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Abstract.—Bayesian inference plays an important role in phylogenetics, evolutionary biology, and in many other branches
of science. It provides a principled framework for dealing with uncertainty and quantifying how it changes in the light
of new evidence. For many complex models and inference problems, however, only approximate quantitative answers are
obtainable. Approximate Bayesian computation (ABC) refers to a family of algorithms for approximate inference that makes
a minimal set of assumptions by only requiring that sampling from a model is possible. We explain here the fundamentals
of ABC, review the classical algorithms, and highlight recent developments. [ABC; approximate Bayesian computation;
Bayesian inference; likelihood-free inference; phylogenetics; simulator-based models; stochastic simulation models; tree-
based models.]

INTRODUCTION

Many recent models in biology describe nature to
a high degree of accuracy but are not amenable to
analytical treatment. The models can, however, be
simulated on computers and we can thereby replicate
many complex phenomena such as the evolution of
genomes (Marttinen et al. 2015), the dynamics of gene
regulation (Toni et al. 2009), or the demographic spread
of a species (Currat and Excoffier 2004; Fagundes
et al. 2007; Itan et al. 2009; Excoffier et al. 2013). Such
simulator-based models are often stochastic and have
multiple parameters. While it is usually relatively easy
to generate data from the models for any configuration
of the parameters, the real interest is often focused
on the inverse problem: the identification of parameter
configurations that would plausibly lead to data that
are sufficiently similar to the observed data. Solving
such a nonlinear inverse problem is generally a very
difficult task.

Bayesian inference provides a principled framework
for solving the aforementioned inverse problem. A prior
probability distribution on the model parameters is
used to describe the initial beliefs about what values
of the parameters could be plausible. The prior beliefs
are updated in light of the observed data by means
of the likelihood function. Computing the likelihood
function, however, is mostly impossible for simulator-
based models due to the unobservable (latent) random
quantities that are present in the model. In some
cases, Monte Carlo methods offer a way to handle the
latent variables such that an approximate likelihood is
obtained, but these methods have their limitations, and
for large and complex models, they are “too inefficient
by far” (Green et al. 2015, p. 848). To deal with models
where likelihood calculations fail, other techniques
have been developed that are collectively referred to

as likelihood-free inference or approximate Bayesian
computation (ABC).

In a nutshell, ABC algorithms sample from the
posterior distribution of the parameters by finding
values that yield simulated data sufficiently resembling
the observed data. ABC is widely used in systematics.
For instance, Hickerson et al. (2006) used ABC to
test for simultaneous divergence between members of
species pairs. Fan and Kubatko (2011) estimated the
topology and speciation times of a species tree under
the coalescent model using ABC. Their method does
not require sequence data, but only gene tree topology
information, and was found to perform favorably in
terms of both accuracy and computation time. Slater
et al. (2012) used ABC to simultaneously infer rates
of diversification and trait evolution from incompletely
sampled phylogenies and trait data. They found their
ABC approach to be comparable to likelihood-based
methods that use complete data sets. In addition, it
can handle extremely sparsely sampled phylogenies and
trees containing very large numbers of species. Ratmann
et al. (2012) used ABC to fit two different mechanistic
phylodynamic models for interpandemic influenza
A(H3N2) using both surveillance data and sequence
data simultaneously. The simultaneous consideration
of these two types of data allowed them to drastically
constrain the parameter space and expose model
deficiencies using the ABC framework. Very recently,
Baudet et al. (2015) used ABC to reconstruct the
coevolutionary history of host–parasite systems. The
ABC-based method was shown to handle large trees
beyond the scope of other existing methods.

While widely applicable, ABC comes with its own
set of difficulties, that are of both computational and
statistical nature. The two main intrinsic difficulties are
how to efficiently find plausible parameter values and
how to define what is similar to the observed data and

e66



2017 LINTUSAARI ET AL.—FUNDAMENTALS AND RECENT DEVELOPMENTS IN ABC e67

FIGURE 1. Illustration of the stochastic simulator M run multiple times with a fixed value of �. The black dot y0 is the observed data and the
arrows point to different simulated data sets. Two outcomes, marked in green, are less than � away from y0. The proportion of such outcomes
provides an approximation of the likelihood of � for the observed data y0.

what is not. All ABC algorithms have to deal with these
two issues in some manner, and the different algorithms
discussed here essentially differ in how they tackle the
two problems.

The remainder of this article is structured as follows.
We next discuss important properties of simulator-based
models and point out difficulties when performing
statistical inference with them. The discussion leads to
the basic rejection ABC algorithm which is presented in
the subsequent section. This is followed by a presentation
of popular ABC algorithms that have been developed to
increase the computational efficiency. We then consider
several recent advances that aim to improve ABC
both computationally and statistically. The final section
provides conclusions and a discussion about likelihood-
free inference methods related to ABC.

SIMULATOR-BASED MODELS

Definition
Simulator-based models are functions M that map

the model parameters � and some random variables V
to data y. The functions M are generally implemented
as computer programs where the parameter values are
provided as input and where the random variables are
drawn sequentially by making calls to a random number
generator. The parameters � govern the properties of
interest of the generated data, whereas the random
variables V represent the stochastic variation inherent
to the simulated process.

The mapping M may be as complex as needed,
and this generality of simulator-based models allows
researchers to implement hypotheses about how the
data were generated without having to make excessive
compromises motivated by mathematical simplicity, or

other reasons not related to the scientific question being
investigated.

Due to the presence of the random variables V, the
outputs of the simulator fluctuate randomly even when
using exactly the same values of the model parameters
�. This means that we can consider the simulator to
define a random variable Y� whose distribution is
implicitly determined by the distribution of V and the
mapping M acting on V for a given �. For this reason,
simulator-based models are sometimes called implicit
models (Diggle and Gratton 1984). Using the properties
of transformation of random variables, it is possible to
formally write down the distribution of Y�. For instance,
for a fixed value of �, the probability that Y� takes values
in an � neighborhood B�(y0) around the observed data
y0 is equal to the probability to draw values of V that are
mapped to that neighborhood (Fig. 1),

Pr
(
Y�∈B�(y0)

)=Pr
(
M(�,V)∈B�(y0)

)
. (1)

Computing the probability analytically is impossible for
complex models. But it is possible to test empirically
whether a particular outcome y� of the simulation ends
up in the neighborhood of y0 or not (Fig. 1). We will see
that this property of simulator-based models plays a key
role in performing inference about their parameters.

Example
As an example of a simulator-based model, we here

present the simple yet analytically intractable model by
Tanaka et al. (2006) for the spread of tuberculosis. We
will use the model throughout the article for illustrating
different concepts and methods.

The model begins with one infectious host and
stops when a fixed number of infectious hosts m is
exceeded (Fig. 2). In the simulation, it is assumed
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FIGURE 2. An example of a transmission process simulated under a parameter configuration � without subsampling of the simulated infectious
population. Arrows indicate the sequence of random events taking place in the simulation and different colors represent different haplotypes
of the pathogen. The simulation starts with one infectious host who transmits the pathogen to another host. After one more transmission event,
the pathogen undergoes a mutation within one of the three hosts infected so far (event three). As the sixth event in the simulation, one of the
haplotypes is removed from the population due to the recovery/death of the corresponding host. The simulation stops when the infectious
population size exceeds m=5 and the simulator outputs the generated y�. The nodes not connected by arrows show all the other possible
configurations of the infectious population, but which were not visited in this example run of the simulator. The bottom row lists the possible
outputs of the simulator (cluster size vectors) under their corresponding population configuration.

that each infectious host randomly infects other
individuals from an unlimited supply of hosts with
the rate �, each time transmitting a specific strain
of the communicable pathogen, characterized by its
haplotype. It is thus effectively assumed that a strong
transmission bottleneck occurs, such that only a single
strain is passed forward in each transmission event,
despite the eventual genetic variation persisting in
the within-host pathogen population. Further, each
infected host is considered to be infectious immediately.
The model states that a host stops being infectious,
that is, recovers or dies, randomly with the rate
�, and the pathogen of the host mutates randomly
within the host at the rate �, thereby generating a
novel haplotype under a single-locus infinite alleles
model. The parameters of the model are thus �=
(�,�,�). The output of the simulator is a vector of
cluster sizes in the simulated population of infected
hosts, where clusters are the groups of hosts infected
by the same haplotype of the pathogen. After the

simulation, a random sample of size n<m is taken
from the population yielding the vector of cluster
sizes y� present in the sample. For example, y�=
(6,3,2,2,1,1,1,1,1,1,1) corresponds to a sample of size
20 containing one cluster with six infected hosts, one
cluster with three hosts, two clusters with two hosts
each, as well as seven singleton clusters. Note that
this model of pathogen spread is atypical in the sense
that the observation times of the infections are all
left implicit in the sampling process, in contrast to
the standard likelihood formulation used for infectious
disease epidemiological models (Anderson and May
1992).

Difficulties in Performing Statistical Inference
Values of the parameters � that are plausible in

the light of the observations y0 can be determined
via statistical inference either by finding values
that maximize the probability in Equation (1) for
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FIGURE 3. The transmission process in Figure 2 can also be described with transmission trees (Stadler 2011) paired with mutations. The
trees are characterized by their structure, the length of their edges, and the mutations on the edges (marked with small circles that change the
color of the edge, where colors represent the different haplotypes of the pathogen). The figure shows three examples of different trees that yield
the same observed data at the observation time tobs. Calculating the likelihood of a parameter value requires summing over all possible trees
yielding the observed data, which is computationally impossible when the sample size is large.

some sufficiently small � or by determining their
posterior distribution. In more detail, in maximum
likelihood estimation, the parameters are determined by
maximizing the likelihood function L(�),

L(�)= lim
�→0

c�Pr
(
Y�∈B�(y0)

)
, (2)

where c� is a proportionality factor that may depend
on �, which is needed when Pr

(
Y�∈B�(y0)

)
shrinks to

zero as � approaches zero. If the output of the simulator
can only take a countable number of values, Y� is called
a discrete random variable and the definition of the
likelihood simplifies to L(�)=Pr

(
Y�=y0

)
, which equals

the probability of simulating data equal to the observed
data. In Bayesian inference, the essential characterization
of the uncertainty about the model parameters is defined
by their conditional distribution given the data, that is,

the posterior distribution p(�|y0),

p(�|y0)∝L(�)p(�), (3)

where p(�) is the prior distribution of the parameters.
For complex models neither the probability in

Equation (1) nor the likelihood function L(�) are available
analytically in closed form as a function of �, which
is the reason why statistical inference is difficult for
simulator-based models.

For the model of tuberculosis transmission presented
in the previous section, computing the likelihood
function becomes intractable if the infectious population
size m is large, or if the death rate �>0 (Stadler 2011). This
is because for large m, the state space of the process, that
is, the number of different cluster vectors, grows very
quickly. This makes exact numerical calculation of the
likelihood infeasible because in essence, every possible
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Algorithm 1 Rejection sampling algorithm for simulator-based
models. The algorithm produces N independent samples �(i) from the
posterior distribution p(�|y0).

1. for i=1 to N do
2. repeat
3. Generate � from the prior p(·)
4. Generate y� from the simulator
5. until y�=y0
6. �(i)←�
7. end for

path to the outcome should be accounted for (Fig. 2).
Moreover, if the death rate � is nonzero, the process
is allowed to return to previous states which further
complicates the computations. Finally, the assumption
that not all infectious hosts are observed contributes
additionally to the intractability of the likelihood. Stadler
(2011) approached the problem using transmission
trees (Fig. 3). The likelihood function stays, however,
intractable because of the vast number of different trees
that all yield the same observed data and thus need
to be considered when evaluating the likelihood of a
parameter value.

Inference via Rejection Sampling
We present here an algorithm for exact posterior

inference that is applicable when Y� can only take
countably many values, that is, if Y� is a discrete random
variable. As shown above, in this case L(�)=Pr(Y�=
y0). The presented algorithm forms the basis of the
algorithms for ABC discussed in the later sections.

In general, samples from the prior distribution p(�)
of the parameters can be converted into samples from
the posterior p(�|y0) by retaining each sampled value
with a probability proportional to L(�). This can be done
sequentially by first sampling a parameter value from
the prior, �∼p(�) and then accepting the obtained value
with the probability L(�)/(max�L(�)). This procedure
corresponds to rejection sampling (see e.g., Robert and
Casella 2004, Chapter 2). Now with the likelihood L(�)
being equal to the probability that Y�=y0, the latter
step can be implemented for simulator-based models
even when L(�) is not available analytically: we run the
simulator and check whether the generated data equal
the observed data. This gives the rejection algorithm for
simulator-based models summarized as Algorithm 1.
Rubin (1984) used it to provide intuition about how
Bayesian inference about parameters works in general.

To obtain another interpretation of Algorithm 1,
recall that for discrete random variables the posterior
distribution p(�|y0) is, by definition, equal to the
joint distribution of � and Y�, normalized by the
probability that Y�=y0. That is, the posterior is obtained
by conditioning on the event Y�=y0. We can thus
understand the test for equality of y� and y0 on line 5 of
the algorithm as an implementation of the conditioning
operation.
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FIGURE 4. Exact inference for a simulator-based model of
tuberculosis transmission. A very simple setting was chosen where the
exact posterior can be numerically computed (black line), and where
Algorithm 1 is applicable (blue bars).

To illustrate Algorithm 1, we generated a synthetic
data set y0 from the tuberculosis transmission model
by running the simulator with the parameter values
�=0.2, �=0, �=0.198, and setting the population size to
m=20. We further assumed that the whole population
is observed, which yielded the observed data y0=
(6,3,2,2,1,1,1,1,1,1,1). The assumptions about the size
of the population, and that the whole population was
observed, are unrealistic but they enable a comparison
to the exact posterior distribution, which in this setting
can be numerically computed using Theorem 1 of Stadler
(2011). In this case, the histogram of samples obtained
with Algorithm 1 matches the posterior distribution very
accurately (Fig. 4). To obtain this result, we assumed that
both of the parameters � and � were known and assigned
a uniform prior distribution in the interval (0.005,2) for
the sole unknown parameter, the transmission rate �. A
total of 20 million data sets y� were simulated, out of
which 40,000 matched y0 (acceptance rate of 0.2%).

FUNDAMENTALS OF APPROXIMATE BAYESIAN COMPUTATION

The Rejection ABC Algorithm
While Algorithm 1 produces independent samples

from the posterior, the probability that the simulated
data equal the observed data is often negligibly small,
which renders the algorithm impractical as virtually
no simulated realizations of � will be accepted. The
same problem holds true if the generated data can
take uncountably many values, that is, when Y� is a
continuous random variable.

To make inference feasible, the acceptance criterion
y�=y0 in Algorithm 1 can be relaxed to

d(y�,y0)≤�, (4)
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Algorithm 2 Rejection ABC algorithm producing N independent
samples from the approximate posterior distribution pd,�(�|y0)

1. for i=1 to N do
2. repeat
3. Generate � from the prior p(·)
4. Generate y� from the simulator
5. until d(y�,y0)≤�

6. �(i)←�
7. end for

where �>0 and d(y�,y0)≥0 is a “distance” function
that measures the discrepancy between the two data
sets, as considered relevant for the inference. With
this modification, Algorithm 1 becomes the rejection
ABC algorithm summarized as Algorithm 2. The first
implementation of this algorithm appeared in the work
by Pritchard et al. (1999).

Algorithm 2 does not produce samples from the
posterior p(�|y0) in Equation (3) but samples from an
approximation pd,�(�|y0),

pd,�(�|y0)∝Pr
(
d(Y�,y0)≤�

)
p(�), (5)

which is the posterior distribution of � conditional
on the event d(Y�,y0)≤�. Equation (5) is obtained by
approximating the intractable likelihood function L(�)
in Equation (2) with Ld,�(�),

Ld,�(�)∝Pr
(
d(Y�,y0)≤�

)
. (6)

The approximation is two-fold. First, the distance
function d is generally not a metric in the mathematical
sense, namely d(y�,y0)=0 even if y� 
=y0. This may
happen, for example, when d is defined through
summary statistics that remove information from the
data (see below). Second, � is chosen large enough so
that enough samples will be accepted. Intuitively, the
likelihood of a parameter value is approximated by
the probability that running the simulator with said
parameter value produces data within � distance of y0
(Fig. 1).

The distance d is typically computed by first reducing
the data to suitable summary statistics t=T(y) and
then computing the distance dT between them, so that
d(y�,y0)=dT(t,t0), where dT is often the Euclidean or
some other metric for the summary statistics. When
combining different summary statistics, they are usually
re-scaled so that they contribute equally to the distance
(as, e.g., done by Pritchard et al. 1999).

In addition to the accuracy of the approximation
pd,�(�|y0), the distance d and the threshold � also
influence the computing time required to obtain
samples. For instance, if �=0 and the distance d is such
that d(y,y0)=0 if and only if y=y0, then Algorithm 2
becomes Algorithm 1 and pd,�(�|y0) becomes p(�|y0) but
the computing time to obtain samples from pd,�(�|y0)
would typically be impractically large. Hence, on a very
fundamental level, there is a trade-off between statistical
and computational efficiency in ABC (see e.g., Beaumont
et al. 2002, p. 2027).

We next illustrate Algorithm 2 and the mentioned
trade-off using the previous example about tuberculosis
transmission. Two distances d1 and d2 are considered,

d1(y�,y0)=|T1(y�)−T1(y0)|, d2(y�,y0)=|T2(y�)−T2(y0)|,
(7)

where T1 is the number of clusters contained in the data
divided by the sample size n and T2 is a genetic diversity
measure defined as T2(y)=1−∑i(ni/n)2, where ni is the
size of the i-th cluster. For y0= (6,3,2,2,1,1,1,1,1,1,1),
we have T1(y0)=11/20=0.55 and T2(y0)=0.85. For both
d1 and d2, the absolute difference between the summary
statistics is used as the metric dT .

For this example, using the summary statistic T1
instead of the full data does not lead to a visible
deterioration of the inferred posterior when �=0
(Fig. 5a). For summary statistic T2, however, there is
a clear difference as the posterior mode and mean are
shifted to larger values of � and the posterior variance
is larger too (Fig. 5b). In both cases, increasing �, that
is, accepting more parameters, leads to an approximate
posterior distribution that is less concentrated than the
true posterior.

Algorithm 2 with summary statistic T1 produces
results comparable to Algorithm 1 but from the
computational efficiency point of view the number of
simulations required to obtain the approximate posterior
differs between the two algorithms. It can be seen that
for a computational budget of 100,000 simulations, the
posterior obtained by Algorithm 1 differs substantially
from the exact posterior, while the posterior from
Algorithm 2 with T1 is still matching it well (Fig. 6a).
The relatively poor result with Algorithm 1 is due to
its low acceptance rate (here 0.2%). While the accepted
samples do follow the exact posterior p(�|y0), the
algorithm did not manage to produce enough accepted
realizations within the computational budget available,
which implies that the Monte Carlo error of the posterior
approximation remains nonnegligible.

Plotting the number of data sets simulated versus the
accuracy of the inferred posterior distribution allows
us to further study the trade-off between statistical
and computational efficiency between the different
algorithms (Fig. 6b). The accuracy is measured by the
Kullback–Leibler (KL) divergence (Kullback and Leibler
1951) between the exact and the inferred posterior.
Algorithm 2 with summary statistic T1 features the best
trade-off, whereas using summary statistic T2 performs
the worst. The curve of the latter one flattens out
after approximately 1 million simulations, showing the
approximation error introduced by using the summary
statistic T2. For Algorithm 1, nonzero values of the
KL divergence are due to the Monte Carlo error
only and it will approach the true posterior as the
number of simulations grows. When using summary
statistics, nonzero values of the KL divergence are
due to both the Monte Carlo error and the use of
the summary statistics. In this particular example, the



e72 SYSTEMATIC BIOLOGY VOL. 66

a) b)

FIGURE 5. Inference results for the transmission rate � of tuberculosis. The plots show the posterior distributions obtained with Algorithm 2
and 20 million simulated data sets (proposals). a) Cluster frequency as a summary statistic. b) Genetic diversity as a summary statistic.

a) b)

FIGURE 6. Comparison of the efficiency of Algorithms 1 and 2. Smaller KL divergence means more accurate inference of the posterior
distribution. Note that the stopping criterion of the algorithm has here been changed to be the total number of runs of the simulator instead of
the number of accepted samples. a) Results after 100,000 simulations. b) Accuracy versus computational cost.

error caused by the summary statistic T1 is, however,
negligible.

Choice of the Summary Statistics
If the distance d is computed by projecting the data

to summary statistics followed by their comparison
using a metric in the summary statistics space (e.g., the
Euclidean distance), the quality of the inference hinges
on the summary statistics chosen (Figs. 5 and 6).

For consistent performance of ABC algorithms,
the summary statistics should be sufficient for the
parameters, but this is often not the case. Additionally,
with the increase in the number of summary statistics
used, more simulations tend to be rejected so that an
increasing number of simulation runs is needed to obtain

a satisfactory number of accepted parameter values,
making the algorithm computationally extremely
inefficient. This is known as the curse of dimensionality
for ABC (see also the discussion in the review paper by
Beaumont 2010).

One of the main remedies to the above issue is
to efficiently choose informative summary statistics.
Importantly, the summary statistics that are informative
for the parameters in a neighborhood of the true
parameter value, and the summary statistics most
informative globally, are significantly different (Nunes
and Balding 2010). General intuition suggests that the
set of summary statistics that are locally sufficient would
be a subset of the globally sufficient ones. Therefore, a
good strategy seems to first find a locality containing
the true parameter with high enough probability and
then choose informative statistics depending on that
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a) b)

FIGURE 7. Comparison of the trade-off between Monte Carlo error and bias. Algorithm 1 is equivalent here to Algorithm 2 with �=0.
Smaller KL divergences mean more accurate inference of the posterior distribution. a) Results after 100,000 simulations. b) Accuracy versus
computational cost.

locality. However, this can be difficult in practice because
rather different parameter values can produce summary
statistics that are contained in the same locality.

In line with the above, Nunes and Balding (2010),
Fearnhead and Prangle (2012), and Aeschbacher et al.
(2012) first defined “locality” through a pilot ABC
run and then chose the statistics in that locality. Four
methods for choosing the statistics are generally used:
(i) a sequential scheme based on the principle of
approximate sufficiency (Joyce and Marjoram 2008);
(ii) selection of a subset of the summary statistics
maximizing prespecified criteria such as the Akaike
information criterion (used by Blum et al. 2013) or
the entropy of a distribution (used by Nunes and
Balding 2010); (iii) partial least square regression which
finds linear combinations of the original summary
statistics that are maximally decorrelated and at the same
time highly correlated with the parameters (Wegmann
et al. 2009); (iv) assuming a statistical model between
parameters and transformed statistics of simulated data,
summary statistics are chosen by minimizing a loss
function (Aeschbacher et al. 2012; Fearnhead and Prangle
2012). For comparison of the above methods in simulated
and practical examples, we refer readers to the work by
Blum and François (2010), Aeschbacher et al. (2012), and
Blum et al. (2013).

Choice of the Threshold
Having the distance function d specified, possibly

using summary statistics, the remaining factor in the
approximation of the posterior in Equation (5) is the
specification of the threshold �.

Larger values of � result in biased approximations
pd,�(�|y0) (see e.g., Fig. 5). The gain is a faster algorithm,
meaning a reduced Monte Carlo error as one is able
to produce more samples per unit of time. Therefore,
when specifying the threshold the goal is to find a

good balance between the bias and the Monte Carlo
error. We illustrate this using Algorithm 2 with the full
data without reduction to summary statistics [in other
words, T(y)=y]. In this case, Algorithm 2 with �=0 is
identical to Algorithm 1. Here the choice �=3 results in a
better posterior compared to �=0 when using a maximal
number of 100,000 simulations (Fig. 7a). This means that
the gain from reduced Monte Carlo error is greater than
the loss incurred by the bias. But this is no longer true
for �=5 where the bias dominates. Eventually, the exact
method will converge to the true posterior, whereas the
other two continue to suffer from the bias caused by
the larger threshold (Fig. 7b). However, with smaller
computational budgets (less than 2 million simulations
in our example), more accurate results are obtained with
the nonzero threshold �=3.

The choice of the threshold is typically made by
experimenting with a precomputed pool of simulation–
parameter pairs (y�,�). Rather than setting the threshold
value by hand, it is often determined by accepting
some small proportion of the simulations (e.g., 1%, see
Beaumont et al. 2002). The choice between different
options can be made more rigorous by using some of
the simulated data sets in the role of the observed data
and solving the inference problem for them using the
remaining data sets. As the data-generating parameters
are known for the simulated observations, different
criteria, such as the mean squared error (MSE) between
the mean of the approximation and the generating
parameters can be used to make the choice [see e.g.
Faisal et al. (2013) and the section on validation of
ABC]. This also allows one to assess the reliability of
the inference procedure. Prangle et al. (2014) discuss the
use of the coverage property (Wegmann et al. 2009) as
the criterion to choose the threshold value �. Intuitively,
the coverage property tests if the parameter values �∗
used to artificially generate a data set y∗0 are covered by
the credible intervals constructed from the ABC output
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for y∗0 at correct rates (i.e., �% credible intervals should
contain the true parameter in �% of the tests).

If one plans to increase the computational budget after
initial experiments, theoretical convergence results can
be used to adjust the threshold value. Barber et al. (2015)
provide convergence results for an optimal � sequence
with respect to the MSE of a posterior expectation
(e.g., the posterior mean). The theoretically optimal
sequence for the threshold � is achieved by making
it proportional to N−1/4 as N→∞, where N is the
number of accepted samples. If the constant in this
relation is estimated in a pilot run, one can compute
the new theoretically optimal threshold based on the
planned increase in the computational budget. Blum
(2010) derives corresponding results using an approach
based on conditional density estimation, finding that �

should optimally be proportional to N−1/(d+5)
s as Ns→

∞, where d is the dimension of the parameter space and
Ns the total number of simulations performed [see also
Fearnhead and Prangle (2012), Silk et al. (2013), and Biau
et al. (2015), for similar results].

BEYOND SIMPLE REJECTION SAMPLING

The basic rejection ABC algorithm is essentially a trial
and error scheme where the trial (proposal) values are
sampled from the prior. We now review three popular
algorithms that seek to improve upon the basic rejection
approach. The first two aim at constructing proposal
distributions that are closer to the posterior, whereas
the third is a correction method that aims at adjusting
samples obtained by ABC algorithms so that they are
closer to the posterior.

Markov Chain Monte Carlo ABC
The Markov chain Monte Carlo (MCMC) ABC

algorithm is based on the Metropolis–Hastings MCMC
algorithm that is often used in Bayesian statistics (Robert
and Casella 2004, Chapter 7). In order to leverage this
algorithm, we write pd,�(�|y0) in Equation (5) as the
marginal distribution of pd,�(�,y|y0),

pd,�(�,y|y0)∝p(�)p(y|�)1[d(y,y0)≤�], (8)

where p(y|�) denotes the probability density (mass)
function of Y�, and 1[d(y,y0)≤�] equals one if d(y,y0)≤
� and zero otherwise. Importantly, while p(y|�) is
generally unknown for simulator-based models, it is still
possible to use pd,�(�,y|y0) as the target distribution in
a Metropolis–Hastings MCMC algorithm by choosing
the proposal distribution in the right way. The obtained
(marginal) samples of � then follow the approximate
posterior pd,�(�|y0).

Assuming that the Markov chain is at iteration i in
state x(i)= (�(i),y(i)) where d(y(i),y0)≤�, the Metropolis–
Hastings algorithm involves sampling candidate states
x= (�,y) from a proposal distribution q(x|x(i)) and

accepting the candidates with the probability A(x|x(i)),

A(x|x(i))=min

(
1,

pd,�(x|y0)q(x(i)|x)
pd,�(x(i)|y0)q(x|x(i))

)
. (9)

Choosing the proposal distribution such that the move
from x(i)= (�(i),y(i)) to x= (�,y) does not depend on the
value of y(i), and that y is sampled from the simulator-
based model with parameter value � irrespective of �(i),
we have

q(x|x(i))=q(�|�(i))p(y|�), (10)

where q(�|�(i)) is a suitable proposal distribution for �.
As a result of this choice, the unknown quantities in
Equation (9) cancel out,

A(x|x(i)) (11)

=min

(
1,

p(�)
p(�(i))

p(y|�)
p(y(i)|�(i))

1[d(y,y0)≤�]
1[d(y(i),y0)≤�]

q(�(i)|�)
q(�|�(i))

p(y(i)|�(i))
p(y|�)

)

=min

(
1,

p(�)
p(�(i))

q(�(i)|�)
q(�|�(i))

1[d(y,y0)≤�]
1[d(y(i),y0)≤�]

)

=1[d(y,y0)≤�]min

(
1,

p(�)
p(�(i))

q(�(i)|�)
q(�|�(i))

)
.

This means that the acceptance probability is only
probabilistic in � since a proposal (�,y) is immediately
rejected if the condition d(y,y0)≤� is not met. While the
Markov chain operates in the (�,y) space, the choice of the
proposal distribution decouples the acceptance criterion
into an ordinary Metropolis–Hastings criterion for � and
the previously seen ABC rejection criterion for y. The
resulting algorithm, shown in full in the Appendix, is
known as MCMC ABC algorithm and was introduced
by Marjoram et al. (2003).

An advantage of the MCMC ABC algorithm is that
the parameter values do not need to be drawn from the
prior, which most often hampers the rejection sampler by
incurring a high rejection rate of the proposals. As the
Markov chain converges, the proposed parameter values
follow the posterior with some added noise. A potential
disadvantage, however, is the continuing presence of
the rejection condition d(y,y0)≤� which dominates the
acceptance rate of the algorithm. Parameters in the tails
of the posteriors have, by definition, a small probability
to generate data y� satisfying the rejection condition,
which can lead to a “sticky” Markov chain where the
state tends to remain constant for many iterations.

Sequential Monte Carlo ABC
The sequential Monte Carlo (SMC) ABC algorithm can

be considered as an adaptation of importance sampling
which is a popular technique in statistics (see e.g., Robert
and Casella 2004, Chapter 3). If one uses a general
distribution �(�) in place of the prior p(�), Algorithm 2
produces samples that follow a distribution proportional
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FIGURE 8. Illustration of sequential Monte Carlo ABC using the tuberculosis example. The first proposal distribution is the prior and the
threshold value used is �1. The proposal distribution in iteration t is based on the sample of size N from the previous iteration. The threshold
value �t is decreased at every iteration as the proposal distributions become similar to the true posterior. The figure shows parameters drawn
from the proposal distribution of the third iteration (t=3). The red proposal is rejected because the corresponding simulation outcome is too far
from the observed data y0. At iteration t=2, however, it would have been accepted. After iteration t, the accepted parameter values follow the
approximate posterior pd,�t (�|y0). As long as the threshold values �t decrease, the approximation becomes more accurate at each iteration.

to �(�)Pr(d(Y�,y0)≤�). However, by weighting the
accepted parameters �(i) with w(i),

w(i)∝ p(�(i))
�(�(i))

, (12)

the resulting weighted samples follow pd,�(�|y0). This
kind of trick is used in importance sampling and can
be employed in ABC to iteratively morph the prior into
a posterior.

The basic idea is to use a sequence of shrinking
thresholds �t and to define the proposal distribution �t

at iteration t based on the weighted samples �
(i)
t−1 from

the previous iteration (Fig. 8). This is typically done by
defining a mixture distribution,

�t(�)= 1
N

N∑
i=1

qt(�|�(i)
t−1)w(i)

t−1, (13)

where qt(�|�(i)
t−1) is often a Gaussian distribution with

mean �
(i)
t−1 and a covariance matrix estimated from the

samples. Sampling from �t can be done by choosing �
(i)
t−1
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with probability w(i)
t−1 and then perturbing the chosen

parameter according to qt. The proposed sample is then
accepted or rejected as in Algorithm 2 and the weights of
the accepted samples are computed with Equation (12).
Such iterative algorithms were proposed by Sisson et al.
(2007); Beaumont et al. (2009); Toni et al. (2009) and are
called SMC ABC algorithms or population Monte Carlo
ABC algorithms. The algorithm by Beaumont et al. (2009)
is given in the Appendix.

Similar to the MCMC ABC, the samples proposed
by the SMC algorithm follow the posterior pd,�t (�|y0)
with some added noise. The proposed parameter values
are drawn from the prior only at the first iteration
after which adaptive proposal distributions �t closer
to the true posterior are used (see Fig. 8 for an
illustration). This reduces the running time as the
number of rejections is lower compared to the basic
rejection ABC algorithm. For small values of �, however,
the probability to accept a parameter value becomes very
small, even if the parameter value was sampled from
the true posterior. This results in long computing times
in the final iterations of the algorithm without notable
improvements in the approximation of the posterior.

Post-Sampling Correction Methods
We assume here that the distance d(y�,y0) is specified

in terms of summary statistics, that is, d(y�,y0)=
dT(t�,t0), with t�=T(y�) and t0=T(y0). As � decreases
to zero, the approximate posterior pd,�(�|y0) in Equation
(5) converges to p(�|t0), where we use p(�|t) to denote
the conditional distribution of � given a value of the
summary statistics t. While small values of � are thus
preferred in theory, making them too small is not
feasible in practice because of the correspondingly small
acceptance rate and the resulting large Monte Carlo
error. We here present two schemes that aim at adjusting
pd,�(�|y0) without further sampling so that the adjusted
distribution is closer to p(�|t0).

For the first scheme, we note that if we had a
mechanism to sample from p(�|t), we could sample from
the limiting approximate posterior by using t= t0. The
post-sampling correction methods in the first scheme
thus estimate p(�|t) and use the estimated conditional
distributions to sample from p(�|t0). In order to facilitate
sampling, p(�|t) is expressed in terms of a generative
(regression) model,

�= f (t,�), (14)

where f is a vector-valued function and � a vector of
random variables for the residuals. By suitably defining
f , we can assume that the random variables of the vector
� are independent, of zero mean and equal variance,
and that their distribution p� does not depend on t.
Importantly, the model does not need to hold for all
t because, ultimately, we would like to sample from
it using t= t0 only. Assuming that the model f holds
for dT(t,t0)≤� and that we have (weighted) samples
(t(i),�̃(i))= (T(y�

(i)),�̃(i)) available from an ABC algorithm

with a threshold �≤�, the model f can be estimated by
regressing � on the summary statistics t.

In order to sample � using the estimated model f̂ , we
need to know the distribution of �. For that, the residuals
�(i) are determined by solving the regression equation,

�̃(i)= f̂ (t(i),�(i)). (15)

The residuals �(i) can be used to estimate p�, or as usually
is the case in ABC, be directly employed in the sampling
of the �,

�(i)= f̂ (t0,�
(i)). (16)

If the original samples (t(i),�̃(i)) are weighted, both the
�(i) and the new “adjusted” samples �(i) inherit the
weights. By construction, if the relation between t and �

is estimated correctly, the (weighted) samples �(i) follow
pd,�(�|y0) with �=0.

In most models f employed so far, the individual
components of � are treated separately, thus not
accounting for possible correlations between them. For
this paragraph we thus let � be a scalar. The first
regression model used was linear (Beaumont et al. 2002),

�= f1(t,�), f1(t,�)=�+(t−t0)�	+�, (17)

which results in the adjustment �(i)= �̃(i)−(t(i)−t0)�	̂,
where 	̂ is the learned regression coefficient (Fig. 9).
When applied to the model of the spread of tuberculosis,
with summary statistic T1 [see Equation (7)], the
adjustment is able to correct the bias caused by the
nonzero threshold �=0.1, that is the estimated model
f̂ is accurate (Fig. 10a). With summary statistic T2, the
threshold �=0.1 is too large for accurate adjustment,
although the result is still closer to the target distribution
than the original (Figure 10b). Note also that here the
target distribution of the adjustment is substantially
different from the true posterior due to the bias incurred
by summary statistic T2.

Also nonlinear models f have been proposed. Blum
(2010) assumed a quadratic model,

�= f2(t,�), f2(t,�)=�+(t−t0)�	+ 1
2

(t−t0)�
(t−t0)+�,

(18)

where 
 is a symmetric matrix that adds a quadratic
term to the linear adjustment. A more general nonlinear
model was considered by Blum and François (2010),

�= f3(t,�), f3(t,�)=m(t)+�(t)�, (19)

where m(t) models the conditional mean and �(t) the
conditional standard deviation of �. Both functions
were fitted using a multi-layer neural network, and
denoting the learned functions by m̂ and �̂, the following
adjustments were obtained

�(i)=m̂(t0)+ �̂(t0)�̂(t(i))−1(�̃(i)−m̂(t(i))). (20)

The term m̂(t0) is an estimate of the posterior mean of
�, whereas �̂(t0) is an estimate of the posterior standard
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FIGURE 9. Illustration of the linear regression adjustment (Beaumont et al. 2002). First, the regression model f̂ is learned and then, based
on f̂ , the simulations are adjusted as if they were sampled from pd,�(�|y0) with �=0. Note that the residuals �(i) are preserved. The change in
the posterior densities after the adjustment is shown on the right. Here, the black (original) and green (adjusted) curves are the same as in
Figure 10(b).

a) b)

FIGURE 10. Linear regression adjustment (Beaumont et al. 2002) applied to the example model of the spread of tuberculosis (compare to
Fig. 5). The target distribution of the adjustment is the posterior pd,�(�|y0) with the threshold decreased to �=0. Note that when using summary
statistic T2 the target distribution is substantially different from the true posterior (reference) because of the bias incurred by T2. a) T1 with
�=0.1. b) T2 with �=0.1.

deviation of the parameter. They can both be used to
succinctly summarize the posterior distribution of �.

A more complicated model f (t,�) is not necessarily
better than a simpler one. It depends on the amount
of training data available to fit it, that is, the amount
of original samples (t(i),�̃(i)) that satisfy dT(t,t0)≤�.
The different models presented above were compared
by Blum and François (2010) who also pointed out
that techniques for model selection from the regression
literature can be used to select among them.

While the first scheme to adjust pd,�(�|y0) consists
of estimating p(�|t), the second scheme consists of
estimating p(t|�), that is the conditional distribution of
the summary statistics given a parameter value. The
rationale of this approach is that knowing p(t|�) implies
knowing the approximate likelihood function Ld,�(�) for
�→0, because p(t0|�)= lim�→0Ld,�(�) when the distance
d(y�,y0) is specified in terms of summary statistics.

Importantly, p(t|�) does not need to be known
everywhere but only locally around t0, where dT(t,t0)≤�.
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If we use p�(t|�) to denote the distribution of t conditional
on � and dT(t,t0)≤�, Leuenberger and Wegmann (2010)
showed that p�(t0|�) takes the role of a local likelihood
function and pd,�(�|y0) the role of a local prior, and that
the local posterior equals the true posterior p(�|t0).

The functional form of p�(t|�) is generally not known.
However, as in the first scheme, running an ABC
algorithm with threshold � provides data (t(i),�̃(i)) that
can be used to estimate a model of p�(t|�). Since the model
does not need to hold for all values of the summary
statistics, but only for those in the neighborhood of t0,
Leuenberger and Wegmann (2010) proposed to model
p�(t|�) as Gaussian with constant covariance matrix and
a mean depending linearly on �. When the samples
(t(i),�̃(i)) are used to approximate pd,�(�|y0) as a kernel
density estimate, the Gaussianity assumption on p�(t|�)
facilitates the derivation of closed-form formulae to
adjust the kernel density representation of pd,�(�|y0) so
that it becomes an approximation of p(�|t0) (Leuenberger
and Wegmann 2010).

While Leuenberger and Wegmann (2010) modeled
p�(t|�) as Gaussian, other models can be used as well.
Alternatively, one may make the mean of the Gaussian
depend nonlinearly on � and allow the covariance of the
summary statistic depend on �. This was done by Wood
(2010) and the model was found rich enough to represent
p(t|�) for all values of the summary statistics and not only
for those in the neighborhood of the observed one.

RECENT DEVELOPMENTS

We here present recent advances that aim to make ABC
both computationally and statistically more efficient.
This presentation focuses on our own work (Gutmann
et al. 2014; Gutmann and Corander 2016).

Computational Efficiency
The computational cost of ABC can be attributed to

two main factors:

(1) Most of the parameter values result in large
distances between the simulated and observed
data and those parameter values for which the
distances tend to be small are unknown.

(2) Generating simulated data sets, that is, running the
simulator, may be costly.

MCMC ABC and SMC ABC were partly introduced
to avoid proposing parameters in regions where the
distance is large. Nonetheless, typically millions of
simulations are needed to infer the posterior distribution
of a handful of parameters only. A key obstacle
to efficiency in these algorithms is the continued
presence of the rejection mechanism d(y�,y0)≤�, or
more generally, the online decisions about the similarity
between y� and y0. In recent work, Gutmann and
Corander (2016) proposed a framework called Bayesian

optimization for likelihood-free inference (BOLFI) for
performing ABC which overcomes this obstacle by
learning a probabilistic model about the stochastic
relation between the parameter values and the distance
(Fig. 11). After learning, the model can be used to
approximate Ld,�(�), and thus pd,�(�|y0), for any � without
requiring further runs of the simulator (Fig. 12).

Like the post-sampling correction methods presented
in the previous section, BOLFI relies on a probabilistic
model to make ABC more efficient. However, the
quantities modeled differ, since in the post-sampling
correction methods the relation between summary
statistics and parameters is modeled, while BOLFI
focuses on the relation between the parameters and
the distance. A potential advantage of the latter
approach is that the distance is a univariate quantity
while the parameters and summary statistics may be
multidimensional. Furthermore, BOLFI does not assume
that the distance is defined via summary statistics
and can be used without first running another ABC
algorithm.

Learning of the model of d(Y�,y0) requires data
about the relation between � and d(Y�,y0). In BOLFI,
the data are actively acquired focusing on regions of
the parameter space where the distance tends to be
small. This is achieved by leveraging techniques from
Bayesian optimization (see e.g., Jones 2001; Brochu
et al. 2010), hence its name. Ultimately, the framework
provided by Gutmann and Corander (2016) reduces the
computational cost of ABC by addressing both of the
factors mentioned above. The first point is addressed by
learning from data which parameter values tend to have
small distances, whereas the second problem is resolved
by focusing on areas where the distance tends to be small
when learning the model and by not requiring further
runs of the simulator once the model is learned.

While BOLFI is not restricted to a particular model for
d(Y�,y0), Gutmann and Corander (2016) used Gaussian
processes in the applications in their paper. Gaussian
processes have also been used in other work as
surrogate models for quantities that are expensive
to compute. Wilkinson (2014) used them to model
the logarithm of Ld,�(�), and the training data were
constructed based on quasi-random numbers covering
the parameter space. Meeds and Welling (2014) used
Gaussian processes to model the empirical mean and
covariances of the summary statistics as a function of �.
Instead of simulating these quantities for every �, values
from the model were used in a MCMC algorithm in
approximating the likelihood. These approaches have
been demonstrated to assist in speeding up ABC.

Statistical Efficiency
We have seen that the statistical efficiency of ABC

algorithms depends heavily on the summary statistics
chosen, the distance between them, and the locality
of the inference. In a recent work, (Gutmann et al.
2014) formulated the problem of measuring the distance



2017 LINTUSAARI ET AL.—FUNDAMENTALS AND RECENT DEVELOPMENTS IN ABC e79

a) b)

FIGURE 11. The basic idea of BOLFI is to model the distance, and to prioritize regions of the parameter space where the distance tends to be
small. The solid curves show the modeled average behavior of the distance d1(Y�,y0), and the dashed curves its variability for the tuberculosis
example. a) After initialization (30 data points). b) After active data acquisition (200 data points).

a) b)

FIGURE 12. In BOLFI, the estimated model of d(y�,y0) is used to approximate Ld,�(�) by computing the probability that the distance is
below a threshold �. This kind of likelihood approximation leads to a model-based approximation of pd,�(�|y0). The KL-divergence between
the reference solution and the BOLFI solution with 30 data points is 0.09, and for 200 data points it is 0.01. Comparison with Figure 6 shows
that BOLFI increases the computational efficiency of ABC by several orders of magnitude. a) Approximate likelihood function. b) Model-based
posteriors.

between simulated and observed data as a classification
problem: Two data sets are judged maximally similar
if they cannot be told apart significantly above chance
level (50% accuracy in the classification problem). On
the other hand, two data sets are maximally dissimilar if
they can be told apart with 100% classification accuracy.
In essence, classification is used to assess the distance
between simulated and observed data.

The classification rule used to measure the distance
was learned from the data, which simplifies the inference
since only a function (hypothesis) space needs to be
prespecified by the user. In the process, Gutmann
et al. (2014) also chose a subset or weighted (nonlinear)
combination of summary statistics to achieve the
best classification accuracy. This choice depended on
the parameter values used to generate the simulated
data. While computationally more expensive than the

traditional approach, the classifier approach has the
advantage of being a data-driven way to measure the
distance between the simulated and observed data that
respects the locality of the inference.

VALIDATION OF ABC
Due to the several levels of approximation, it

is generally a recommendable practice to perform
validatory analyses of the ABC inferences. We here
discuss some of the possibilities suggested in the
literature.

The ability to generate data from simulator-based
models enables basic sanity checks for the feasibility of
the inference with a given setting and algorithm. The
general approach is to perform inference where synthetic
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data sets y∗0 are generated with known parameter
values �∗ to play the role of the observed data y0. To
assess whether the posterior distribution is concentrated
around the right parameter values, one may then
compute the average error between the posterior mean
(mode) and �∗, or the expected squared distance between
the posterior samples and �∗ (Wegmann et al. 2009). To
assess whether the spread of the posterior distribution
is not overly large or small, one may compute confidence
(credibility) intervals and check their coverage. When the
nominal confidence levels are accurate, 95% confidence
intervals, for example, should contain �∗ in 95% of the
simulation experiments (Wegmann et al. 2009; Prangle
et al. 2014). Such tests can be performed a priori by
sampling y∗0 from the prior before having seen the actual
data to be analyzed, or also a posteriori by sampling y∗0
from the inferred posterior or from the prior restricted to
some area of interest (Prangle et al. 2014). Corresponding
techniques have also been suggested for the purpose of
specifying the threshold value � as discussed earlier in
this article. It can be also beneficial here to store the
generated data sets together with their parameter values
so that the validations can be run without having to
regenerate new data on every occasion.

The ABC framework provides a straightforward way
to investigate the goodness-of-fit of the model. The
distances d(y�,y0) indicate how close the simulated data
y� are to the observed data y0. If all of the distances
remain large, it may be an indication of a deficient model,
as the model is unable to produce data similar to the
observed data. Ratmann et al. (2009) proposed a method
called ABC under model uncertainty (ABC�) where they
augment the likelihood with unknown error terms for
each of the different summary statistics used. The error
terms are assumed to have mean zero and are sampled
together with the parameters of the model. If, however,
the mean of the error terms is found to deviate from 0, it
may indicate a systematic error in the model.

Yet another issue is to consider identifiability of the
model given the observed data. The likelihood function
indicates the extent to which parameter values are
congruent with the observed data. A strong curvature at
its maximum indicates that the maximizing parameter
value is clearly to be preferred, whereas a minor
curvature means that several other parameter values are
nearly equally supported by the data. More generally, if
the likelihood surface is mostly flat over the parameter
space, the data are not providing sufficient information
to identify the model parameters. While the likelihood
function is generally not available for simulator-based
models, the arguments provided do also hold for the
approximate likelihood function Ld,�(�) in Equation (6).
On one hand, the approximate likelihood function can
be used to investigate the identifiability of the simulator-
based model. On the other hand, it allows one to assess
the quality of the distance d or threshold � chosen. Flat
approximate likelihood surfaces, for instance, indicate
that � could be too large or that the distance function d is
not able to accurately measure differences between the
data sets.

The approximate likelihood Ld,�(�) can be obtained
either by the method of Gutmann and Corander (2016) or
also by any other ABC algorithm by assuming a uniform
prior on a region of interest. Lintusaari et al. (2016)
used such an approach to investigate the identifiability
of the tuberculosis model considered as an example in
the previous sections, and to compare different distance
functions. Further, one may (visually) compare the
(marginal) prior and the inferred (marginal) posterior
(e.g., Blum 2010). Both approaches are applicable not
only to the real observed data y0 but also to the synthetic
data y∗0 for which the data-generating parameters
�∗ are known. If the employed ABC algorithm is
working appropriately, both Ld,�(�) and the posteriors
should clearly change when the characteristics of the
observed data change markedly. In particular, if the
number of observations is increased, the approximate
likelihood and posterior should in general become more
concentrated around the data-generating parameter
values. While failure to pass such sanity checks may be
an indicator that the choice of d and � could be improved,
it can also indicate that the model may not be fully
identifiable.

CONCLUSIONS

It is possible to model complex biological phenomena
in a realistic manner with the aid of simulator-
based models. However, the likelihood function
for such models is usually intractable and raises
serious methodological challenges to perform
statistical inference. ABC has become synonymous
for approximate Bayesian inference for simulator-based
models. We have here reviewed its foundations, the
most widely considered inference algorithms, together
with recent advances that increase its statistical and
computational efficiency.

While the review is solely restricted to Bayesian
methods, there exists a large body of literature on
non-Bayesian approaches, for instance, the methods of
simulated moments (McFadden 1989; Pakes and Pollard
1989) or indirect inference (Gouriéroux et al. 1993;
Heggland and Frigessi 2004), both having their origin
in econometrics.

We focused on the central topics related to parameter
inference with ABC. Nevertheless, ABC is also
applicable to model selection (see e.g., the review by
Marin et al. 2012) and while we have reviewed methods
making the basic ABC algorithms more efficient, we have
not discussed the important topic of how to use ABC
for high-dimensional inference. We point the interested
readers to the work by Li et al. (2015) and also to the
discussion by Gutmann and Corander (2016).

For practical purpose, there exist multiple software
packages implementing the different ABC algorithms,
summary statistic selection, validation methods, post
processing, and ABC model selection methods. Nunes
and Prangle (2015) provide a recent list of available
packages with information about their implementation
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language, platform, and targeted field of study. In
summary, ABC is currently a very active methodological
research field and this activity will likely result in several
advances to improve its applicability to answering
important biological research questions in the near
future.

APPENDIX

For completeness, we state below the algorithms for
MCMC ABC and SMC ABC by Marjoram et al. (2003)
and Beaumont et al. (2009), respectively.

Algorithm 3 MCMC ABC algorithm producing N samples from the
approximate posterior distribution pd,�(�|y0)

Require: Set the initial value �(0)

1. for i=1 to N do
2. Generate � from a transition kernel q(·|�(i−1))
3. Generate y� from the simulator
4. if d(y�,y0)≤� then
5. Calculate A=A(�|�(i−1))=

p(�)q(�(i−1)|�)/(p(�(i−1))q(�|�(i−1)))
6. Generate u from Uni(0,1)
7. if u<A then
8. �(i)←�
9. Continue to next iteration

10. end if
11. end if
12. �(i)←�(i−1)

13. end for
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