Skip to main content
. 2016 Aug 2;66(1):e30–e46. doi: 10.1093/sysbio/syw056

Table 1.

Overview of recent inference methods for the bi-allelic Wright–Fisher model

Reference Data Mut Mig Sel Approach Availability
Markov chain theory
Mathieson and McVean (2013)a T   Inline graphic Inline graphic Normal -
Gompert (2015)a T     Inline graphic Beta spatpg
Diffusion approximation
Bollback et al. (2008) T     Inline graphic Finite-difference -
Gutenkunst et al. (2009) S Inline graphic Inline graphic   Finite-difference Inline graphicaInline graphici
Lukić and Hey (2012) S Inline graphic Inline graphic   Spectral decomposition MultiPop
Malaspinas et al. (2012) T     Inline graphic Numerical approximation upon request
Gautier and Vitalis (2013) S       Spectral decomposition KimTree
Steinrücken et al. (2014) T Inline graphic   Inline graphic Spectral decomposition spectralHMM
Vitalis et al. (2014) S   Inline graphic Inline graphic Stationary DAF SelEstim
Živković et al. (2015) S Inline graphic   Inline graphic Spectral decomposition upon request
Ferrer-Admetlla et al. (2016) T Inline graphic   Inline graphic Numerical approximation ApproxWF
Moment-based approximations
Sirén et al. (2011) S       Beta -
Pickrell and Pritchard (2012) S   Inline graphic   Normal TreeMix
Lacerda and Seoighe (2014) T     Inline graphic Normal upon request
Hui and Burt (2015) T       Beta NB
Tataru et al. (2015) S       Beta with spikes SpikeyTree
Terhorst et al. (2015) T     Inline graphic Normal EandR-timeseries

The table indicates what type of data the method uses (Data): time series data from one population (T) or single time-point data from multiple populations (S); if the method models new mutations (Mut), migration (Mig) or selection (Sel); which type of approach is used for calculating the DAF (Approach); and whether the method is publicly available (Availability). All methods model genetic drift.

a analyze jointly time series data from multiple populations. The table covers only the more recent inference methods.