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Abstract

Many public health interventions provide benefits that extend beyond their direct recipients

and impact people in close physical or social proximity who did not directly receive the

intervention themselves. A classic example of this phenomenon is the herd protection pro-

vided by many vaccines. If these ‘spillover effects’ (i.e. ‘herd effects’) are present in the

same direction as the effects on the intended recipients, studies that only estimate direct ef-

fects on recipients will likely underestimate the full public health benefits of the interven-

tion. Causal inference assumptions for spillover parameters have been articulated in the

vaccine literature, but many studies measuring spillovers of other types of public health

interventions have not drawn upon that literature. In conjunction with a systematic review

we conducted of spillovers of public health interventions delivered in low- and middle-

income countries, we classified the most widely used spillover parameters reported in the

empirical literature into a standard notation. General classes of spillover parameters in-

clude: cluster-level spillovers; spillovers conditional on treatment or outcome density, dis-

tance or the number of treated social network links; and vaccine efficacy parameters

related to spillovers. We draw on high quality empirical examples to illustrate each of these

parameters. We describe study designs to estimate spillovers and assumptions required to

make causal inferences about spillovers. We aim to advance and encourage methods for

spillover estimation and reporting by standardizing spillover parameter nomenclature and

articulating the causal inference assumptions required to estimate spillovers.
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Introduction

Public health interventions may benefit those in close phys-

ical or social proximity to intervention recipients who do

not receive the intervention themselves. When such ‘spill-

overs’ are present in the same direction as direct effects on

recipients, direct effects alone do not capture the full health

impact and cost-effectiveness of an intervention. Most

epidemiological studies measuring spillover effects have

evaluated herd effects of vaccines,1,2 but spillovers are the-

oretically possible for numerous other interventions that

could alter disease transmission or change health

behaviours. Spillovers have increasingly been measured for

other interventions, particularly in economics, since evi-

dence of spillovers can support the case for scaling up or

subsidizing an intervention.3,4 However, to date, discus-

sion of methods for estimating spillover effects and iden-

tifying them within a causal inference framework has

largely remained confined to the vaccine literature,5–14

with few articles extending methods to studies of other

interventions.15–18

Here we define spillover parameters using standardized

notation and discuss causal inference assumptions for spill-

overs using non-technical language to provide an accessible

introduction for epidemiologists. In conjunction with a sys-

tematic review we conducted on health spillovers of inter-

ventions in low- and middle-income countries,19 we

classified types of spillovers to make their similarities and

differences more transparent. By standardizing spillover

parameter definitions and articulating causal inference as-

sumptions for spillovers, we aim to advance methods for

spillover study design, estimation and reporting.

Types of spillover parameters

We describe six classes of spillover parameters that were

most common in our systematic review.19 We present

individual-level counterfactual definitions of spillover ef-

fects in Box 1; the Supplement (available as Supplementary

data at IJE online) contains average spillover effects as

well as identification assumptions for each parameter. For

simplicity we discuss spillovers among untreated individ-

uals; however, spillover effects may also occur among the

treated (Box 1). For example, HIV vaccine candidates pro-

vide imperfect protection to vaccinated individuals, but

protection has been shown to increase as immunization

coverage increases, due to reductions in transmission re-

sulting from herd effects.20 We define spillover parameters

in the context of ‘intention-to-treat’ analyses, which esti-

mate the true causal effect of interventions with high ad-

herence. Inferences about spillovers are more complicated

when there is imperfect adherence (e.g. in ‘per-protocol’

analyses),16 and a formal discussion of that setting is be-

yond the scope of this paper.

To make causal inferences, investigators typically invoke

the Stable Unit Treatment Value Assumption (SUTVA),22

which states that an individual’s potential outcome is not

affected by the treatment assignment of other individuals in

the population. This is also known as the assumption of no

interference.23 SUTVA does not hold when spillovers are

present because an individual’s potential outcome depends

on their own treatment assignment and the treatment as-

signment of other individuals connected to them. The most

common and theoretically tractable method to make causal

inferences about spillover effects is by making the ‘partial

interference’ assumption,24 which states that there are no

spillovers between clusters of individuals but allows for

spillovers among individuals within the same cluster.24

This assumption underpins the validity of many cluster-

randomized trials. Studies can minimize spillovers between

clusters by including buffer zones between clusters, as is

common in cluster-randomized trials.25–27

Studies that assume no spillovers (i.e. that SUTVA

holds) typically index counterfactuals only by an

Key Messages

• Spillovers are the effects of interventions on people in close physical or social proximity to intervention recipients but

who do not themselves receive the intervention.

• Accurate estimation of spillover effects improves our understanding of the population-level impact and cost-

effectiveness of public health interventions.

• Spillover evidence is strongest when based on individual-level outcome measurements rather than group-level out-

come measurements.

• To make causal inferences about spillovers under typical assumptions: (i) factors associated with untreated individ-

uals’ proximity to treatment and their outcomes must be balanced across treatment groups, either by design or using

statistical approaches; and (ii) the potential outcomes of untreated individuals in proximity to treated individuals must

be independent of the treatment assignment of certain individuals in the population, who serve as a counterfactual

controls.
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Box 1. Spillover parameter definitions

Here, we provide definitions of individual-level average spillover effects using counterfactual notation. The Supplement

(available at IJE online) includes additional details and identification assumptions. Figures cited below provide visual

representations of each parameter.

We present the first three types of parameters in a two-stage randomized trial in which the treatment regimen is

defined such that at least one individual in a treated cluster receives treatment (a1), and in control clusters, all individu-

als are allocated to control (a0). Let Yij(a) be the potential outcome for individual j in cluster i, where ai denotes a vector

of treatment assignments for individuals in cluster i. The individual potential outcome averaging over different configu-

rations of ai is Y ij(a, a) and is a function of the treatment regimen (a) and the individual’s treatment assignment (a).

Cluster-level spillover effects (Figure 1)

Cluster-level spillover effect: SEijða1;a0Þ � Y ijða1;0Þ � Y ijða0; 0Þ

This parameter compares the mean potential outcome of an individual assigned to control in a treatment cluster with treat-

ment regimen a1 with their mean potential outcome if they were assigned to control in a cluster assigned to control (a0).

Direct effect: DEijða1Þ � Y ijða1;1Þ � Y ijða1;0Þ

This parameter compares the mean potential outcome of an individual assigned to treatment in a treatment cluster with

treatment regimen a1 with their mean potential outcome if they were assigned to control in a cluster with treatment a1.

Total effect: TEijða1; a0Þ � Y ijða1;1Þ � Y ijða0;0Þ

This parameter compares the mean potential outcome of an individual assigned to treatment in a treatment cluster with

treatment regimen a1 their mean potential outcome if they were assigned to control in a cluster assigned to control (a0).

Overall effect: OEijða1;a0Þ � Y ijða1Þ � Y ijða0Þ

This parameter compares the mean potential outcome across individuals in a cluster with treatment regimen a1 with

their mean potential outcome had the cluster been assigned to control (a0).

Distance-based spillover effects (Figure 2)

Spillover effect conditional on distance to clusters (Figure 2a): SEijða1;a0;kÞ � Y ijða1jKi ¼ kÞ � Y ijða0jKi ¼ kÞ

This parameter compares the mean potential outcome for individuals at distance k from a cluster with treatment regi-

men a1 with the mean potential outcome at distance k from a cluster with treatment regimen a0 (all individuals assigned

to control).

Spillover effect conditional on distance between clusters (Figure 2b):

SEijða1;a0; b0;kÞ � Y ijða1;b0jKi ¼ kÞ �Y ijða0;b0jKi ¼ kÞ

This parameter compares the mean potential outcome of individuals in control clusters with treatment regimen b0

within distance k of treatment clusters with treatment regimen a1 with those in clusters assigned to control with treat-

ment regimen b0 within distance k of control clusters with treatment regimen a0.

Spillover effect conditional on treatment density (Figure 3)

Define pi as the proportion of individuals allocated to treatment in treatment clusters. In a two-stage randomized trial,

in the first stage, clusters are randomly assigned to receive a certain proportion of treatment (E[ai]¼pi), including clus-

ters with pi¼0. In the second stage, individuals are randomized to treatment (pi>0) or control (pi¼0) in clusters.

SEðpi;p
0
iÞ � Yijðpi;0Þ � Yijðp0i; 0Þ

This parameter compares the mean potential outcome of an individual assigned to control in clusters with different pro-

portions of individuals assigned to treatment (pi vs. pi
0, where pi 6¼pi

0).

Social network spillover effect (Figure 4)

This parameter can be estimated as a trial that randomizes treatment to egos (the initially enrolled subjects) and com-

pares the mean outcomes of alters (the persons socially connected to the egos) in the treatment vs control group.
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individual’s own treatment assignment (e.g. Ya could indi-

cate the potential outcome for a person with treatment

assignment A¼ a). Under the partial interference assump-

tion, the treatment assignment of each individual (j) in

each cluster (i) can be summarized in a vector of treatments

for n individuals: Ai � (Ai1,. . ., Aini
). Similarly, Ai,-j �

Ai1,. . ., Aij-1, Aijþ1,. . ., Aini denotes the vector of treatments

for individuals in cluster i for all individuals except for in-

dividual j. Ai can be considered a random treatment alloca-

tion regimen, and AðniÞ is the set of all possible treatment

allocation regimens for ni individuals (the set of values that

Ai can assume). Specific regimens within AðniÞ can be

denoted by a, the parameterization of the distribution of Ai

for i¼ 1,. . ., N. For example, a1 may include a scenario in

which half of all individuals in a cluster are allocated to

treatment and half are allocated to control, and a0 may in-

clude a scenario in which all individuals in a cluster are

allocated to control. In the following sections, we define

individual-level average causal effects; see the Supplement

for individual-level and group-level causal effects (avail-

able as Supplementary data at IJE online).

Cluster-level spillovers

Causal cluster-level spillover effects can be measured in a

two-stage randomized trial9 in which treatment is random-

ized to independent clusters in the first stage, and in the se-

cond stage, individuals within treatment clusters are assigned

to treatment or control (Figure 1). This is sometimes referred

to as a double-randomized trial.11 The cluster-level spillover

effect may be defined as the difference in mean outcomes

among untreated individuals in treated clusters and the out-

comes among individuals in control clusters.5,6,8,9 We provide

the definition of this parameter from Hudgens and Halloran8

and Tchetgen Tchetgen.10 We present this and the parameters

in subsequent sections on the additive scale. To be consistent

with the causal inference literature,10 we reverse the order of

treatment and control contrasts from those in Hudgens and

Halloran,8 which subtract potential outcomes for those as-

signed to treatment from those assigned to control.

Let Yij(ai) be the potential outcome for individual j in clus-

ter i, where ai denotes a vector of treatment assignments for

individuals in cluster i. Let ai,-j be the vector of treatment for

all individuals in cluster i except individual j. The potential

outcome in this parameter, Yij(ai,-j, aij), is a function of the in-

dividual’s own treatment assignment (aij) and the treatment

assignment of other individuals (ai,-j) in the cluster. In treat-

ment clusters, the treatment regimen (a1) is defined such that

at least one individual receives treatment, and in control clus-

ters, all individuals are allocated to control (a0). The treat-

ment vector ai can vary for a given treatment regimen a.

Thus, the individual potential outcome averaging over differ-

ent configurations of ai for a given a (i.e. averaging over all

possible treatment regimens) is defined as:

Yijða; aÞ ¼
X

s2Aðn�1Þ Yijðai;�j ¼ s; aij ¼ aÞ �

PraðAi;�j ¼ sjAij ¼ aÞ
(1)

We assume that the proportion of individuals assigned to

treatment (a1) is the same among all treated clusters.

For this parameter, we define the potential outcome for alter j as Yj(a1, a0), which is a function the treatment assign-

ment of the ego (a1) and the treatment assignment of the alter (a0).

SE � E½Yjð1;0Þ � Yjð0; 0Þ�

This parameter compares the mean potential outcome among an untreated alter socially connected to a treated ego

(Yj (a1¼ 1, a0¼0)) with their mean potential outcome if they were connected to an untreated ego (Yj (a1¼0, a0¼ 0)).

Vaccine efficacy for infectiousness (Figure 5)

This parameter is typically estimated in studies that enrol households with an infected individual (a ‘case’) and at least

one uninfected individual (a ‘susceptible’). S is the outcome for the primary household case; Y is the outcome for the

susceptible individual; and A is the treatment assignment for the case.

VEI ¼ E½YjA ¼ 1; S ¼ 1� � E½YjA ¼ 0; S ¼ 1�

The parameter compares the secondary attack rate among uninfected susceptible individuals in households with a vac-

cinated case with the rate among those in households with unvaccinated cases. Identification of this parameter requires

assumptions that complicate the presentation of causal parameters, so we define a statistical parameter here and pro-

vide a causal parameter definition in the Supplement. The parameter is labelled ‘VE’ to be consistent with how it is pre-

sented in the vaccine literature.
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A cluster-level spillover effect measures spillovers that

occur among untreated individuals in a cluster that

received treatment. This effect can be defined as:

SEijða1; a0Þ � Yijða1;0Þ � Yijða0; 0Þ (2)

This parameter compares the mean potential outcome of

an individual assigned to control in a treatment cluster with

treatment regimen a1 with their mean potential outcome if

they were assigned to control in a cluster assigned to control

(a0). For example, Chong et al. estimated cluster-level spill-

overs by randomly assigning schools to receive a sexual

health education programme and then randomly assigning

the programme to classrooms within intervention schools;

they compared sexual health knowledge among children in

control classrooms in intervention schools with that of chil-

dren in control schools (Table 1, Example 1).28

There are several related parameters that can also be esti-

mated in a two-stage randomized trial (Figure 1). Direct ef-

fects compare the mean potential outcome of a treated

individual in a treated cluster with treatment regimen a1

with their mean potential outcome if they were assigned to

control in the same cluster (Yijða1; 1Þ � Yijða1;0Þ); total ef-

fects compare the mean potential outcome of a treated indi-

vidual in a treated cluster with treatment regimen a1 with

their mean potential outcome if they were assigned to con-

trol in control clusters (Yijða1;1Þ � Yijða0;0Þ); and overall

effects compare the mean outcome of all individuals in

treated clusters with treatment regimen a1 with the mean

outcome had the cluster been assigned to control

(Yijða1Þ � Yijða0Þ) (see complete definitions in the

Supplement, available as Supplementary data at IJE online).

The direct effect defined in the spillover literature differs

from other definitions in the causal mediation literature (ef-

fect of an exposure through no intermediate variables).29

Similarly, in the spillover literature, the term ‘indirect effect’

is frequently used to describe spillover effects–in the medi-

ation literature, an ‘indirect effect’ is the part of an interven-

tion’s effect that is mediated through intermediate variables.

Cluster-level spillovers can be measured in studies that

enrol clusters of any size. They are relatively convenient to

estimate in studies with small- to medium-size clusters

when the treatment status of most individuals in the cluster

is known. Cluster-level spillover parameters often condi-

tion on other variables, such as eligibility to receive an

intervention. For example, a comparison of outcomes

among ineligible individuals in the treatment group with

ineligible individuals in the control group estimates a

cluster-level spillover effect (Figure 1).30–37

Distance-based spillovers

Spillovers can be measured as a function of distance from

treated individuals or clusters. We introduce two param-

eters: one conditional on individuals’ distance to clusters,

and one conditional on distance between clusters. The first

parameter measures spillover effects among individuals

located a certain distance from the boundary of treatment

and control clusters (Figure 2a). We define Yij(ai j Ki¼ k)

as the potential outcome for individual j residing within

distance k from cluster i, with treatment vector ai. The in-

dividual average potential outcome Yij(a j Ki¼ k) is a func-

tion of the treatment regimen (a) and the individual’s

distance to the nearest study cluster (k). Let a1 be a

Figure 1. Cluster-level spillover effects. This spillover parameter can be estimated in a two-stage randomized trial in which clusters are randomly

allocated to treatment or control and then individuals within treatment clusters are randomly allocated to treatment or control. The direct effect

compares potential outcomes of individuals allocated to treatment in treatment clusters to the potential outcomes of individuals allocated to control

in treatment clusters. The cluster-level spillover effect compares potential outcomes of individuals allocated to control in treatment clusters to those

of individuals in control clusters. The total effect compares the potential outcomes of individuals allocated to treatment in treatment clusters to those

of individuals allocated to control in control clusters. The overall effect compares the potential outcomes of all individuals in clusters allocated to

treatment to those of all individuals in clusters allocated to control.
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treatment regimen in which at least one individual per clus-

ter is allocated to treatment. Again, we assume that the

treatment regimen is uniform (i.e. a1 does not vary) among

treated clusters. The spillover effect conditional on dis-

tance to treated clusters can be defined as:

SEða1; a0;kÞ � Yijða1jKi ¼ kÞ � Yijða0jKi ¼ kÞ (3)

This parameter compares the mean potential outcome of

an individual distance k from a cluster with treatment regi-

men a1 (at least one individual allocated to treatment per

cluster) with their mean potential outcome at distance k

from a cluster with treatment regimen a0 (all individuals as-

signed to control). Studies estimating this parameter must

ensure control clusters are at a distance from treatment clus-

ters beyond which the intervention has an effect. Hawley

et al. estimated a similar parameter in a re-analysis of a

cluster-randomized trial to measure spillovers of insecticide-

treated nets on malaria and other outcomes over different

distances.38 They compared individuals assigned to control

clusters who were 0–299 m, 300–599 m and 600–899 m

with those who were� 900 m from the nearest individual in

a treated cluster (Table 1, Example 3).

Spillover effects can also be measured as a function of dis-

tance between clusters using a pair-matched, two-stage design

(Figure 2b). This parameter differs from the previous one be-

cause the individuals used to measure spillover effects reside

in separate clusters rather than in the areas around the boun-

daries of the treatment clusters. To measure this type of spill-

over effect, first a study pair-matches clusters separated by

distance k and then randomly allocates each pair to treatment

or control. Second, the study randomly selects one member

from each pair to be the ‘primary’ cluster; in the treated pairs,

the primary cluster is assigned to treatment and the other

cluster is assigned to control. In practice, the pairs of control

clusters may be reduced to a single control cluster unless the

second is needed to achieve sufficient statistical efficiency.

Individuals in clusters assigned to treatment are randomly

Table 1. Examples of empirical studies estimating different spillover parameters

Example Study design Spillover

parameter

Intervention Outcome Spillover group Comparison group

1. Chong

et al., 2013

Double-

random-

ized trial

Cluster-level

spillover

(Figure 1)

School-based sexual

health

education

programme

Knowledge and atti-

tudes about sexu-

ally transmitted

infections and safe

sex practices

Children in schools

that received the

programme but in

classrooms that

did not receive the

programme

Children in schools

that did not re-

ceive the

programme

2. Banerjee

et al., 2010

Cluster-

random-

ized trial

Distance-based

spillover

(Figure 2)

Immunization cam-

paign with

and without

incentives

Vaccination Individuals in ran-

domly selected,

untreated villages

within 6 km of vil-

lages randomized

to treatment

Individuals in vil-

lages randomized

to control

3. Hawley

et al., 2003

Cluster-

random-

ized trial

Distance-based

spillover

(Figure 2)

Insecticide-treated

nets

Malaria, anaemia,

child mortality

Untreated com-

pounds 0–299 m,

300–599m and

600–899 m from

treated

compounds

Untreated com-

pounds�900 m

from treated

compounds

4. Miguel and

Kremer,

2004

Cluster-

random-

ized trial

Spillovers condi-

tional on treat-

ment density

(Figure 3)

School-based

deworming

Soil-transmitted hel-

minth infection

Untreated students

at schools for

which some pupils

were treated at

schools within 0–

3 km and 4–6 km

Untreated students

at schools for

which no pupils

were treated at

schools within 0–

3 km and 4–6 km

5. German

et al., 2012

Randomized

trial

Social network

spillover

(Figure 4)

Peer network

intervention

Depression Peers of individuals

randomized to

treatment

Peers of individuals

randomized to

control

6. Préziosi

and

Halloran,

2003

Secondary at-

tack rate

study

Vaccine efficacy

for infectious-

ness (Figure 5)

Pertussis vaccine Pertussis Susceptibles living in

households with

treated cases

Susceptibles living in

households with

untreated cases
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assigned to treatment or control. Let ai be the treatment vec-

tor for primary clusters and bi be the treatment vector for sec-

ondary clusters. Let Yij(ai, bi j Ki¼ k) be the potential

outcome for individual j in secondary cluster i with treatment

vector bi within distance Ki¼ k from a primary cluster with

treatment vector ai. We define a as the treatment regimen for

primary clusters and b as the treatment regimen for second-

ary clusters. The individual potential outcome averaging over

different configurations of ai and bi for a given a and b is

Yij(a, b j Ki¼k). The spillover effect conditional on distance

between clusters may be defined as:

SEijða1; a0;b0;kÞ � Yijða1;b0 j Ki ¼ kÞ

� Yijða0;b0 j Ki ¼ kÞ
(4)

This parameter compares the mean potential outcome

of a control individual in a secondary control cluster (b0)

within distance Ki¼ k of a treatment cluster with treatment

regimen a1 with their mean potential outcome if they were

assigned to a secondary control cluster (b0) within distance

Ki¼ k of a primary control cluster (a0). Banerjee et al. con-

ducted a study with a design similar to this to measure

spillovers of a vaccine promotion campaign with and with-

out subsidies (Table 1, Example 2).39 They assigned clus-

ters to treatment or control and then enrolled clusters

within 6 km of treated clusters to measure spillovers. Their

design assumes that clusters within 6 km of treatment clus-

ters (the study’s spillover clusters) had similar baseline

characteristics to control clusters; since spillover clusters

were not included in the randomization, it is possible that

Figure 2. Distance-based spillover effects. (a) Spillover effects conditional on distance to clusters can also be estimated in a two-stage randomized

trial. This parameter compares the potential outcomes of untreated individuals within distance k of treated clusters to those of untreated individuals

within distance k of control clusters. (b) Spillover effects conditional on distance between clusters can be estimated in a two-stage randomized trial.

In the first stage, a study pair-matches clusters separated by distance k and then randomly allocates each pair to treatment or control. In the second

stage, the study randomly selects one member from each pair to be the “primary” cluster; in the treated pairs, the primary cluster is assigned to treat-

ment and the other cluster is assigned to control. Individuals in clusters assigned to treatment are randomly assigned to treatment or control. This

parameter compares potential outcomes of individuals allocated to control in secondary clusters within distance k of treated clusters to those of indi-

viduals allocated to control in secondary clusters within distance k of control clusters.

338 International Journal of Epidemiology, 2018, Vol. 47, No. 1



there were systematic differences between spillover and

control clusters, which could have confounded results.

Spillovers conditional on treatment density

We have defined spillover parameters with counterfactuals

indexed by a vector of treatment assignments (ai). In some

cases, spillovers are a function not of the precise allocation

of treatment to specific individuals, but instead of summa-

ries of ai, such as the proportion of those that get treatment

(pi). Thus, we can represent the model of the counterfac-

tual distribution as Yij(pi, a)¼ f(pi,a), where f is a function

of individual-level treatment assignment and low-

dimensional summaries of treatment assignment among

individuals in cluster i. Designs such as a two-stage

randomized study can be tailored to estimate such effects.

For instance, in the first stage, clusters are randomly as-

signed to receive a certain proportion of treatment

(E[ai]¼ pi), and some clusters are assigned to pi¼ 0. In the

second stage, individuals are randomized to treatment or

control in clusters with pi> 0 (Figure 3).8,10,13 We can de-

fine counterfactuals for individual j in cluster i

as Yijðpi; aijÞ, which is indexed by two scalars: the individ-

ual treatment assignment (aij) and the average proportion

treated (pi). The spillover effect among untreated individ-

uals (aij¼ 0) conditional on treatment density is then:

SEðpi;p
0
iÞ � Yijðpi;0Þ � Yijðp0i;0Þ (5)

In a two-stage randomized trial, this parameter com-

pares the mean potential outcomes of an individual as-

signed to control in clusters with different proportions of

individuals assigned to treatment (pi vs. pi
0). This is equiva-

lent to the cluster-level spillover effect on untreated indi-

viduals within the cluster (Equation 2), except for the

simplifying assumption that the counterfactual is only a

function of a summary of ai,, namely pi. This effect can

also be estimated among treated individuals (see the

Supplement for details, available as Supplementary data at

IJE online). Miguel and Kremer estimated this parameter

in a cluster-randomized trial of a school-based deworming

programme in Kenya.3 They compared outcomes among

children in untreated schools in areas with varying levels of

density of treated children (Table 1, Example 4).3 This

class of parameters can also be estimated by conditioning

on the proportion of treated social network nodes within a

given social distance metric of each untreated individual.

For example, a study of a school-based deworming pro-

gramme in Kenya estimated whether child deworming was

associated with the number of social links to parents whose

children received deworming at school.40 Causal interpret-

ation of this type of parameter requires that treatment be

randomized to individuals within the social network rather

than to individuals within a specific geographical area.

Social network spillovers

Social networks can be used to measure spillovers as a func-

tion of social proximity. A variety of designs can be employed

to estimate different social network effects. For example,

causal spillovers through social networks can be measured in

a design that randomizes treatment to egos (the initially en-

rolled subjects) and compares the mean outcomes of alters

(the persons socially connected to the egos) in the treatment

vs control group (Figure 4). Counterfactuals in this design are

a function of a joint treatment (a1, a0), where the treatment

assignment for the ego is a1, and the treatment assignment

for the alter is a0. The potential outcome for the alter j con-

nected to the ego with treatment a1 is Yj (a1, a0). The social

network spillover effect may be defined as:

SE � E½Yjð1;0Þ � Yjð0; 0Þ� (6)

Figure 3. Spillover effects conditional on treatment density. Spillover effects conditional on treatment density can be estimated in a two-stage

randomized design that randomly allocates clusters to treatment or control and then randomly allocates individuals in treatment clusters to treatment

or control. This parameter compares potential outcomes of untreated individuals in clusters allocated to treatment proportion p to those of untreated

individuals in clusters allocated to a different treatment proportion p’. For example, in this figure, the treatment proportion within 30m of untreated

individuals varies. This parameter compares potential outcomes of untreated individuals in clusters with treatment proportion 50% and 90% to those

of untreated individuals in clusters with 0% of individuals allocated to treatment (i.e. control clusters).
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This parameter compares mean outcomes among un-

treated alters socially connected to treated egos with their

mean potential outcome had the egos been untreated. It is

distinct from a parameter conditioning on treatment density

among social network links (above) because it focuses on

alters socially connected to specific egos, isolating the spill-

over effect through individual peer-to-peer connections.

German et al. estimated this parameter in a randomized

study that evaluated spillover effects of a peer network inter-

vention. They compared depression scores among peers of

treated vs control participants (Table 1, Example 5).41

Alternative parameters can be defined to estimate spill-

over effects through social networks. For example, spill-

over effects can be estimated for certain types of social ties

(e.g. direct friends, social ties in the community, village

members)42 or based on which type of social ties were tar-

geted for intervention (e.g. villagers with the most social

ties, nominated friends).43 We presented social network

spillovers among the untreated, but they can also be esti-

mated among the treated by comparing counterfactual out-

comes among treated alters connected to treated vs

untreated egos. Many other types of social network spill-

over parameters have been described, and an overview of

social network effects has been provided by Vanderweele

and An.44 We have described estimation of social network

spillover effects in an individually randomized trial, but

other study designs can be used to estimate spillover effects

through social networks. For instance, Christakis et al.

measured the spread of obesity45 and smoking46 through

social networks in a large cohort study. Stochastic, actor-

oriented models can also be used to estimate spillover ef-

fects in networks;47,48 these models allow individuals to

change their behaviour status and/or social ties at each

time point and require strong assumptions.44

When estimating social network spillover effects, both ob-

servational and randomized designs face unique threats to

validity. First, socially connected individuals may have corre-

lated outcomes and may inhabit the same environment, lead-

ing to environmental confounding.49–53 Second, an individual

may sever a social tie based on their present outcome status

as a result of homophily, which may bias estimates of spill-

over effects.51 A randomized design can minimize homophily

by randomizing individuals to peers in their social network,

such as a room-mate, to ensure that potential confounders

are balanced within ego and alter pairs.54

Spillovers conditional on exposure to infection

Epidemiologists studying vaccines have developed param-

eters that condition on exposure to infected individuals to

measure whether vaccines reduce transmission to unin-

fected individuals.6,9,12,55–58 These parameters are typic-

ally estimated in studies that enrol households with an

infected individual (a ‘case’) and at least one uninfected in-

dividual (a ‘susceptible’). The vaccine efficacy for the infec-

tiousness parameter (also referred to as the ‘infectiousness

effect’59) is a type of spillover parameter that compares the

secondary attack rate among uninfected susceptible indi-

viduals in households with a vaccinated case, with the rate

among those in households with unvaccinated cases

(Figure 5; Table 1, Example 6).

Conditioning on post-treatment outcome status can

introduce selection bias because individuals who become

Figure 4. Social network spillover effects. Social network spillover effects can be estimated in a study that randomizes treatment to egos (the initially

enrolled subject) and compares the mean outcomes of alters (the person socially connected to the ego) in the treatment vs. control group.

Figure 5. Vaccine efficacy for infectiousness. This parameter is typically

estimated in studies that enroll households with an infected individual

(a “case”) and at least one uninfected individual (a “susceptible“).

The parameter compares the secondary attack rate among uninfected

susceptible individuals in households with a vaccinated case to the rate

among those in households with unvaccinated cases. Susceptibles may

be either vaccinated or unvaccinated.
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infected may be systematically different from those who do

not.6 Under standard causal inference assumptions this

parameter is not identifiable;58 to identify this parameter,

relatively strong additional assumptions are required.58–60

For example, one must assume that susceptibles are only

exposed to infection in their household, i.e. that household

members interact with each other but not with other

households.6 Because these additional assumptions compli-

cate the presentation of causal parameters, we define a par-

ameter below that does not use counterfactuals (i.e. a

statistical parameter); see the Supplement for a causal def-

inition (available as Supplementary data at IJE online).

Let S be the outcome for the primary household case, Y

be the outcome for the susceptible individual, and A be the

treatment assignment for the case. The vaccine efficacy for

infectiousness (VE) on the additive scale is:

VEI ¼ E½YjA ¼ 1; S ¼ 1� � E½YjA ¼ 0; S ¼ 1� (7)

We present this parameter on the additive scale for con-

sistency with other parameters, but it is most often esti-

mated as a reduction in the relative risk [(1-RR) x 100%].

These parameters are similar to the cluster-level spillover

effect (Equation 2) but condition on outcome status in-

stead of treatment status. Préziosi and Halloran measured

this parameter in a household secondary attack rate study

of pertussis vaccination by comparing outcomes among

susceptibles in households with vaccinated cases with those

in households with unvaccinated cases.61

Designing studies to measure spillovers

In this section we discuss spillover study designs. Box 2

summarizes recommendations throughout this section.

Causal inferences about spillovers

Confounding of spillover effect estimates

Estimates of spillover effects will be confounded if there

are factors associated with untreated individuals’ exposure

to treatment and outcomes that are not controlled for. A

two-stage randomized trial is ideal for estimating cluster-

level spillovers, distance-based spillovers and spillovers

conditional on treatment density, because it minimizes sys-

tematic differences other than treatment assignment be-

tween treated and untreated individuals in the treatment

and control arms. Individually randomized trials can gen-

erate internally valid spillover estimates for certain param-

eters, such as social network spillover effects, if they ensure

that there is sufficient physical or social distance between

untreated individuals so that some individuals can serve as

a valid counterfactual. For observational studies, strategies

such as propensity scores,62 inverse probability

Box 2. Recommendations for designing studies to estimate spillover effects

Importance of theory 1. Choose a spillover parameter and study design based on theory about how the intervention’s effects

diffuse through a population.

2. Especially when theory to support spillovers of an intervention is weak, use rigorous designs, such as

the double-randomized design, in order to make causal inferences.

Causal inferences

about spillovers

3. To estimate cluster-level spillovers, distance-based spillovers or spillovers conditional on treatment

density, use a double-randomized design to maximize internal validity.

4. If it is only possible to use a cluster-randomized design, consider using multivariate matching tech-

niques to match untreated individuals in the control clusters to untreated individuals in the treatment

clusters. Matching may improve balance for measured confounders; however, unmeasured confound-

ing may remain, and external validity may decrease depending on the subset of the population that is

matched.

5. If a clustered study design is used, build in buffer zones between treated and control units in order to

prevent contamination and ensure that there is a valid control group to serve as a counterfactual.

6. Use individual-level outcomes to measure spillovers when possible. Group-level measurements can be

useful for hypothesis generation when individual-level measurements are unavailable.

Pre-specifying analyses 7. Pre-specify the specific spillover parameter(s) to be estimated.

8. Pre-specify the scale at which spillovers are expected and the hypothesized mechanism(s) of spillover.

9. If the spillover parameter incorporates measurement within specific distances or areas, pre-specify dis-

tance or area definitions and provide a rationale for them based on the hypothesized strength and scale

of spillovers to avoid selectively choosing cutoffs that provide favourable results. For example, de-

scribe the specific distances in which measurement will take place or describe whether measurement

will occur within quantiles of the observed distance distribution.

10. If the study protocol is registered, use the terms ‘spillovers’ or ‘indirect effects’ to refer to spillovers in

the protocol because these are the most commonly used terms in the literature, and they provide a dir-

ect link to the theoretical literature on this topic.
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weighting,13,63–65 matching in the design stage,66–68 regres-

sion discontinuity69,70 and instrumental variables28,29 can

increase comparability between untreated individuals in

proximity to treated individuals and untreated individuals

not in proximity to treated individuals that serve as a con-

trol group. For example, cluster-randomized trials can

measure cluster-level spillovers by matching individuals

who were ineligible for treatment in treated clusters to

similar individuals in control clusters and comparing out-

comes.73 However, this approach only ensures comparabil-

ity on measured covariates, so unmeasured confounding

may remain, and matching could potentially reduce the

study’s external validity.74 We note that some of these

methods, such as regression discontinuity, have yet to be

applied to estimation of spillover effects; to do so would

require an extension of current theory, which is appropri-

ate for total and overall effects.

Spillover effects conditional on distance can be con-

founded by factors that affect whether untreated individuals

live near treated individuals and as well as their outcomes.

Two-stage randomized designs (Figure 2) minimize this form

of confounding by balancing the distribution of treatment

across space. In observational studies, investigators can select

comparison areas with similar geographical features to treat-

ment areas to minimize confounding. Sensitivity analyses can

estimate the extent of possible bias in studies with unmeas-

ured confounding or studies that randomize treatment but

condition on a post-treatment variable, such as the presence

of an infected case in a household, which can also lead

to bias.52

Violations of SUTVA and the partial interference

assumption

SUTVA is one of the core assumptions required to make

causal inferences; but when spillovers occur, the assump-

tion can be relaxed to allow for spillovers within but not

between clusters (partial interference)24 (Figure 6a). Two-

stage randomized designs can reasonably assume partial

interference, but the assumption is difficult to assert in in-

dividually randomized studies unless enrolled individuals

are separated by a large physical or social distance. In

cluster-randomized trials, when interventions affect out-

comes in the control clusters (‘contamination’), the partial

interference assumption is violated (Figure 6b). In this

case, spillover effects can generally be considered lower

bounds of the true spillover effect under the assumption

that the effect of treatment in the control group is less than

or equal to its effect in the treatment group. However, if

contamination causes re-composition of treatment and

control units that alters transmission dynamics, treatment

effects may be biased away from the null. Estimates will

also be biased when spillovers occur in multiple

directions—untreated individuals affect treated individ-

uals’ outcomes and treated individuals affect untreated in-

dividuals’ outcomes (Figure 6c). For example, in a trial

that randomizes improved latrines to a subset of house-

holds in a village, environmental contamination resulting

from use of unimproved latrines by non-recipients may

spread enteric infections to latrine recipients, diluting bene-

fits from improved latrines.

To assess possible violations of SUTVA and the partial

interference assumption, investigators can conduct Fisher’s

permutation test of no effect, which assumes every study

unit has the same outcome under all treatment assign-

ments; in a cluster-randomized study, if the null hypothesis

is true, there is no effect of intervention and there are no

spillovers between clusters.75–77 In some cases nothing can

be done to prevent spillovers between individuals or clus-

ters–a violation of the partial interference assumption.

Recent efforts have explored causal inference in this set-

ting, which is referred to as ‘general interference’. These

Figure 6. Schematic of spillovers within and between clusters. (a) The

partial interference assumption states that there are no spillovers

between clusters of individuals but allows for spillovers among individ-

uals within the same cluster. (b) When an intervention affects individu-

als in a cluster assigned to control, this is often referred to as

“contamination” in the cluster-randomized trial literature. This is an

example of a violation of the partial interference assumption depicted

in (a). (c) Spillovers may occur in multiple directions: individuals

assigned to treatment may influence potential outcomes of individuals

assigned to control and vice versa. When such multi-dimensional

effects occur, causal inference becomes complicated.
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studies have described statistical approaches and developed

software packages78 for analyzing network data in which

individuals are not considered independent.17,64,79–90

Causal epidemiological effects vs biological effects

Another consideration in estimating spillover effects is that

the causal estimates from an epidemiological study may

not be equivalent to the biological effects of intervention,

even in a randomized trial.91 Comparing the quantities

estimated in challenge studies vs epidemiological studies of

vaccines illustrates this difference. The biological effect of

a vaccine is the reduction in risk associated with exposure

to a specific volume of inoculum. Challenge studies esti-

mate this effect by comparing risk among individuals ran-

domly assigned to receive a known quantity of inoculum

or a placebo.91 On the other hand, epidemiological studies

cannot control the level of exposure to pathogens targeted

by vaccines;6 as a result, they produce estimates that are a

function of the level of population mixing and frequency

of exposure to illness, both of which are typically un-

known. Because most trials do not condition on the level

of exposure to infection, their causal estimates will differ

from the biological effect for interventions that produce

spillovers. In addition, spillover and total effects estimated

in trials with differing levels of baseline transmission are

not directly comparable.91 These principles may apply to

studies of interventions other than vaccines, even if analo-

gous biological effects cannot be estimated through chal-

lenge studies. For example, in a study led by German et al.

of a peer network intervention to reduce depression,41

peers of study participants were recruited to measure spill-

overs, but the level of social contact between peers was not

controlled by the investigator; estimates of spillover effects

were a function of the extent and type of social contact be-

tween peers, which may vary across populations.

Importance of theory

Spillover estimates will be most meaningful when the the-

ory about how the intervention diffuses through a popula-

tion informs the parameter choice and study design. For

example, to measure spillovers of an intervention that aims

to reduce HIV transmission, social network spillovers are

likely to provide information that is more useful for public

health intervention than distance-based spillovers since

transmission occurs through sexual contact. For spillovers

of behaviour change interventions, network92 and diffu-

sion theory93,94 may inform how intervention effects dif-

fuse over geographical areas or through social networks

and whether spillovers occur evenly across a population or

more strongly within subgroups. Interventions that diffuse

through communication between individuals over great

distances may cause spillovers over large geographical

areas, even if no contact is made in person. If so, measuring

spillovers through social networks is more appropriate

than measuring spillovers through physical proximity since

the latter may fail to capture the full spillover effect.

The strength of theory to support spillovers may inform

design and analysis choices when estimating spillovers.

When the causal mechanism for spillovers is not strongly

grounded in theory, we encourage investigators to use a de-

sign that can effectively minimize confounding (e.g. two-

stage randomization in Figure 1). However, for certain

interventions such as vaccines, the biological mechanism

for reducing pathogen transmission is often sufficiently

clear for observational studies to provide strong inference

about vaccine spillovers.9 In some cases, even if theory to

support spillovers is strong, statistical models are required

to make inferences about spillovers; this may occur if there

is limited variation in treatment status within levels of con-

founders. Statistical models can yield biased estimates if

they are mis-specified or if they extrapolate beyond the

observed data, so model-based estimates should always be

considered carefully in light of their potential assumptions

and limitations.

Individual- vs group-level measurements

Spillovers can be estimated in studies that measure out-

comes either in individuals or in groups. Two-stage

randomized studies and other cluster-randomized studies

produce individual-outcome level data. Studies have com-

monly attempted to measure spillover effects by assessing

how rates of illness among untreated individuals change

with the proportion of individuals treated in different areas,

using group-level data from trials or observational stud-

ies.95–102 Studies with individual-level outcome measure-

ments typically have the strongest inference because they

are better able to control for both individual-level and

group-level confounders, whereas group-level studies can

only control for the latter. Despite these drawbacks, group-

level measurements can be useful for hypothesis generation

when individual-level measurements are not available.

Measuring spillovers within geographic areas

Certain types of spillovers, such as spillovers conditional on

treatment density and distance-based spillovers, measure

intervention coverage and outcomes within specific geo-

graphical areas (e.g. neighbourhoods). Spillover estimates

are likely to be very sensitive to the way areas are

defined.103 The size or shape of the area may determine

whether spillovers are detected. Pre-specification of area

definition before looking at outcomes prevents investigators
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from selectively using a definition that provides the most fa-

vourable result. Ideally, area definition is based on the

hypothesized strength and scale of spillovers. For example,

when spillover effects are expected to be weak, measure-

ment is best within small areas where spillovers are most

likely to be detected. Expected transmission dynamics may

also inform area definition: a study of the cholera vaccine

measured spillovers associated with immunization coverage

near a shared water source, where cholera transmission was

hypothesized to be the strongest.97

Power calculations for spillovers

Typically, spillover effects are smaller than total or overall

effects of interventions, so larger sample sizes are needed in

order to detect them. We recommend that investigators

conduct power calculations in the study design phase, to

assess whether statistical power will be sufficient to detect

spillovers. Several studies have provided sample size for-

mulas to estimate spillovers using randomized designs and

variants of them.9,16 For non-standard study designs, simu-

lations can be used to estimate statistical power.78

Pre-specifying spillovers

We encourage investigators who plan to measure spillovers

to pre-specify the specific spillover parameter(s), the scale

at which spillovers are expected, and the hypothesized

mechanism(s) of spillover be estimated in a study protocol.

Pre-specification reduces the chance that the spillover par-

ameters selected are those that detect positive spillovers,

whether intentionally or not.105 It also reduces the chance

of publication bias.106,107 We also encourage investigators

to use the terms ‘spillovers’ or ‘indirect effects’ to refer to

spillovers in protocols and manuscripts, because these are

the most commonly used terms in the literature, and they

provide a direct link to the theoretical literature on this

topic.

Summary

We have defined different types of spillover effects relevant

to a wide range of interventions using standardized nota-

tion to encourage estimation and reporting of spillovers by

a broad range of investigators. We have also provided a

general introduction to assumptions required to make

causal inferences about spillover effects. Rigorous

definition and study of spillover effects will improve the

accuracy of estimates of the population-level impact and

cost-effectiveness of interventions that have benefits be-

yond direct recipients.
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Supplementary data are available at IJE online.

Conflict of interest: None declared.

References

1. Fine PE. Herd immunity: history, theory, practice. Epidemiol

Rev 1993;15:265–302.

2. John TJ, Samuel R. Herd immunity and herd effect: new in-

sights and definitions. Eur J Epidemiol 2000;16:601–06.

3. Miguel E, Kremer M. Worms: identifying impacts on education

and health in the presence of treatment externalities.

Econometrica 2004;72:159–217.

4. Banerjee A, Chandrasekhar AG, Duflo E, Jackson MO. The dif-

fusion of microfinance. Science 2013;341:1236498.

5. Halloran ME, Struchiner CJ. Study designs for dependent hap-

penings. Epidemiology 1991;2:331–38.

6. Halloran ME, Struchiner CJ. Causal inference in infectious dis-

eases. Epidemiology 1995;6:142–51.

7. Longini IM, Sagatelian K, Rida WN, Halloran ME. Optimal

vaccine trial design when estimating vaccine efficacy for suscep-

tibility and infectiousness from multiple populations. Stat Med

1998;17:1121–36.

8. Hudgens MG, Halloran ME. Toward causal inference with

interference. J Am Stat Assoc 2008;103:832–42.

9. Halloran E, Longini IM Jr, Struchiner CJ. Design and Analysis

of Vaccine Studies. New York, NY: Springer, 2010.

10. VanderWeele TJ, Tchetgen Tchetgen EJ. Effect partitioning

under interference in two-stage randomized vaccine trials. Stat

Probab Lett 2011;81:861–69.

11. Clemens J, Shin S, Ali M. New approaches to the assessment of

vaccine herd protection in clinical trials. Lancet Infect Dis

2011;11:482–87.

12. VanderWeele T, Tchetgen Tchetgen E, Halloran M.

Components of the indirect effect in vaccine trials: identifica-

tion of contagion and infectiousness effects. Epidemiology

2012;23:751–61.

13. Tchetgen EJT, VanderWeele TJ. On causal inference in the

presence of interference. Stat Methods Med Res 2012;21:

55–75.

14. Halloran ME. The minicommunity design to assess indirect ef-

fects of vaccination. Epidemiol Methods 2012;1:83–105.

15. Angelucci M, Maro VD. Program Evaluation and Spillover

Effects. J Dev Effectiveness 2016;8(1).

16. Baird S, Bohren A, McIntosh C, Ozler B. Designing Experiments

to Measure Spillover Effects. PIER Working Paper No. 14–006.

2014. http://ssrn.com/abstract¼2402749 or http://dx.doi.org/10.

2139/ssrn.2402749 (9 June 2017, date last accessed).

17. Bowers J, Fredrickson MM, Panagopoulos C. Reasoning about

interference between units: a general framework. Polit Anal

2013;21(1):97–124.

18. Sinclair B, McConnell M, Green DP. Detecting spillover effects:

Design and analysis of multilevel experiments. Am J Polit Sci

2012;56:1055–69.

19. Benjamin-Chung J, Abedin J, Berger D et al. Spillover effects on

health outcomes in low- and middle-income countries: a

systematic review. Int J Epidemiol 2017;46:1251–76.

344 International Journal of Epidemiology, 2018, Vol. 47, No. 1

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx201#supplementary-data
http://ssrn.com/abstract=2402749
http://ssrn.com/abstract=2402749
http://dx.doi.org/10.2139/ssrn.2402749
http://dx.doi.org/10.2139/ssrn.2402749


20. Anderson R, Garnett G. Low-efficacy HIV vaccines: potential

for community-based intervention programmemes. Lancet

1996;348:1010–13.

21. Little RJ, Rubin DB. Causal effects in clinical and epidemiolo-

gical studies via potential outcomes: concepts and analytical

approaches. Annu Rev Public Health 2000;21:121–45.

22. Rubin D. Comment: Neyman (1923) and causal inference in

experiments and observational studies. Stat Sci 1990;5:472–80.

23. Cox DR. Planning of Experiments. Oxford, UK: Wiley, 1958.

24. Sobel ME. What do randomized studies of housing mobility

demonstrate? J Am Stat Assoc. 2006;101:1398–407.

25. Campbell MJ, Donner A, Klar N. Developments in cluster

randomized trials and statistics in medicine. Stat Med 2007;26:

2–19.

26. Hayes RJ, Moulton LH. Cluster Randomised Trials. Abingdon,

UK: Taylor & Francis, 2009.

27. Donner A, Klar N. Design and Analysis of Cluster Randomization

Trials in Health Research. Hoboken, NJ: Wiley, 2010.

28. Chong A, Gonzalez-Navarro M, Karlan D, Valdivia M.

Effectiveness and Spillovers of Online Sex Education: Evidence

from a Randomized Evaluation in Colombian Public Schools.

Cambridge, MA: National Bureau of Economic Research, 2013.

29. Robins JM, Greenland S. Identifiability and exchangeability for

direct and indirect effects. Epidemiology 1992;3:143–55.

30. Avitabile C. Spillover Effects in Healthcare Programmes:

Evidence on Social Norms and Information Sharing.

Washington, DC: Inter-American Development Bank, 2012.

31. Buttenheim A, Alderman H, Friedman J. Impact evaluation of

school feeding programmes in Lao People’s Democratic

Republic. J Dev Eff 2011;3:520–42.

32. Contreras D, Maitra P. Health Spillover Effects of a Conditional

Cash Transfer Programme. 2012. http://www.buseco.monash.

edu.au/eco/research/papers/2013/4413healthcontrerasmaitra.pdf

(9 June 2017, date last accessed).

33. Fitzsimons E, Malde B, Mesnard A, Vera-Hernández M.

Household Responses to Information on Child Nutrition:

Experimental Evidence From Malawi. 2012. http://papers.ssrn.

com/sol3/papers.cfm?abstract_id¼2034133 (9 June 2017, date

last accessed).

34. Handa S, Huerta M-C, Perez R, Straffon B. Poverty, Inequality,

and Spillover in Mexico’s Education, Health, and Nutrition

Programme. 2001. http://agris.fao.org/agris-search/search.do?

recordID¼US2012205787 (9 June 2017, date last accessed).

35. House JI, Ayele B, Porco TC et al. Assessment of herd protec-

tion against trachoma due to repeated mass antibiotic distribu-

tions: a cluster-randomised trial. Lancet 2009;373:1111–18.

36. Kazianga H, de Walque D, Alderman H. School feeding

Programs and the nutrition of siblings: evidence from a

randomized trial in rural Burkina Faso. Oklahoma State

University, Department of Economics and Legal Studies in

Business, 2009.

37. Ribas RP, Soares FV, Teixeira CG, Silva E, Hirata GI.

Externality and Behavioural Change Effects of a Non-

Randomised CCT Programmeme: Heterogeneous Impact on

the Demand for Health and Education. Brasilia: International

Policy Centre for Inclusive Growth, 2011.

38. Banerjee AV, Duflo E, Glennerster R, Kothari D. Improving im-

munisation coverage in rural India: clustered randomised

controlled evaluation of immunisation campaigns with and

without incentives. BMJ 2010;340:c2220.

39. Hawley WA, Phillips-Howard PA, Kuile FOT et al.

Community-wide effects of permethrin-treated bed nets on

child mortality and malaria morbidity in Western Kenya. Am J

Trop Med Hyg 2003;68(Suppl 4):121–27.

40. Kremer M, Miguel E. The illusion of sustainability. Q J Econ

2007;122:1007–65.

41. German D, Sutcliffe CG, Sirirojn B et al. Unanticipated effect of

a randomized peer network intervention on depressive symp-

toms among young methamphetamine users in Thailand.

J Community Psychol 2012;40:799–813.

42. Shakya HB, Christakis NA, Fowler JH. Social network pre-

dictors of latrine ownership. Am J Public Health 2014;104:5.

43. Kim DA, Hwong AR, Stafford D et al. Social network targeting

to maximise population behaviour change: a cluster rando-

mised controlled trial. Lancet 2015;386:145–53.

44. Vanderweele T, An W. Social networks and causal inference.

Handbook of Causal Analysis for Social Research New York,

NY: Springer, 2013.

45. Christakis NA, Fowler JH. The spread of obesity in a large so-

cial network over 32 years. N Engl J Med 2007;357:370–79.

46. Christakis NA, Fowler JH. The collective dynamics of smoking

in a large social network. N Engl J Med 2008;358:2249–58.

47. Snijders TAB. The statistical evaluation of social network dy-

namics. Sociol Methodol 2001;31:361–95.

48. Snijders TA. Models for longitudinal network data. In: Carrington

PJ, Scott J, Wasserman S (eds). Models and Methods in Social

Network Analysis. New York: Cambridge, 2005, pp.215–47.

49. Cohen-Cole E, Fletcher JM. Detecting implausible social net-

work effects in acne, height, and headaches: longitudinal ana-

lysis. BMJ 2008;337:a2533.

50. Lyons R. The spread of evidence-poor medicine via flawed

social-network analysis. Stat Polit Policy. 2011;2:1.

51. Noel H, Nyhan B. The ‘unfriending’ problem: The conse-

quences of homophily in friendship retention for causal esti-

mates of social influence. Soc Netw 2011;33:211–18.

52. VanderWeele TJ. Sensitivity analysis for contagion effects in so-

cial networks. Sociol Methods Res. 2011;40:240–55.

53. VanderWeele TJ, Ogburn EL, Tchetgen Tchetgen JE. Why and

when ‘flawed’ social network analyses still yield valid tests of

no contagion. Stat Polit Policy 2012;3:1–11.

54. Sacerdote B. Peer effects with random assignment: results for

Dartmouth Roommates. Q J Econ 2001;116:681–704.

55. Longini IM, Koopman JS, Haber M, Cotsonis GA. Statistical

inference for infectious diseases risk-specific household and

community transmission parameters. Am J Epidemiol 1988;

128:845–59.

56. Halloran ME, Haber M, Longini IM Jr, Struchiner CJ. Direct

and indirect effects in vaccine efficacy and effectiveness. Am J

Epidemiol. 1991;133(4):323–331.

57. Halloran ME, Struchiner CJ, Longini IM. Study designs for

evaluating different efficacy and effectiveness aspects of vac-

cines. Am J Epidemiol 1997;146:789–803.

58. Hudgens MG, Halloran ME. Causal vaccine effects on binary

postinfection outcomes. J Am Stat Assoc 2006;101:51–64.

59. VanderWeele TJ, Tchetgen Tchetgen EJ. Bounding the infectious-

ness effect in vaccine trials. Epidemiology 2011;22:686–93.

International Journal of Epidemiology, 2018, Vol. 47, No. 1 345

http://www.buseco.monash.edu.au/eco/research/papers/2013/4413healthcontrerasmaitra.pdf
http://www.buseco.monash.edu.au/eco/research/papers/2013/4413healthcontrerasmaitra.pdf
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034133
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034133
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2034133
http://agris.fao.org/agris-search/search.do?recordID=US2012205787
http://agris.fao.org/agris-search/search.do?recordID=US2012205787
http://agris.fao.org/agris-search/search.do?recordID=US2012205787


60. Halloran ME, Hudgens MG. Causal inference for vaccine ef-

fects on infectiousness. Int J Biostat 2012;8:2.
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107. Dal-Ré R, Ioannidis JP, Bracken MB et al. Making prospective

registration of observational research a reality. Sci Transl Med

2014;6:224.

International Journal of Epidemiology, 2018, Vol. 47, No. 1 347


