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Abstract.—The Wright–Fisher model provides an elegant mathematical framework for understanding allele frequency data.
In particular, the model can be used to infer the demographic history of species and identify loci under selection. A crucial
quantity for inference under the Wright–Fisher model is the distribution of allele frequencies (DAF). Despite the apparent
simplicity of the model, the calculation of the DAF is challenging. We review and discuss strategies for approximating the
DAF, and how these are used in methods that perform inference from allele frequency data. Various evolutionary forces can
be incorporated in the Wright–Fisher model, and we consider these in turn. We begin our review with the basic bi-allelic
Wright–Fisher model where random genetic drift is the only evolutionary force. We then consider mutation, migration,
and selection. In particular, we compare diffusion-based and moment-based methods in terms of accuracy, computational
efficiency, and analytical tractability. We conclude with a brief overview of the multi-allelic process with a general mutation
model. [Allele frequency, diffusion, inference, moments, selection, Wright–Fisher.]

A central goal of population genetics is to infer
the past history of populations and describe the
evolutionary forces that have shaped their genetic
variation. The Wright–Fisher model (Fisher 1930;
Wright 1931) explicitly accounts for the effects of various
evolutionary forces—random genetic drift, mutation,
selection—on allele frequencies over time. This model
can also accommodate the effect of demographic forces
such as variation in population size through time
and/or migration connecting populations. Information
about these evolutionary and demographic forces can,
in principle, be retrieved from allele frequency data. The
questions that researchers can answer and the types of
inference they can make depend on the type of genetic
data available, which can be broadly divided into two
categories.

One type of data is a time series of allele frequencies
from a single population (Fig. 1a). Here, the task is
often to quantify the amount of drift that has influenced
the changes in allele frequencies over time. This is
done by estimating the size of the ideal Wright–Fisher
population that best accounts for the patterns of genetic
drift observed in the data, or, in other words, to estimate
the effective population size. Furthermore, an important
goal could be to identify those loci that have been under
positive selection over the time interval considered.

The second type of data consists of allele frequencies
from multiple populations, typically collected in the
present (Fig. 1b). In this situation, the task is often to
infer divergence times, population sizes, mutation rates,
and, if applicable, migration rates between populations.
Additionally, there is also considerable interest in
evaluating the role of selection in shaping the observed
data. Typical questions are: Do allele frequencies in
regions of interest harbor footprints of selection? What
is the overall importance of purifying selection on
a specific set of sites (e.g., non-coding regions of
functional interest or non-synonymous positions in gene
coding regions)? We emphasize that this second type

of data is very similar to the type of data analyzed
in phylogenetics. In both instances, information is
gained as new mutations arise at the nucleotide level
and the fate of these mutations is influenced by
the different evolutionary and demographic forces of
interest. The difference between phylogenetics and
population genetics essentially resides in the time scales
that are modeled. Phylogenetics is often concerned with
long time scales, and the data contain one sample
per species. Differences among the sequences are
most often substitutions. Population genetics typically
considers data where several samples are available
within a species, and many differences are detected due
to mutations that are still segregating (polymorphic).
Interestingly, these two time scales tend to merge
when considering data sets containing sequences of
individuals that comprise recently diverged species,
as both types of differences—mutations that are still
polymorphic and mutations that have been fixed as
substitutions—have to be modeled jointly.

To infer the evolutionary history of a population,
model-based approaches in population genetics have
to rely on an explicit model for the evolution
of populations. The Wright–Fisher model (Fisher
1930; Wright 1931) occupies a central position in
this endeavour. It provides an elegant mathematical
framework for modeling allele frequency data. The
dynamics of the model are well understood (Kimura
1955a, 1955b, 1964; Crow and Kimura 1956; Crow and
Kimura 1970; Ewens 1972; Crow 1987; Ewens 2004) but
inference under the Wright–Fisher model is complicated
due to the lack of a simple closed-form analytical
expression for the distribution of allele frequencies
(DAF). Common to all inference methods is the need
to determine the DAF, either at equilibrium or over
specified time intervals.

Here, we focus on how the DAF is influenced by
demographic and evolutionary forces and concentrate
on both classical and more recent attempts to calculate
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FIGURE 1. Data types. The gray boxes represent the unobserved
history of the populations, together with the corresponding population
allele frequency x(r), whereas the white boxes indicate the observed
data: the generation r when the data are sampled, the size n of the
sample, and the allele count z, that is, how many alleles of a given
type have been observed among the genotyped individuals. Given
the population frequency x(ri), zi follows a binomial distribution with
size ni and probability x(ri). In order to calculate the likelihood of the
data, the DAF of x(ri) is needed. a) Time series data where, typically,
one population is sampled at different (known) generations. b) Single
time-point data, where multiple populations are sampled just once,
typically in the present. The history of the populations is given as a
tree. The leaves and internal nodes represent the sampled and ancestral
populations, respectively. The branch lengths reflect the amount of
time populations have diverged since the split from the ancestral
population.

the DAF that enable accurate yet tractable population
genetics inference. We begin our review with the basic
bi-allelic Wright–Fisher model by considering, in turn,
the forces of pure genetic drift, mutation, migration,
and selection. For each of these forces, we provide
expressions for the mean and variance of the DAF, and
discuss and compare the approaches used to obtain the
DAF. We also review implementations of the inference
methods (Table 1).

Although the bi-allelic Wright–Fisher model captures
a major part of data types, in particular single-nucleotide
polymorphisms (SNPs), some loci are intrinsically multi-
allelic. We therefore also briefly discuss recent progress
to calculate the DAF under the general multi-allelic
Wright–Fisher model. We investigate if one of the
widely used approximations for the multi-allelic DAF
can capture adequately the first two moments of the DAF,
and point to limitations of the approximation.

A variety of methods that are grounded in the Wright–
Fisher model use a range of tests and/or summary
statistics to detect population differentiation (Balding
and Nichols 1995; 1997; Nicholson et al. 2002; Gaggiotti
and Foll 2010), or carry out genome-wide scans for
selection (Foll and Gaggiotti 2008; Coop et al. 2010;
Gautier et al. 2010; Gautier 2015). Several of these
methods use some of the approaches for calculating the
DAF discussed here. However, they do not directly use
or estimate the effect of the different evolutionary forces
on the DAF. Therefore, we do not review such methods
and refer the reader instead to Haasl and Payseur (2015)
for details.

Next to the Wright–Fisher model, the coalescent
(Kingman 2000, 1982a, 1982b, 1982c) and Moran (Moran
1958) models occupy an important role in the field.
The coalescent process is dual to the Wright–Fisher
model: although the Wright–Fisher model describes the
evolution of a population forward in time in discrete
non-overlapping generations, the coalescent process is
built backwards in time, and arises as an approximation
to the Wright–Fisher model when the population size
is large. Unlike the coalescent, the Moran model is a
forward-in-time process, and it is often regarded as an
equivalent to the Wright–Fisher model (but see Bhaskar
and Song 2009). Both the coalescent and Moran models
have been analyzed extensively and their dynamics
are in several cases more amenable to mathematical
analysis (Donnelly 1984; Ewens 2004; Hobolth et al. 2007;
Muirhead and Wakeley 2009; Li and Durbin 2011; Paul
et al. 2011; Vogl and Clemente 2012). However, the Moran
model is hardly ever used for inference (but see, e.g.,
De Maio et al. 2013; 2015), whereas the coalescent is
typically restricted to a handful of individuals (Hobolth
et al. 2007; Li and Durbin 2011; Paul et al. 2011; Mailund
et al. 2012; Sheehan et al. 2013; Schiffels and Durbin 2014;
Rasmussen et al. 2014) and does not use allele frequency
data (but see, e.g., Liu and Fu 2015). Therefore, we do not
include the coalescent and Moran models in this review,
and refer the reader instead to Fu and Li (1999); Durrett
(2008); Kuhner (2009); Liu et al. (2009); Wakeley (2009);
Nielsen and Slatkin (2013); Edwards et al. (2016).

BI-ALLELIC WRIGHT–FISHER MODEL

The Wright–Fisher model assumes a randomly mating
population of finite size reproducing in discrete non-
overlapping generations, by allowing the individuals
in generation r+1 to choose parents at random from
the previous generation r. The model describes the
stochastic behavior through time of the frequency of an
allele at a locus. This frequency is influenced by a series
of evolutionary forces that, as discussed below, change
the probability of choosing a parent. Here, we consider
a diploid population of size 2N which contains only two
alleles, denoted A and a. Below we review methods used
to obtain the DAF of allele A after a certain amount of
generations.

Pure Drift
The Wright–Fisher model, in its simplest form, only

considers random genetic drift (Fig. 2), where the
stochastic fluctuations in the allele frequency are purely
determined by the random mating of the population.
This assumption is appropriate for the analysis of loci
that have small mutation rates and the analysis of
recently diverged populations, leaving little time for
mutation to create new alleles, and where we expect an
overall negligible effect of selection.

Dynamics and moments.—Let z(r) be the number of
A alleles in generation r and x(r)=z(r)/(2N) be the



e32 SYSTEMATIC BIOLOGY VOL. 66

TABLE 1. Overview of recent inference methods for the bi-allelic Wright–Fisher model

Reference Data Mut Mig Sel Approach Availability

Markov chain theory
Mathieson and McVean (2013)a T × × Normal -
Gompert (2015)a T × Beta spatpg

Diffusion approximation
Bollback et al. (2008) T × Finite-difference -
Gutenkunst et al. (2009) S × × Finite-difference ∂a∂i
Lukić and Hey (2012) S × × Spectral decomposition MultiPop
Malaspinas et al. (2012) T × Numerical approximation upon request
Gautier and Vitalis (2013) S Spectral decomposition KimTree
Steinrücken et al. (2014) T × × Spectral decomposition spectralHMM
Vitalis et al. (2014) S × × Stationary DAF SelEstim
Živković et al. (2015) S × × Spectral decomposition upon request
Ferrer-Admetlla et al. (2016) T × × Numerical approximation ApproxWF

Moment-based approximations
Sirén et al. (2011) S Beta -
Pickrell and Pritchard (2012) S × Normal TreeMix
Lacerda and Seoighe (2014) T × Normal upon request
Hui and Burt (2015) T Beta NB
Tataru et al. (2015) S Beta with spikes SpikeyTree
Terhorst et al. (2015) T × Normal EandR-timeseries

Notes: The table indicates what type of data the method uses (Data): time series data from one population (T) or single time-point data from
multiple populations (S); if the method models new mutations (Mut), migration (Mig) or selection (Sel); which type of approach is used for
calculating the DAF (Approach); and whether the method is publicly available (Availability). All methods model genetic drift.
aanalyze jointly time series data from multiple populations. The table covers only the more recent inference methods.
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FIGURE 2. Dynamics in the pure drift bi-allelic Wright–Fisher model.
The child inherits the parental allele.

corresponding allele frequency. The random mating of
the population leads to a count of A alleles in generation
r+1 that is binomially distributed (Fisher 1930; Wright
1931; Crow and Kimura 1970; Ewens 2004)

z(r+1) |z(r)∼Bin
(
2N,x(r)

)
. (1)

Here, Bin(n,p) is the binomial distribution with sample
size n and probability p. The genetic variation present
in the population is due to ancestral polymorphism,
and because no new variation is added, the A allele is
eventually fixed or lost (Fig. 3a).

The goal is to determine the DAF: the distribution
f (x;r) of x(r), after evolving for r generations from an
initial frequency x(0) (Fig. 3b). We first calculate the first
two moments of the DAF. From the binomial sampling,
the mean and variance over one generation are given by

E[x(r+1) |x(r)]=x(r),

Var
(
x(r+1) |x(r)

)= 1
2N

x(r)(1−x(r)).

The mean and variance after r generations can be
obtained by iterating the two expressions above or
from alternative derivations (Wright 1942; Crow 1954;

Crow and Kimura 1970). The result is

E[x(r) |x(0)]=x(0), (2)

Var
(
x(r) |x(0)

)=x(0)(1−x(0))
(

1−
(

1− 1
2N

)r)
. (3)

For large N, we can approximate the variance by

Var
(
x(t) |x(0)

)≈x(0)(1−x(0))
(

1−e−t
)
, (4)

where t=r/(2N). Note that this implies that N can be
estimated by equation (4) only if r is known, otherwise
only the ratio t=r/(2N) can be estimated.

Markov chain theory.—Because the allele frequency at
generation r+1 only depends on generation r, the
Wright–Fisher model is a discrete-time finite-space
Markov chain. Using this property, the DAF can be
obtained from classical Markov chain theory (Karlin
and Taylor 1975), where the transition probabilities
are given by equation (1) (Williamson and Slatkin
1999). However, this procedure quickly becomes
computationally infeasible, as the transition probability
matrix has a size of (2N+1)×(2N+1). By recognizing
that most of the probability mass from equation (1)
is centered around z(r), the computational demand
can be reduced by evaluating, storing and using only
the transition probabilities that are large enough to
contribute significantly to the DAF (Wang 2001; Freeman
et al. 2003).

Under the assumption of large N, diffusion theory
(see below) shows that the population size acts as
a scaling factor (Feller et al. 1951; Wakeley 2005)
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FIGURE 3. a) Simulation under the pure drift model (equation (1)) with 2N =200 and x(0)=0.5. The vertical bars indicate three sampled
time-points. The x-axis denotes the time measured in scaled number of generations. b) DAF at the three sampled time-points. The vertical bars
indicate the simulated allele frequencies.

and therefore one could calculate the DAF using a
smaller N. This approach was used by De Maio et al.
(2013; 2015), though they relied on the Moran model
rather than the Wright–Fisher. Alternatively, if N is
large enough such that the allele frequencies can
be treated as continuous, the Markov chain can be
built over discretized allele frequencies, and thus the
computational burden is controlled by the number of
bins. The original discrete binomial sampling probability
from equation (1) is then replaced by the continuous
normal or beta distributions (Mathieson and McVean
2013; Gompert 2015).

Diffusion approximation.—One way to calculate the DAF
is to take advantage of the diffusion approximation
to the Wright–Fisher model, which is appropriate
when the population size N is large, such that
both allele frequencies and time can be treated as
continuous. Diffusion theory uses two fundamental
equations, the Kolmogorov forward and backward
equations (Kolmogorov 1931). The forward equation was
first used by Wright (1945) to calculate the rate of decay
and stationary DAF, whereas Kimura (1957) used the
backward equation first to study the problem of fixation.
Let us define a new time scale by �t=1/(2N) such that
one time unit corresponds to 2N generations. Then, we
have

2Nx(t+�t) |x(t)∼Bin(2N,x(t)),
from which we can approximate

x(t+�t) |x(t)≈N(x(t),x(t)(1−x(t))�t). (5)

Here, N(�,�2) is the normal distribution with mean �

and variance �2. Equation (5) corresponds to the time-
homogeneous stochastic differential equation

dx(t)=a(x)dt+√b(x)dw(t), (6)

where {w(t) : t≥0} is a standard Brownian motion, and
a(x) and b(x) are the infinitesimal mean and variance,
respectively. For the Wright–Fisher model, b(x)=x(1−
x), whereas a(x) has different forms depending on the
evolutionary forces. Under pure drift, a(x)=0, as is
evident from equation (5).

The DAF f (x;t) at time t is now determined by the
forward Kolmogorov (or Fokker–Planck or diffusion)
equation (Kolmogorov 1931; Crow and Kimura 1970;
Ewens 2004)

∂f (x;t)
∂t

=− ∂

∂x

{
a(x)f (x;t)

}

+ 1
2

∂2

∂x2

{
x(1−x)f (x;t)

}
,

(7)

with boundary condition x=x(0) for t=0. This equation
can be solved using different approaches (Table 1).
Kimura first described how the DAF can be calculated
under pure drift (Kimura 1955a) using the spectral
decomposition of equation (7), which results in an
infinite sum of scaled Gegenbauer polynomials. In
practice, the infinite sum needs to be truncated and the
optimal truncation level depends on the convergence
properties. This controls the accuracy, but also the
computational performance. The diffusion equation can
also be solved using purely numerical methods. Chang
and Cooper (1970) developed a finite-difference scheme
to numerically solve any diffusion equation, whereas
Zhao et al. (2013) proposed a finite-volume scheme to
solve the Wright–Fisher diffusion equation.

Gautier and Vitalis (2013) relied on the solution
proposed by Kimura (1955a) to estimate divergence
times between populations that have been evolving
under pure drift, from single time-point data.

Moment-based approximations.—The use of the diffusion
approximation is limited in practice due to the high
computational burden. Cavalli-Sforza and Edwards
(1967) approximated pure drift as a Brownian motion
process, and current moment-based approximations are
reminiscent of that approach, in that they are based on
mathematically convenient instrumental distributions.
By relying on the equations for the mean (2) and
variance (3, 4), we can fit to the true DAF distributions
that can be parameterized solely through the first two
moments, such as the normal and beta distributions.
These two distributions arise as special cases of the DAF
approximated from the diffusion theory: the normal
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distribution is a transient distribution (equation (5))
which is appropriate for very short evolutionary times,
whereas the stationary DAF under linear evolutionary
pressure is given by a beta distribution (see Box 1,
equation (B.9)).

Several authors used the normal
distribution (Nicholson et al. 2002; Coop et al. 2010;
Gautier et al. 2010; Pickrell and Pritchard 2012; Lacerda
and Seoighe 2014; Terhorst et al. 2015), which takes the
form

x(r) |x(0)∼N
(

E[x(r) |x(0)],Var(x(r) |x(0))
)
. (8)

Equations (5) and (8) are equivalent under pure drift
when the number of generations r is small relative to the
population size 2N. Then, by using the approximation

1−
(

1− 1
2N

)r
≈1−e− r

2N ≈ r
2N

,

in the variance equation (3), we recover equation (5) from
equation (8) with �t=r/(2N).

Balding and Nichols (1995; 1997) first proposed
the use of the Dirichlet distribution, the multivariate
generalization of the beta distribution, for the multi-
allelic Wright–Fisher (see the multi-allelic section
below). For the bi-allelic Wright–Fisher model, the DAF
can be approximated with a beta distribution as follows,

x(r) |x(0)∼Beta
(

E[x(r) |x(0)],Var(x(r) |x(0))
)
,

where Beta(m,v) is the beta distribution parameterized
by mean m and variance v. We note here that a beta
distribution always verifies the condition v<m(1−m).
For the alternative parameterization with shapes � and
�, we have the relation

�=
(

m(1−m)
v

−1
)

m,

�=
(

m(1−m)
v

−1
)

(1−m).
(9)

Although both the normal and beta distributions
have been used for inference, they differ in accuracy.
One major difference comes from the support of the
distributions. The allele frequency x(r) always lies
between 0 and 1, and, under the Wright–Fisher model,
there can be a positive probability for x(r) being either
0 or 1 (the allele is lost or fixed, respectively). The
normal distribution is defined over the whole real line,
and a positive probability can exist outside [0,1]. If
x(0) is intermediate and r is small, the probability that
x(r) falls outside of [0,1] is small and therefore can
be ignored (Pickrell and Pritchard 2012; Lacerda and
Seoighe 2014; Terhorst et al. 2015). If x(0) is close to the
boundaries, the normal distribution from equation (8)
can be truncated to [0,1]. The probabilities in the
intervals (−∞,0] and [1,∞) are added as two atoms at 0
and 1 and serve as the loss and fixation probabilities,
respectively (Nicholson et al. 2002; Coop et al. 2010;
Gautier et al. 2010). Gautier and Vitalis (2013) noted that

the truncated normal distribution no longer has the true
variance of the DAF.

Unlike the normal distribution, the beta distribution
has support in [0,1]. However, due to its continuous
nature, the beta distribution cannot account for the
discrete events that x(r) can be 0 or 1. Tataru
et al. (2015) addressed this issue and introduced
a new approximation, the beta with spikes, a beta
distribution for the polymorphic frequencies (0<x(r)<
1), supplemented by two spikes at 0 and 1 accounting for
the loss and fixation probabilities. Then the distribution
of x(r) is

x(r) |x(0)∼Beta�
(

E[x(r) |x(0)],Var
(
x(r) |x(0)

)
,

p0(r),p1(r)
)
,

where Beta�(m,v,p0,p1) is the beta with spikes
distribution parameterized by mean m, variance v, and
probabilities p0 and p1 found at 0 and 1, respectively. This
is given by

Beta�(x; m,v,p0,p1)=p0�(x)+p1�(1−x)

+ 1−p0 −p1
B(��,��)

Beta(x; m�,v�).

Here, �(x) is the Dirac delta function, introduced to
account for the non-zero probabilities at the boundaries,
and m� and v� are the mean and variance of the
beta distribution for the polymorphic frequencies, given
by (Tataru et al. 2015)

m� = m−p1
1−p0 −p1

, v� = v+m2 −p1
1−p0 −p1

−(m�
)2

.

The beta function B(��,��) acts as a normalization factor,
where �� and �� are the shape parameters of Beta(m�,v�)
(equation (9)).

Using the equations (2) and (3) for the mean and
variance, the normal and beta approximations of the
DAF can be written in closed form. However, the loss
and fixation probabilities are not known in closed form,
and therefore, the beta with spikes relies on a recursive
approach to calculate these probabilities (see Tataru et al.
(2015) for details).

The moment-based approximations have been used
in a series of inference methods (Table 1). Hui and Burt
(2015) used the beta distribution to infer the effective
size of one population undergoing pure drift from time
series data. Sirén et al. (2011) and Tataru et al. (2015)
used single time-point data to infer divergence times
between populations evolving under pure drift. Sirén
et al. (2011) used the beta distribution, and therefore
could not accurately model the alleles that are close to
being lost or fixed. Tataru et al. (2015) used the beta
with spikes approximation and demonstrated that the
addition of spikes leads to a more accurate inference
compared with merely using the beta distribution.

Quality of approximations.—We evaluated the accuracy
of the approximations to the true DAF obtained
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FIGURE 4. Fit of various approximations to the pure drift true DAF, calculated using the Markov chain property for 2N =200 and a range
of x(0) and r/(2N). Each column shows a different type of approximation, indicated at the top of the figure. a) Hellinger distance on log scale
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are discretized as in Tataru et al. (2015). The diffusion DAF is calculated as in Zhao et al. (2013), with 	=0.01 and K =2N. We used 2N =200 for
computational reasons, but we see similar patterns for larger N.

from the Markov chain property, using the Hellinger
distance (Le Cam and Yang 2000), which lies between
0 and 1, with 0 indicating a perfect match of the
two distributions. The diffusion approximation is the
most accurate, whereas the truncated normal and
beta distributions are the least accurate (Fig. 4). They
approximate the true DAF well when the probability
mass is away from the boundaries: x(0) is close to 0.5
and the generation r is not too large. As r increases, the
frequency drifts away from x(0) and more and more
probability accumulates at the boundaries. The beta
distribution fails to capture this, whereas the atoms
and spikes in the truncated normal and beta with
spikes distributions, respectively, approximate these
probabilities with various degrees of accuracy. Overall,
the beta with spikes distribution is more accurate than
both the truncated normal and beta distributions.

Neutral Mutations
The most common way to introduce variation in a

population is by allowing the alleles to mutate (Fig. 5).

Dynamics and moments.—If u is the probability of
a mutation from A to a, and v is the probability
for the reverse event, the sampling probability from
equation (1) is changed by allowing each individual to
undergo a mutation after choosing its parent. Therefore,
the individual is carrying an A allele if the parent
had an A allele (probability x(r)) and there was no
mutation (probability 1−u), or the parent had an a
allele (probability 1−x(r)) and it mutated (probability
v), leading to a sampling probability

x(r)(1−u)+(1−x(r))v= (1−u−v)x(r)+v.

Then, the binomial distribution of z(r+1) becomes

z(r+1) |z(r)∼Bin
(
2N, (1−u−v)x(r)+v

)
. (10)

For large N, Crow and Kimura (1956) derived general
formulas for all moments of x(r). The mean and variance
after r generations of evolution can also be obtained
by repeated use of the laws of total expectation and
variance (Sirén 2012). Tataru et al. (2015) provided the
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formulas:

E[x(t) |x(0)]= 


�+

+
(

x(0)− 


�+


)
e−(�+
)t, (11)

Var
(
x(t) |x(0)

)
= �


(�+
)2 (2(�+
)+1)

(
1−e−

(
2(�+
)+1

)
t
)

−
(

x(0)− 


�+


)2
e−2(�+
)t (1−e−t)

+ �−


(�+
)(�+
+1)

(
x(0)− 


�+


)
(12)

·e−(�+
)t
(

1−e−(�+
+1)t
)
,

where t=r/(2N), �=2Nu, and 
=2Nv.

Diffusion approximation.—The diffusion approximation
of the Wright–Fisher with neutral mutations is obtained
in a similar way as for pure drift. Let �=2Nu and 
=2Nv
be the scaled mutation rates, and we again scale the time
in units of 2N generations. Recall that the infinitesimal
variance is independent of the evolutionary forces. For
neutral mutations, the infinitesimal mean is given by

a(x)=−�x+
(1−x). (13)

When new variation is constantly introduced in the
population, after enough time, the allele frequency will
reach a stationary distribution. This was first obtained
by Wright (1931) by noting that at stationarity, the
mean and variance are unchanged between successive
generations. Later on, the stationary DAF was re-derived
using alternative methods, including diffusion (Wright
1945; 1938). The stationary DAF for neutral mutations is
given by a beta distribution with shape parameters 2

and 2� (Crow and Kimura 1970; Ewens 2004). Note that
this result is in agreement with the mean (equation (11))
and variance (equation (12)) in the limit t→∞.

The spectral decomposition method developed by
Kimura (1955a) to calculate the DAF under pure drift was
extended to calculate the DAF with recurrent mutation
(Crow and Kimura 1956; 1970; Song and Steinrücken
2012), and to incorporate mutation rates and population
sizes that vary in time in a piecewise constant manner
(Steinrücken et al. 2016).

Moment-based approximations.—Using the moments of
the DAF for the bi-allelic Wright–Fisher with neutral
mutations (equations (11) and (12)), the moment-based
approximations are obtained just as for pure drift.

Quality of approximations.—The non-zero mutation
probabilities introduce variation in the population, and
reduce the loss and fixation probabilities relative to pure
drift (Figs. 4 and 6). For example, under pure drift, the
probability that the mutation is lost (fixed) at r/(2N)=0.5
is 0.072, while when alleles mutate with �=
=0.05, the
probability is reduced to 0.05. As more of the probability
mass is now found away from the 0 and 1 boundaries, all
approximations have an overall improved fit to the true
DAF (Fig. 6).

Migration
In its simplest form, the migration model describes

the evolution of the allele frequency in one population
that sends migrants, with probability m, to an infinitely
large population with constant allele frequency xc, and
receives immigrants such that the population size stays
constant over time. Then the allele count at generation
r+1 is given by (Crow and Kimura 1970)

z(r+1) |z(r)∼Bin(2N,(1−m)x(r)+mxc). (14)

Under pure drift, the sampling among the alleles in
generation r is done uniformly (equation (1)). However,
as different evolutionary pressures act on the allele, the
sampling probability is changed, as observed for neutral
mutations and migration in (14). We can capture all the
evolutionary pressures acting on the allele in a function
g : [0,1]→[0,1] which alters the sampling probability of
the binomial distribution from equation (1). We then
obtain the more general process

z(r+1) |z(r)∼Bin(2N,g(x(r))). (15)

The evolutionary pressures for pure drift, mutation, and
migration are linear in x (see Box 1) and are therefore
collectively called linear pressure (Crow and Kimura
1970). It is this linearity that allows the calculation of the
first two moments of the DAF in closed form. One can
formulate a general linear evolutionary pressure model,
where pure drift, mutation and migration are special
cases (see Box 1).

The migration model from equation (14) is a good
approximation if the immigrants represent a random
sample of the entire species (Crow and Kimura 1970).
This is often not the case, and migrants are typically
exchanged by at least two populations that have non-
constant allele frequencies. This leads to an evolutionary
pressure g that is dependent on the generation, and the
DAFs of both populations need to be modeled jointly.

Markov chain theory.—Mathieson and McVean (2013)
inferred effective population sizes and migration rates
from time series data (Table 1) while modeling multiple
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FIGURE 6. Fit of various approximations to the true DAF with neutral mutations, calculated using the Markov chain property for 2N =200,
�=
=0.05 and a range of x(0) and r/(2N). Each column shows a different type of approximation, indicated at the top of the figure. a) Hellinger
distance on log scale between the approximated and true DAF. The three "×"s in each of the heatmaps indicate the combinations of x(0) and
r/(2N) used in b). b) True (dashed lines) and approximated (solid lines) DAF for x(0)=0.5 and different values of r/(2N). Calculations are
performed as for Figure 4. For comparison purposes, the a) heatmap and b) y-axis scales are the same as in Figure 4.

populations distributed on a lattice, where neighboring
populations exchange migrants every generation.

Diffusion approximation.—Gutenkunst et al. (2009) built
a diffusion equation to model jointly the allele
frequencies in multiple populations. They solved this
equation using the finite-difference scheme to infer
divergence time between populations, mutation, and
migration rates. From the joint DAF, Gutenkunst et al.
(2009) calculated the expected multi-population allele
frequency spectrum (AFS), which summarizes allele
frequency data. Because the dimension of the AFS
depends on the number of populations, the time
needed to compute the AFS grows exponentially
with the number of populations. This limited their
analysis to only three populations. Lukić and Hey
(2012) also calculated the expected AFS, but they
extended the spectral decomposition method to calculate
the joint DAF of multiple populations that exchange
migrants, while accounting for de novo mutations. The
implementation of Lukić and Hey (2012) was optimized
to use little memory, and can therefore tackle more than
three populations. However, compared with Gutenkunst

et al. (2009), it has a lower computational speed on two
and three populations.

Moment-based approximations.—Pickrell and Pritchard
(2012) used the normal distribution to infer divergence
times between populations that have been evolving
under pure drift and have exchanged migrants. Due to
their use of the normal distribution, the method is not
accurate for alleles with frequencies close to 0 or 1.

Quality of approximations.—As both the neutral mutation
(equation (10)) and migration (equation (14)) models are
special cases of the general linear evolutionary pressure
model (Box 1), the quality of the approximations is
similar. The approximation quality shown in Figure 6,
where �=
=0.05, also applies for 2Nm=�+
=0.01
and xc =
/(�+
)=0.5.

Selection
When selection is present, the different genotypes

are transmitted to the next generation with different
probabilities, determined by their fitness. If the A allele
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Box 1 Evolutionary models for the bi-allelic Wright–Fisher

Consider the general bi-allelic Wright–Fisher process, where g : [0,1]→[0,1] captures the evolutionary pressures
acting on the allele,

z(r+1) |z(r)∼Bin(2N,g(x(r))). (B.1)
The function g can take different forms.

General linear evolutionary pressure:

g(x)= (1−a)x+b, for 0≤b≤a<1, (B.2)

where a and b are given by

Pure drift: a=0, b=0,
Mutation: a=u+v, b=v, (B.3)

Migration: a=m, b=mxc.

Let A=2Na, B=2Nb and t=r/(2N). For large N, the mean and variance for the DAF are given by (Tataru et al. 2015)

E[x(t) |x(0)]= B
A

+e−At
(

x0 − B
A

)
, (B.4)

Var
(
x(t) |x(0)

)
= B

A

(
1− B

A

)
1−e−(2A+1)t

2A+1

−
(

x0 − B
A

)2
e−2At

(
1−e−t

)

+
(

1− 2B
A

)(
x0 − B

A

)
e−At 1−e−(A+1)t

A+1
.

(B.5)

For pure drift, A=B=0 and we set 0/0 :=1. Note that equations (2), (4), (11), and (12) can be obtained as special
cases of the above.

Selection (non-linear evolutionary pressure):

g(x)= (1+s)x2 +(1+sh)x(1−x)
(1+s)x2 +2(1+sh)x(1−x)+(1−x)2 (B.6)

≈x+sx(1−x)(h+(1−2h)x), (B.7)

where the approximation relies on the selection coefficients s and sh being small (Crow and Kimura 1970).

Selection with linear evolutionary pressure: Alleles can undergo linear evolutionary pressure and selection jointly.
Then,

g(x)= (1−a)
{
x+sx(1−x)(h+(1−2h)x)

}+b. (B.8)

Stationary distribution: When A,B 	=0, variation is constantly introduced in the population and the DAF has a
stationary distribution given by (up to a normalization constant),

f (x)∝x2B−1(1−x)2(A−B)−1eSx(2h+(1−2h)x), (B.9)

where S=2Ns is the scaled selection coefficient. When s=0, we obtain a beta distribution with shape parameters
2B and 2(A−B), which is in agreement with the expressions for mean and variance in the limit t→∞.

has frequency x and selection is parameterized by
coefficient s and dominance parameter h, the three
possible genotypes have the following frequencies
(assuming Hardy–Weinberg equilibrium) and fitness
(Crow and Kimura 1970)

Genotype AA Aa aa
Frequency x2 2x(1−x) (1−x)2

Fitness 1+s 1+sh 1

The allele count z(r+1) still follows the process given
in equation (15), with the evolutionary pressure function
from equation (B.7).

Dynamics and moments.—The first two moments of
the DAF for the general linear evolutionary pressure
(equations (B.4) and (B.5)) can be obtained using the law
of total expectation and variance, respectively. These take
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the form

E[x(r+1) |x(0)]=E
[
g(x(r)) |x(0)

]
, (16)

Var
(
x(r+1) |x(0)

)
= 1

2N
E[x(r+1) |x(0)]−E[x(r+1) |x(0)]2

+
(

1− 1
2N

)
E
[
g(x(r))2 |x(0)

]
.

(17)

The evaluation of E
[
g(x(r)) |x(0)

]
and E

[
g(x(r))2 |x(0)

]
typically requires all moments of x(r). However, these
can be written as functions of only the first two moments
when g(x) is a linear function in x, allowing the above
recursions to be solved in closed form (Tataru et al.
2015). When the allele is under selection and g(x) is
no longer linear, we can approximate E

[
g(x(r))i |x(0)

]
by only using the first two moments by relying on a
Taylor series. This will yield a recursion for calculating
the mean and variance of the DAF. The Taylor series
can be evaluated around the deterministic trajectory of
x(r) (Barton and Otto 2005; Terhorst et al. 2015), or around
the pre-calculated mean of x(r) (Lacerda and Seoighe
2014).

To obtain the Taylor series about the deterministic
trajectory, we decompose x(r) as x(r)= x̄(r)+ x̃(r), where
x̄(r)=g(x̄(r−1)) represents the deterministic trajectory
followed by the allele frequency in the infinite-
population limit, and x̃(r) is the random disturbance
away from x̄(r). Then,

E[x(r) |x(0)]= x̄(r)+E[x̃(r) |x(0)], (18)

Var
(
x(r) |x(0)

)=Var
(
x̃(r) |x(0)

)
. (19)

From equations (16) and (18) we obtain, using the
Taylor series for E

[
g(x(r)) |x(0)

]
about x̄(r),

E[x̃(r+1) |x(0)]≈E[x̃(r) |x(0)]· dg
dx

∣∣∣∣
x̄(r)

+ 1
2

E
[
x̃(r)2 |x(0)

]
· d2g
d2x

∣∣∣∣
x̄(r)

.

Similarly, from the Taylor series of E
[
g(x(r))2 |x(0)

]
about x̄(r), and using equations (17), (18), and (19) we

obtain the recursion for E
[
x̃(r+1)2 |x(0)

]
,

E
[
x̃(r+1)2 |x(0)

]
≈ 1

2N
x̄(r+1)

(
1− x̄(r+1)

)
+ 1

2N
(
1−2x̄(r+1)

)
E[x̃(r+1) |x(0)]

+
(

1− 1
2N

)
E
[
x̃(r)2 |x(0)

](dg
dx

∣∣∣∣
x̄(r)

)2

.

By iterating the recursions above and calculating
numerically the first two moments of x̃(r), we can recover
the mean and variance of the DAF after r generations.

Markov chain theory.—Mathieson and McVean (2013)
and Gompert (2015) inferred selection from time series
data by discretizing continuous allele frequencies and
building a Markov chain with normal and beta transition
probabilities, respectively (Table 1). Gompert (2015)
additionally allowed for variability in time of selection
coefficients and population sizes.

Diffusion approximation.—For a Wright–Fisher model
with drift, mutation and selection, specified by
equations (B.1), (B.2), (B.3), and (B.8), and letting S=2Ns,
we obtain the following infinitesimal mean

a(x)=−
x+�(1−x)+Sx(1−x)(h+(1−2h)x).

The diffusion equation when selection is present is
the most difficult to solve. However, the stationary
distribution is known in closed form (Wright 1937;
Crow and Kimura 1970; Ewens 2004) and is, up
to a normalization constant, given by a tilted beta
distribution

f (x)∝x2
−1(1−x)2�−1eSx(2h+(1−2h)x). (20)

We note here that the diffusion limit to the Wright–
Fisher model requires that the parameters involved in
the evolutionary pressure, u, v, m, s, and sh, are all
in the order of 1/(2N), such that the resulting scaled
parameters, 2Nu, 2Nv, 2Nm, 2Ns, and 2Nsh, are in the
order of 1. This is the source of the approximation of
equation (B.6) with equation (B.7), and of the common
practice of simplifying expressions by removing “small”
terms (Feller et al. 1951; Wakeley 2005). It also indicates
that in the diffusion limit, the population size N acts
as a scaling factor, and a rescaling of the parameters
and time by a constant factor will not affect the
DAF. This result is responsible for the notion that it
is impossible to estimate, for example, the mutation
rate and effective population size separately. However,
although it may be true that there is low power in doing
so, this is simply a consequence of the assumptions of
the diffusion approximation. These might be expected
to break down in cases in which the diffusion is
not appropriate (Wakeley 2005). In this respect, the
moment-based approximations are free of the small
parameters assumption, especially because the mean
and variance of the general linear evolutionary pressure
can be calculated without making the approximation of
large N (Tataru et al. 2015). Therefore, moment-based
approximations might be more appropriate when the
evolutionary pressure is strong (Lacerda and Seoighe
2014).

Using the spectral decomposition of the diffusion
equation, Kimura (1955b; 1957) found the DAF when
selection is present. This approach was extended
by Song and Steinrücken (2012) to improve the
convergence properties for stronger selection, whereas
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Steinrücken et al. (2016) developed it further to
model selection coefficients that vary over time in
a piecewise constant manner. The DAF was also
calculated using a finite-difference scheme (Bollback
et al. 2008), finite-volume scheme (Zhao et al. 2013),
a path integral formalism (Schraiber 2014) and other
numerical approaches (Malaspinas et al. 2012; Ferrer-
Admetlla et al. 2016).

Bollback et al. (2008); Steinrücken et al. (2014);
Malaspinas et al. (2012) and Ferrer-Admetlla et al.
(2016) estimated jointly selection coefficients and
effective population sizes from time series data from
one population. Ferrer-Admetlla et al. (2016) could
additionally infer mutation rates. Živković et al.
(2015) used the spectral decomposition of Song and
Steinrücken (2012) to infer mutation, selection and
variable population size from present data from one
population. Vitalis et al. (2014) used the stationary
distribution of the DAF when multiple populations
exchange migrants and experience selection. As they
used the stationary DAF, they could not recover any
information about the divergence of the populations.
We would like to note here that although the method
of Gutenkunst et al. (2009) can in principle incorporate
selection, the inference software does not estimate
selection coefficients.

Moment-based approximations.—Using the numerically
approximated moments of the DAF, the truncated
normal and beta distributions are obtained as
previously. The beta with spikes approximation
has not been extended to include selection. However,
the approximation developed by Tataru et al. (2015)
for the loss and fixation probabilities should still be
reasonable if the selection pressure is small and the
loss and fixation probabilities are mainly dominated by
genetic drift.

Moment-based approximations have had limited
use for inference of selection due to the difficulties
in calculating the first two moments of the DAF.
Both Lacerda and Seoighe (2014) and Terhorst et al.
(2015) estimated effective population sizes and selection
coefficients from time series data, using the normal
distribution and the Taylor expansion approach. One
critical difference between the two is that Lacerda
and Seoighe (2014) assumed additive selection (h=
0.5) and used a Taylor series about the mean of x(r),
whereas Terhorst et al. (2015) made no assumptions
about dominance and used a Taylor series about the
deterministic trajectory. Additionally, Terhorst et al.
(2015) were the first to incorporate linkage, but in practice
their model is limited to jointly analyze only a small
number of loci (typically 3).

Quality of approximations.—Relative to pure drift, positive
selection acts by increasing the expected frequency and
probability of fixation of the A allele, and decreasing
the probability of loss (Figs. 4 and 7). For example,
under pure drift and with a beginning frequency of

x(0)=0.5, the probability that the mutation is lost (fixed)
at r/(2N)=0.5 is 0.072 (0.072), while when selection is
present with S=1, the probability is reduced (increased)
to 0.06 (0.078). Overall, for S=1, all approximations have
a fit to the true DAF (Fig. 7) that is very similar to that for
pure drift (Fig. 4). We note here that S=1 is a very small
selection coefficient. For larger values of S, the Taylor
series approach leads to estimated values for the mean
m and variance v for which v>m(1−m), and these cannot
be fitted by a beta distribution.

MULTI-ALLELIC WRIGHT–FISHER MODEL

The bi-allelic Wright–Fisher model is typically a very
good approximation for SNP data (because the per-
nucleotide mutation rate is typically small), but due to
highly mutable sites, ancestral polymorphism, very large
sample size or large evolutionary distance, a number of
SNPs may contain 3 or 4 alleles. Furthermore, highly
variable loci (e.g., short tandem repeats) are still widely
used, especially in forensics (Balding and Nichols 1997;
Balding and Steele 2015), and are typically multi-allelic.
In these cases, the data can be analyzed using the multi-
allelic Wright–Fisher model, an extension of the bi-allelic
model. Instead of following the frequency of one allele,
which is sampled from a binomial distribution from one
generation to the next, the multi-allelic model describes
the joint distribution of the K alleles present in the
population, which are now sampled from one generation
to the next from a multinomial distribution.

Pure Drift
Similar to the bi-allelic model, the simplest form

is the pure random genetic drift model, where the
stochastic fluctuations in the allele frequencies are
purely determined by the random mating of the finite
population (Fig. 8).

Dynamics and moments.—Let zi(r) be the number of i
alleles in generation r, z(r)= (z1(r),...,zK(r)) and x(r)=
z(r)/(2N) be the corresponding allele frequency. The
distribution of z(r+1) is

z(r+1)|z(r)∼Mult(2N,x(r)). (21)

Here, Mult(n,p) is the multinomial distribution with
sample size n and probability vector p.

To determine the mean and covariance of the DAF,
we move from discrete generations to continuous time
where one time unit corresponds to 2N generations, and
set t=r/(2N). Then,

E[x(t) |x(0)]=x(0), (22)

Var
(
x(t) |x(0)

)
=
(

1−e−t
)(

diag{x(0)}−x(0)′x(0)
)
,

(23)
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FIGURE 7. Fit of various approximations to the true DAF with selection, calculated using the Markov chain property for 2N =200, S=h=1,
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where ′ denotes vector transpose. These formulas are
natural extensions of equations (2) and (4).

Diffusion approximation.—Diffusion theory can be
extended from the bi-allelic to the multi-allelic case.
We will not cover this here, but refer to Ewens (2004;
section 4.8, p. 151) for a general discussion of multi-
dimensional diffusion processes, and Ewens (2004;
section 5.10, p. 192) for the K-allele pure drift Wright–
Fisher model. In particular, Ewens (2004) mentions that
a generalization of equation (7) can be formulated and
that a generalization of Kimura’s solution in terms of
orthogonal polynomials exists.

Moment-based approximations.—The beta distribution is
a natural choice for approximating the DAF for the
bi-allelic Wright–Fisher model, and it provides a good
approximation when the allele is not close to being lost
or fixed (Figs. 4, 6, and 7). It is therefore natural to
approximate the DAF for the multi-allelic Wright–Fisher
using the generalization of the beta distribution, the
Dirichlet distribution (Balding and Nichols 1995; 1997).
Just like for the bi-allelic case, where the beta distribution
arises as the stationary DAF under linear evolutionary
pressure, the Dirichlet distribution is the stationary DAF
for a specific mutation model (Ewens 2004) (see below).

Under the Dirichlet model, also called the Balding–
Nichols model (Balding and Steele 2015), the allele
frequency vector x(t) follows a Dirichlet distribution

x(t) |x(0)∼Dirichlet(�),

where �= (�1,...,�K)>0. This implies that allele
i=1,...,K has marginal distribution

xi(t)∼Beta(�i,�0 −�i), with �0 =
K∑

i=1

�i.
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FIGURE 9. Dynamics in the K =4 multi-allelic Wright–Fisher
model with mutations for (A,G,C,T). If the parental allele is i, the
child receives the same allele with probability Uii and another allele j
with probability Uij , for i,j∈{A,G,C,T}.

Under the Dirichlet distribution, the mean and
covariance of the DAF are

E[x(t) |x(0)]= �

�0
, (24)

Var
(
x(t) |x(0)

)
= 1

�0 +1

(
diag

{
�

�0

}
−
(

�

�0

)′ �

�0

)
.

(25)

The mean and covariance of the DAF (equations (22)
and (23)) are equivalent to those under the Dirichlet
distribution (equations (24) and (25)) when

x(0)= �

�0
, and 1−e−t = 1

�0 +1
.

Therefore, the Dirichlet distribution can accurately
capture the true mean and covariance of the multi-allelic
pure drift Wright–Fisher model.

Neutral Mutations
Just as is the case for the bi-allelic model (Fig. 3),

when the alleles evolve under pure drift, eventually the
process will reach a monomorphic state, where only
one of the alleles will be present in the population.
The variation can be maintained in the population by
allowing mutations (Fig. 9).

Dynamics and moments.—If Uij is the probability of an i
allele to mutate to a j allele, the multinomial distribution
of z(r+1) becomes

z(r+1) |z(r)∼Mult(2N,x(r)U),

where the mutation probabilities are stored in a K×K
matrix U. By specifying the structure of U, different
evolutionary mutation models can be formulated, such
as the Jukes–Cantor (JC) model, parent independent
mutation model, infinite alleles model, Kimura model,
and single-step mutation model (Felsenstein 2004).

The mean and covariance of the DAF in continuous
time (t=r/(2N)) are obtained using the rate matrix
Q=2N(U−I), where I is the identity matrix, from the

diffusion approximation (Hobolth and Sirén 2016),

E[x(t) |x(0)]=x(0)eQt, (26)

Var
(
x(t) |x(0)

)
=
∫ t

0
e−s

(
eQs

)′
diag

{
x(0)eQ(t−s)

}(
eQs

)
ds

−
(

eQt
)′

x(0)′x(0)eQt
(

1−e−t
)
.

(27)

These general formulas make it possible to numerically
calculate the mean and covariance for any mutation
model. In practice, the mean can be calculated using one
of the many available numerical procedures for matrix
exponentials (Moler and Van Loan 2003). Calculating
the covariance, which involves integrals of matrix
exponentials, is more tedious, but this can be done
numerically using the eigenvalue decomposition of the
rate matrix (Hobolth and Sirén 2016).

The JC is the most simple mutation model, where all
mutation probabilities are equal, Uij =u/(K−1), for all
i 	= j. The entries in the rate matrix for the JC model are
given by

Qij =2N(Uij −Iij)=
⎧⎨
⎩

q
K−1

if i 	= j

−q if i= j

where q=2Nu. The rate matrix can be written in matrix
form as

Q= q
K−1

(E−IK),

where E is the K×K matrix with 1 in every entry. We
can now obtain a closed-form solution for the matrix
exponential eQt, namely

eQt =e−� t
2

(
I− E

K

)
+ E

K
,

where �=2qK/(K−1). The mean and covariance in the
JC model are found from equations (26) and (27) and
given by

E[x(t) |x(0)]=e−� t
2

(
x(0)− e

K

)
+ e

K
, (28)

Var
(
x(t) |x(0)

)
= 1

K

(
I− E

K

)
1

1+�

(
1−e−(1+�)t

)

−
(

x(0)− e
K

)′(
x(0)− e

K

)
e−�t

(
1−e−t

)

+
(

diag
{

x(0)− e
K

}
−
(

x(0)− e
K

)′ e
K

− e′
K

(
x(0)− e

K

))

×e−� t
2

1
1+ �

2

(
1−e−(1+ �

2

)
t
)
,

(29)
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where e is the 1×K vector with 1 in every entry.
For t→∞, these reduce to

E[x(t) |x(0)]= e
K

,

Var
(
x(t) |x(0)

)= 1
K

(
I− E

K

)
1

1+�
.

We note that these moments are the same as for a
Dirichlet distribution with �=e/(K�), and indeed the
Dirichlet distribution is the stationary DAF of the multi-
allelic JC Wright–Fisher model (Ewens 2004).

Moment-based approximations.—The mean and
covariance of the Dirichlet distribution (equations
(24) and (25)) are equivalent to those under the JC
model if the covariance approximately fulfills the
proportionality condition

Var
(
x(t) |x(0)

)
∝diag{E[x(t)]}−E[x(t)]′E[x(t)]

= 1
K

(
I− E

K

)
−
(

x(0)− e
K

)′(
x(0)− e

K

)
e−�t

+
(

diag
{

x(0)− e
K

}
−
(

x(0)− e
K

)′ e
K

− e′
K

(
x(0)− e

K

))
e−� t

2 ,

(30)

where we used the expression for the mean in
equation (28). By comparing equations (29) and (30),
we observe that the expressions are approximately

proportional with proportionality constant 1−e−t when
� is small, which corresponds to the pure drift case.
Regardless of the parameter �, the expressions are
also approximately proportional, with proportionality
constant t, when the evolutionary distance t is small.
Finally, for large t, the proportionality constant is 1,
because the Dirichlet distribution is the stationary
distribution for the JC model. These analytical
considerations are confirmed by Figure 10. The Dirichlet
distribution cannot accurately capture the mean and
covariance of the JC model for intermediate values of
t, and the deviation is very clear for large values of �
(Fig. 10b). Therefore, care should be taken when using
the Dirichlet distribution in practice. Because the JC is the
most simple mutation model, with just one parameter,
one could expect that the fit of the Dirichlet distribution
could be even more problematic for more complex
mutation models. An important step in developing more
appropriate distributions for the DAF under the multi-
allelic Wright–Fisher model is made by Sirén et al.
(2013) and Hobolth and Sirén (2016), but in general more
research is needed in this direction.

CONCLUSION AND PERSPECTIVES

We have provided a broad overview of methods to
calculate the DAF under the Wright–Fisher model. These
methods have a number of working assumptions in
common. Here, we discuss in turn each of these and how
current methods tackle these issues or potentially could
be improved to do so.

Virtually all methods presented here rely on unlinked
loci, with an exception worth mentioning using a
moment-based approach (Terhorst et al. 2015). Several
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inference methods built on the coalescent process
analyze pairs of linked neutral loci (Li and Durbin
2011; Paul et al. 2011; Sheehan et al. 2013; Schiffels and
Durbin 2014; Rasmussen et al. 2014). Some theoretical
results do exist for linked bi-allelic selected loci in
the limit of a large population size (Lessard and
Kermany 2012), but these have limited use for inference
methods. To our knowledge, equivalent results for
the joint DAF of two loci are not available, but see
Jenkins et al. (2014) for an approximation for loosely
linked loci. These results could be used as the basis
for including recombination in inference methods, but
so far these types of approximations have not really
permeated the field of inference under the Wright–Fisher
model.

The methods we have presented here also implicitly
assume very simplified demographic scenarios. In some
instances, especially if the data contain individuals
sampled from populations with complex demography,
it might be easier, although more computationally
intensive, to rely on simulations under the Wright–
Fisher model to perform inference (Excoffier et al. 2013).
In particular, much progress has been made in using
Approximate Bayesian Computation (ABC) that relies
on a series of summary statistics from simulations and
either rejection sampling or more sophisticated methods
to obtain approximated posterior distributions for the
parameters of interest (Beaumont et al. 2002; Blum 2010;
Marin et al. 2012). This is becoming very much a field
of its own with active method development in the
choice of relevant summary statistics, quasi-sufficiency
(Joyce and Marjoram 2008), and various algorithms
to obtain computationally efficient approximations of
the likelihood (Excoffier et al. 2013). Simulation-based
methods can be a source of inspiration for developing
methods seeking to specify the DAF under a wider range
of scenarios and less restrictive assumptions. Such an
example is the inference of selection from time series data
from experimental evolution, where the population size
undergoes periodic bottlenecks, followed by population
expansion. This is typical of most experimental setups,
where the population size is experimentally controlled
(Foll et al. 2014).

Ultimately, the directions of future method
development are likely to be conditioned by the type
of data modeled and the evolutionary or demographic
questions of interest that motivate the need for inference.
As genome-wide re-sequencing becomes increasingly
common and replaces most SNP genotyping and exome
sequencing, we can expect that the data will increasingly
consist of polymorphism counts among tightly linked
sites.

One direction worth exploring is using the Wright–
Fisher model to learn about how selection varies along
the genome, and thereby shapes genome-wide diversity.
Some progress has been made in inferring mutation
rates and selection coefficients by expressing expected
local levels of nucleotide diversity as a function of the
amount of selection affecting neutral sites due to linkage
(Elyashiv et al. 2014).

Finally, at present, most software programs that
implement inference methods have been developed for
bi-allelic data, whereas inference for multi-allelic data
is clearly lagging behind. We have discussed recent
attempts to understand and formulate approximations
for the DAF under the multi-allelic Wright–Fisher model
with mutation. These developments are expected to
improve modeling of short tandem repeat data that are
still widely used in forensics (Balding and Steele 2015).
They might also allow the analysis of a broader range
of biological situations where the bi-allelic assumption
is not always appropriate, for example, when there
is extensive heterogeneity in the mutation rate or the
product of effective population size and mutation rate
is high, as is the case for microbial and viral genomes.
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