

lating PAFi, which illustrates the difference between the

methods when there is homogeneous mixing:

PAFi ¼
pðr� 1Þ

pðr� 1Þ þ 1� 1=R
; (4)

valid for R > 1. If R < 1 then PAFi ¼ 1 as, without the

risk group, the prevalence will return to the disease-free

equilibrium.

Substituting into equation (3), PAFc is given by:

PAFcðtÞ ¼
tcR0I0 �

ðt

0

bIðsÞds

tcR0I0
: (5)

This formulation is not analytically tractable, but it

approaches PAFi over the time scales at which infectious

individuals are removed from the population (Figure 1).

The estimates PAFi and PAFc are greater than PAFtrad as

they involve the reproduction number in the general popu-

lation, R, whereas the original formulation is independent

of the biology in the general population. PAFi and PAFc

achieve their maximum value of 1 when R ¼ 1 and ap-

proach the conventional estimate PAFtrad when R is large

(Figure 1). Therefore the largest discrepancy between PAFi,

PAFc and PAFtrad occurs when there is low transmission in

the general population.

When the reproduction number R in the general popu-

lation is close to 1, estimates of PAFi and PAFc are domi-

nated by R and the impact of the relative risk, r, and the

size of the risk group, p, is minimal (Figure 2). For in-

stance, if p ¼ 0:1 and R ¼ 1:005, a relative risk of r ¼ 5 re-

sults in a PAFi ¼ 0:976; whereas a relative risk of r ¼ 10

results in a PAFi ¼ 0:989 (solid lines in Figure 2). In con-

trast, the traditional approach would result in PAFtrad

¼ 0:17 and PAFtrad ¼ 0:31 respectively (dashed lines in

Figure 2).

Alternative formulation based on secondary cases

We have demonstrated that traditional, non-communi

cable disease methods for estimating PAF and methods

that involve model simulations give estimates that can be

orders of magnitude apart and potentially lead to different

prioritization for public health interventions. This leaves a

dilemma regarding which method is most appropriate to

use.

Figure 1. The relationship between the population attributable fraction

(PAF) calculated by simulating epidemics and the basic reproduction num-

ber. A risk factor that affects a proportion p ¼ 0:1 of the population with

relative risk of susceptibility of r ¼ 10 has a traditional PAF estimate of

PAFtrad ¼ 0:47. Methods for estimating PAF by simulating cumulative inci-

dence with and without a risk factor (PAFc ) result in estimates ranging from

PAFtrad�PAFc�1, depending on the basic reproduction number in the gen-

eral population (the non-risk group). The thick lines illustrate PAFc values

when PAFtrad ¼ 0:47 for sample reproduction numbers. The thin lines are

the asymptotes, given by PAFi .
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We will demonstrate that defining PAF as the ratio of

the basic reproduction number with and without a risk

group, bridges the traditional and simulation estimates of

PAF, is robust to changes in the endemic equilibrium

prevalence of disease and is sensitive to changes in relative

risk in the risk group.

Let the PAF of the risk group be defined as:

PAFR0
¼ 1� R0ðr ¼ 1Þ

R0
: (6)

As before, consider a risk factor that only affects suscep-

tibility to disease so that the basic reproduction number is

R0 ¼ prRþ ð1� pÞR. In the absence of the risk group,

R0 ¼ R, therefore:

PAFR0
¼ 1� R

ð1� pÞRþ rpR
:

which is the same as the traditional formula for PAFtrad, so

the two methods are equivalent when a risk group only af-

fects susceptibility.

Now, say a risk factor affects the probability of on-

ward transmission as well as susceptibility. If the ratio of

secondary infections caused by people in the risk group to

secondary infections caused by people not in the risk

group is denoted rt, then the basic reproduction number is

R0 ¼ prrt Rþ ð1� pÞR and the PAF will be:

PAFR0
¼ pðrrt � 1Þ

pðrrt � 1Þ þ 1
:

The functional form is the same as the non-infectious

disease case, but increased transmission has the potential

to vastly increase the risk ratio rrt, hence increasing PAFR0
.

The advantage to using PAFR0
over PAFstatic is that any

amount of detail about the population and risk group can be

incorporated into the calculation of R0. For instance, PAFtrad

implicitly assumes homogeneous mixing between the risk

group and the general population, whereas in some situations

people within a high-risk group have a higher contact rate

with other high-risk individuals, such as people who inject

drugs (PWID), and in other situations people in a high-risk

group have more contacts with the general population than

within the group itself, such as female sex workers (FSW).

Let d be the proportion of contacts that occur within a

group. The basic reproduction number is now given by the

maximum eigenvalue of the next generation matrix (NGM):

NGM ¼
ð1� pÞdR rpð1� dÞR

ð1� pÞð1� dÞR rpdR

 !
:

Using equation (6), the PAF equals:

PAFR0
¼

1�
dþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4pð1� pÞð2d� 1Þ

q
dð1� pþ prÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2ð1� pþ rpÞ2 � 4ð1� pÞprð2d� 1Þ

q :

For high-risk groups that tend to mainly mix with them-

selves, for example PWID, the PAFR0
estimate is less than

the traditional estimate (Figure 3). For high-risk groups

that mainly transmit to the low-risk population, for ex-

ample FSW, the PAFR0
is greater than the traditional

estimate.

By using a next generation matrix approach, PAFR0
is

able to consider the impact of multiple risk factors as well

as incorporating behavioural data such as contact patterns,

condom usage or needle sharing, and biological data such

as transmission probabilities per partnership type. We il-

lustrate the different approaches for estimating PAF with

two examples.

Example 1: bovine TB in cattle and badgers

The contribution of badgers to bovine tuberculosis (TB) in

cattle in Great Britain is heavily contested. Donnelly

et al.15,16 estimated that pro-active culling of badgers led

to a 52% decrease in infection in cattle, but that only

5.2% of cattle infections were due to badger-to-cattle

Figure 2. Population attributable fraction (PAF) as a function of relative

risk. The solid lines show the estimate produced by model simulation

with and without a risk group (PAFi ) with a basic reproduction number

of 1, and the dashed lines give the estimate using the basic reproduc-

tion number method (PAFR0
). Black lines represent a risk group encom-

passing 10% of the population; grey lines represent a risk group

encompassing 1% of the population.
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transmission. Based on these data, we estimated that the

next generation matrix (NGM) was approximately:17

NGM ¼
0:94 0:1

0:1 0:94

 !
:

The reproduction number here is 1.07. Setting transmission

within the badger population to zero, results in a reproduction

number of 0.94; therefore the PAF due to badgers is 11.5%.

Simulating the transmission model with a removal rate

in cattle of 0.9 years�1 and a removal rate in badgers of 2

years�1 17 allows us to estimate PAF using the alternative

method. Using the simulation method results in a PAF after

5 years of 3.9%, after 10 years of 20.3%, 52% after 20

years and 99.2% after 100 years. In this scenario, using the

simulation method would lead to the conclusion that badg-

ers contribute the majority of cattle infections, whereas the

R0 method demonstrates that a more accurate reflection of

the contribution from badgers is 11.5%.

Example 2: the role of commercial sex in HIV

epidemics

PAF estimates are often used to estimate the contribution

of key populations, such as PWID, FSW or men-who-have-

sex-with-men (MSM) to HIV epidemics. Using a model

and data based on Mishra et al.,10 we estimate the role of

occasional and regular commercial sex in HIV epidemics.

The population is divided into three groups: female sex

workers (FSW) who make up 0.4% of the population,

male clients (MC) who make up 8.5% of the population,

and the remaining population who are defined as low ac-

tivity (LA). The LA group includes individuals who have

multiple partnerships. FSW engage in commercial sex

work for 8 years on average, MC for 20 years and individ-

uals in the LA group are sexually active for 34 years. We

assume recruitment into each group to maintain constant

population sizes.

There are three partnership types: occasional commer-

cial, regular commercial and non-commercial (non-com-

mercial includes casual and main partners in the Mishra

et al. model). FSW have 500, 40 and 1/3 partners of each

type per year; MC have 24, 2.4 and 1; and the LA group

has 1/3 non-commercial partner per year. We assume that

non-commercial partners can be in any group. The three

contact matrices for each partnership type are:

Cocc ¼

0 500 0

24 0 0

0 0 0

0
BBBB@

1
CCCCA Creg ¼

0 40 0

2:4 0 0

0 0 0

0
BBBB@

1
CCCCA

Cmain ¼

1=0:012 1=0:255 1=2:733

1=0:004 1=0:085 1=0:911

1=0:012 1=0:255 1=2:733

0
BBBB@

1
CCCCA

Transmission varies by population group i and partner-

ship type j and is governed by the per-act transmission

rate, sij, condom use, cij, and the number of sex acts per

partnership type per year, sij, and is given by

bj ¼ 1�
�

1� ð1� cijÞsij

�sij

. The transmission rates for

each partnership type are:

bocc ¼

2:5� 10�4

3:9� 10�4

3:2� 10�4

0
BBBBB@

1
CCCCCA breg ¼

6:0� 10�3

9:0� 10�3

7:5� 10�3

0
BBBBB@

1
CCCCCA

bmain ¼

0:8� 10�1

1:2� 10�1

1:0� 10�1

0
BBBBB@

1
CCCCCA

:

The next generation matrix is given by NGM ¼ bocc

CoccT þ bregCregT þ bmainCmainT where T ¼ f8; 20; 34g is

the average length of time spent in each group. The basic

Figure 3. Population attributable fraction (PAF) as a function of relative

risk and inter-group mixing. The relationship between PAF, the relative

risk in the high-risk group and the mixing rate between groups where

the proportion of people in the high-risk group is p ¼ 0:05. A within-

group mixing rate of 0 represents the situation when high-risk individ-

uals preferentially contact low-risk individuals and vice versa; a within-

group mixing rate approaching 1 is when high-risk individuals preferen-

tially contact other high-risk individuals. The black dashed line is pro-

duced by the traditional PAF equation, which is equivalent to

homogeneous mixing when the within-group mixing rate equals 0.5.
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reproduction number is the largest eigenvalue of the next

generation matrix, which for this population is 1.67.

Simulating this epidemic results in a stable prevalence in

FSW of 54%, in MC of 23% and in the rest of the popula-

tion of 18%, and an overall population incidence of

0.78%. Based on incidence rate, the relative risk of HIV in

FSW compared with LA is r ¼ 10:5, leading to a conven-

tional PAF estimate of 0.037, or 3.7%.

To estimate the impact of occasional commercial

contacts, we consider the next generation matrix without

occasional contacts, i.e. NGM ¼ bregCregT þ bmainCmainT.

This matrix has a reproduction number of 1.5, leading

to a PAF estimate based on the reproduction number

of PAFR0
¼ 0:13. Simulating the epidemic without

occasional contacts leads to an overall population inci-

dence of 0.56%, and a resulting PAF estimate of

PAFi ¼ 0:27.

Similarly, the impact of regular commercial contacts

can be calculated from the next generation matrix without

regular contacts, i.e. NGM ¼ boccCoccT þ bmainCmainT.

This matrix has a reproduction number of 1.4, leading to a

PAF estimate based on the reproduction number of

PAFR0
¼ 0:20. Simulating the epidemic without occasional

contacts leads to an overall population incidence of

0.28%, and a resulting PAF estimate of PAFi ¼ 0:64.

Discussion

Defining the population attributable fraction (PAF) for in-

fectious diseases is complicated because the increased dis-

ease risk due to the presence of a risk factor does not solely

affect risk groups, but potentially the entire population.

Existing methods for estimating PAF for infectious diseases

result in estimates that are orders of magnitude different

from each other, and cannot always differentiate between

highly variable relative risks. We elucidated the differences

between current methods using a simple mathematical

framework, and proposed an alternative method that

bridges the divide between existing methods and provides

a transparent, robust and flexible method for estimating

the PAF for infectious diseases.

There are two main previous approaches: the trad-

itional method using a formula developed by Levin2 and

comparing simulated epidemics with and without a risk

group.5,6,10 The traditional approach is straightforward to

calculate and transparent, as it relies on two parameters

only: the relative risk of disease and the proportion of the

population in the risk group. We demonstrate that in in-

stances where there is homogeneous mixing, the traditional

approach provides a good estimate of PAF. However, this

method does not capture onward transmission and is not

able to incorporate heterogeneous mixing or other

pathogen and population characteristics. The simulation

approach is similar to estimating the future avoidable bur-

den,18 and can incorporate almost any level of detail re-

garding the pathogen or population; however as a

consequence, it is data hungry, computationally demand-

ing and requires robust and often complex model fitting.

The complexity of the simulation approach means that is it

often not clear how the resulting PAF estimates relate to

the input parameters. We demonstrated that the simulation

approach leads to systematically larger PAF estimates than

the traditional approach. The discrepancies are greatest

when transmission is under control (below the epidemic

threshold) in the general population.

The large differences between the two approaches arise

from the fact that the traditional approach does not de-

pend on baseline risk, whereas the simulation approach

does. In the simulation approach, entire chains of transmis-

sion initiated by an individual in the risk group (including

cases in the general population) are attributed to the pres-

ence of the risk factor, whereas in the traditional approach

only cases in the risk group are attributed to the risk factor.

Transmission from the risk group is sufficient to generate a

chain of transmission in the general population, but not ne-

cessary. Attributing those cases to the risk group implies

that the only way that they could occur is from the risk

group, whereas in reality, infections sustained in the

non-risk population are not uniquely attributable to the

risk-group. Correlations in contact structure mean that in-

fection trees are likely to overlap, and cases in the non-risk

group would occur whether they were initiated by a risk-

group individual or not. Therefore, the simulation ap-

proach is not an attributable fraction.

We have also shown that a major drawback of attribut-

ing second, third, fourth and subsequent generations to the

risk group is that it decreases discriminatory power of the

simulation-based statistic. Policy makers using these esti-

mates would be unable to choose between whether to pri-

oritize interventions between a risk group with relative risk

of 5 or a different risk group with relative risk of 10.

We propose an approach based on the basic reproduc-

tion number with and without the presence of a risk group.

Using the basic reproduction number captures onward

transmission from the risk group to the general population,

but does not attribute chains of transmission that do not

involve the risk group to the presence of the risk factor.

Calculating the basic reproduction number requires the

same data input as the simulation approach, but signifi-

cantly less computational time. Once a next generational

matrix is defined, using the basic reproduction number is

straightforward and can be used by non-specialists like the

traditional approach, and pathogen and population char-

acteristics are incorporated as with the simulation

International Journal of Epidemiology, 2017, Vol. 46, No. 3 981



approach. A limitation of this approach is that reduced

transmission due to herd immunity is not captured.

The PAF is one of a number of impact measures such as

the number needed to treat (NNT)19 used to guide clinical

and public health decision making. There is an argument

that PAF and NNT provide individual-level information,

whereas public health decision makers require population-

level equivalent measures such as the number to be treated

in your population (NTP) or number of events prevented

in your population (NEPP).20 Epidemiologists and model-

lers need to work with policy makers to define measures

that are most useful for decision making and prioritization.
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