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Abstract

Background: Mendelian randomization (MR) is being increasingly used to strengthen causal

inference in observational studies. Availability of summary data of genetic associations for a

variety of phenotypes from large genome-wide association studies (GWAS) allows straight-

forward application of MR using summary data methods, typically in a two-sample design.

In addition to the conventional inverse variance weighting (IVW) method, recently developed

summary data MR methods, such as the MR-Egger and weighted median approaches, allow

a relaxation of the instrumental variable assumptions.

Methods: Here, a new method - the mode-based estimate (MBE) - is proposed to obtain

a single causal effect estimate from multiple genetic instruments. The MBE is consistent

when the largest number of similar (identical in infinite samples) individual-instrument

causal effect estimates comes from valid instruments, even if the majority of instruments

are invalid. We evaluate the performance of the method in simulations designed to

mimic the two-sample summary data setting, and demonstrate its use by investigating

the causal effect of plasma lipid fractions and urate levels on coronary heart disease risk.

Results: The MBE presented less bias and lower type-I error rates than other methods

under the null in many situations. Its power to detect a causal effect was smaller com-

pared with the IVW and weighted median methods, but was larger than that of MR-Egger

regression, with sample size requirements typically smaller than those available from

GWAS consortia.

Conclusions: The MBE relaxes the instrumental variable assumptions, and should be

used in combination with other approaches in sensitivity analyses.
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Introduction

Using germline genetic variants as instrumental variables

of modifiable exposure phenotypes can strengthen causal

inference in observational studies by applying the prin-

ciples of Mendelian randomization (MR).1,2 This method

has already been used to address causality in several

exposure-outcome combinations and has become a com-

mon feature in the recent epidemiological literature.3

Causal inference using MR relies on the instrumental vari-

able assumptions, which require that the genetic variant is:

(i) associated with the exposure; (ii) independent of con-

founders of the exposure-outcome association; and (iii) in-

dependent of the outcome after conditioning on the

exposure and all exposure-outcome confounders.

Recent MR methods allow performing MR with mul-

tiple genetic instruments, typically single nucleotide poly-

morphisms (SNPs), using summary data estimates from

genome-wide association studies (GWAS).4 Given the

increasing number of publicly available summary statistics

from large GWAS consortia, summary data MR methods

enable many causal hypotheses to be rapidly interrogated

without the administrative burden and cooperation

required to perform equivalent individual-level data

analyses.5,6

However, using many instruments in an MR analysis in-

creases the probability of including at least one invalid in-

strument, which could easily bias the estimate. For

example, the inverse variance weighting (IVW) method re-

quires that either all variants are valid instruments or that

there is balanced horizontal pleiotropy (i.e. horizontal

pleiotropic effects of individual instruments sum to zero)

and that such pleiotropic effects are independent of instru-

ment strength across all variants (i.e. the Instrument

Strength Independent of Direct Effects – InSIDE – assump-

tion).4,7 More recently, other summary data MR methods

that allow relaxion (but not elimination) of the

instrumental variable assumptions regarding horizontal

pleiotropy have been proposed.8,9

In this paper, we describe a new summary data MR

method – the mode-based estimate (MBE). We clarify

when this will be a consistent estimate of the causal effect,

compare it with established summary data MR methods

using simulations and illustrate its application using real

data examples.

Methods

In order to motivate the summary data methods discussed in

this paper, we assume the following data-generating model

linking genetic variant Gj (j ¼ 1; . . . ;L), a continuous expos-

ure X and outcome Y for subject i:

XijGij ¼ bX0 þ bXjGij þ kXij (1)

YijGij ¼ bY0 þ bbXj þ aj

� �
Gij þ kYij

¼ bY0 þ bYjGij þ kYij:
(2)

Here, bXj and bYj ¼ bbXj þ aj

� �
represent Gj’s true associ-

ation with the exposure and outcome, respectively. bbXj is

the effect of Gj on Y through X, where b is the causal ef-

fect of X on Y we wish to estimate. The term aj represents

the association between Gj and Y not through the expos-

ure of interest, due to horizontal pleiotropy. The error

terms kXij and kYij will generally be correlated when col-

lected on the same individuals. However, we will mainly

focus on the two-sample setting where the error terms are

independent, because independent samples are used to fit

models (1) and (2). For simplicity, we will also assume

that all L genetic variants are mutually independent of

one another.

Let b̂Xj and b̂Yj represent the SNP-exposure and SNP-

outcome association estimates for variant j, respectively,

Key Messages

• Summary data Mendelian randomization, typically in a two-sample setting, is being increasingly used due to the

availability of summary association results from large genome-wide association studies.

• Mendelian randomization analyses using multiple genetic instruments are prone to bias due to horizontal pleiotropy,

especially when genetic instruments are selected based solely on statistical criteria.

• A causal effect estimate robust to horizontal pleiotropy can be obtained using the mode-based estimate (MBE).

• The MBE requires that the most common causal effect estimate is a consistent estimate of the true causal effect,

even if the majority of instruments are invalid (i.e. the ZEro Modal Pleiotropy Assumption, or ZEMPA).

• Plotting the smoothed empirical density function is useful to explore the distribution of causal effect estimates, and

to understand how the MBE is determined.
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and let r2
Xj and r2

Yj represent the variance of b̂Xj and b̂Yj, re-

spectively. The ratio estimate10,11 for the causal effect b

using variant j alone is equal to:

b̂Rj ¼
b̂Yj

b̂Xj

(3)

the standard error of which (rRj) can be obtained using the

delta method12 as follows:

rRj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2

Yj

b̂
2

Xj

þ b̂
2

Yjr2
Xj

b̂
4

Xj

vuut (4)

The standard error in (4) can be simplified to rYj=jb̂Xjj
when the variance of the SNP-exposure association r2

Xj is

small enough to be considered ‘ignorable’, or equivalently

that b̂Xj ¼ bXj . This is referred to as the NO

Measurement Error (NOME) assumption.13

The ratio estimate b̂Rj is a crude measure of causal ef-

fect, but has a major advantage over more sophisticated

methods in that it can be calculated using summary data

estimates for bXj and bYj alone. These estimates can then

be used to furnish a summary data MR analysis using the

framework of a meta-analysis.

Under models (1) and (2), variant j is a valid instrument

when aj¼ 0 and invalid when aj 6¼ 0. When aj 6¼ 0, then

bRj ¼ bþ bj, where bj ¼ aj=bXj (i.e. a bias term). In the

Supplementary Methods (available as Supplementary data

at IJE online), we briefly review three such summary data

methods – IVW,4 MR-Egger regression8 and weighted me-

dian9 – and discuss the conditions under which each

method returns a consistent causal effect estimate (i.e. esti-

mate converges in probability to the true value as the sam-

ple size increases).

The MBE

In this paper we propose a new causal effect estimator –

the MBE – that offers robustness to horizontal pleiotropy

in a different manner to that of the IVW, MR-Egger or

weighted median methods. Its ability to consistently esti-

mate the true causal effect relies on the following funda-

mental assumption termed the ZEro Modal Pleiotropy

Assumption (ZEMPA): across all instruments, the most

frequent value (i.e., the mode) of bj is 0.

In order to formalize this, let k 2 f1;2; . . . ;Lg represent

the number of unique values of bj among the L variants. If

all bj terms are identical then k¼ 1, but if all are unique

then k ¼ L. Now, let n1; n2; . . . ;nk represent the number of

instruments that have the same non-zero value of bj, where

n1 represents those with the smallest non-zero identical

value of bj and nk represents those with the largest non-zero

identical value. Finally, let n0 represent the number of valid

instruments whose bj terms are identically zero. We then

have that n0 þ n1 þ . . .þ nk ¼ L. ZEMPA implies that n0 is

larger than any other nl for l in 1;2; . . . ;k (i.e.,

n0 > maxðn1; . . . ; nkÞ). For a weighted version of the MBE,

that is an MBE derived by allowing the weight given to each

ratio estimate to vary, ZEMPA implies that the weights

associated with the valid instruments are the largest among

all k subsets of instruments (ie. w0 > maxðw1; . . . ;wkÞ,
where wl is the weight contributed by the lth subset of in-

struments using our previous subset definition based on bj.

The breakdown level (i.e. the maximum proportion of

information that can come from invalid instruments before

the method is inconsistent) of the simple (i.e. unweighted)

MBE ranges from 100 L=2þ1
L

� �
% to 100 L�2

L

� �
%. The lower

limit corresponds to the situation where there are some

valid instruments, but all invalid instruments estimate the

same (biased) causal effect parameter (i.e. k ¼ 2) implying

that ZEMPA is satisfied (i.e. n0 > maxðn1; . . . ;nkÞ) if up

to, but not including, half of the instruments are invalid.

The upper limit corresponds to the situation where all in-

valid instruments estimate different causal effect param-

eters (i.e. n1 ¼ n2 ¼ . . . ¼ nk ¼ 1), implying that ZEMPA

would be satisfied if just two variants were valid (n0 ¼ 2Þ and

the remainder (L� 2) were invalid. Given that maxðn1; . . . ;

nkÞ is often unknown and is likely to vary depending on the

set of genetic instruments and the outcome variable, the true

breakdown level of the MBE in any given applied investiga-

tion is difficult to determine.

For example, in Figure 1A, six out of eight instruments

are invalid (so n0 ¼ 2), but all non-zero bjs are unique,

implying that k ¼ L� 1 ¼ 7 and n1 ¼ n2 ¼ . . . ¼ n7 ¼ 1.

In this situation, ZEMPA is satisfied and the simple MBE is

a consistent estimate of the causal effect b. However, when

the largest number of identical estimates comes from invalid

instruments (i.e. n0 < nl for some l; ZEMPA violated),

then the simple MBE will be inconsistent for b (i.e. asymp-

totically biased). This is illustrated in Figure 1B, which

shows causal effect estimates from six invalid and two valid

variants (n0 ¼ 2). Since three variants have precisely the

same horizontal pleiotropic effect in this example (n2 ¼ 3),

ZEMPA is violated.

The breakdown level of the weighted MBE can be simi-

larly defined as ranging from 50% (exclusive) to 100%

(exclusive). In other words, the weighted MBE is biased if

w0 < wl for some l. Of note, the limits are open intervals

because the weights are real numbers, unlike number of in-

struments (in the case of the simple MBE), which is a nat-

ural number. However, as L increases, then the lower and

upper limits of the breakdown level of the simple MBE

also tend to 50% and 100%, respectively.

International Journal of Epidemiology, 2017, Vol. 46, No. 6 1987

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx102#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyx102#supplementary-data


Implementing the MBE

To calculate the MBE, we propose using the mode of the

smoothed empirical density function of all b̂Rjs as the

causal effect estimate. This strategy is straightforward to

implement, easily deals with sampling variation in asymp-

totically identical b̂Rjs and allows different weights to be

given to different instruments. We refer to the mode of the

unweighted and inverse-variance weighted empirical dens-

ity function as the simple and weighted MBEs, respect-

ively. The standardized weights for the weighted MBE can

be computed as follows:

wj ¼ r�2
Rj
=
XL

j¼1

r�2
Rj

(5)

For the simple MBE, w1 ¼ w2 ¼ . . . ¼ wL ¼ 1=L.

Consider the normal kernel density function of the b̂Rjs:

f ðxÞ ¼ 1

h
ffiffiffiffiffiffi
2p
p

XL

j¼1

wjexp � 1

2

x� b̂Rj

h

 !2
2
4

3
5 (6)

where h is the smoothing bandwidth parameter.14 The

causal effect estimate obtained using the MBE method b̂M

is the value of x that maximizes f ðxÞ (i.e.

f ðb̂MÞ ¼ max½f ðxÞ�). The h parameter regulates a bias-

variance trade-off of the MBE, with increasing h leading to

higher precision, but also to higher bias. Here, h ¼ us,

with u being a tuning parameter that allows increasing or

decreasing the bandwidth, and s being the default band-

width value chosen according to some criterion. We used

the modified Silverman’s bandwidth rule proposed by

Bickel15:

s ¼
0:9min

�
sd b̂RJ

� �
; 1:4826mad b̂RJ

� ��
L

1
5

(7)

where sdðb̂RJÞ and mad b̂RJ

� �
are the standard deviation

and median absolute deviation from the median of the L

b̂Rjs, respectively. An intuitive explanation of the MBE

based on an analogy with histograms is provided in the

Supplementary Methods (available as Supplementary data

at IJE online).

Simulation model

The simulations were performed using the following model

to generate individual i’s exposure Xi, outcome Yi and con-

founder Ui, based on their underlying genetic data vector

(Gi1; . . . ;GiL):

Ui ¼ cUZUi þ eUi (8)

Xi ¼ cXZXi þ hXUi þ eXi (9)

Yi ¼ cYZYi þ bXi þ hYUi þ eYi (10)

where:

ZUi ¼
�XL

j¼1

dUjGij

�
=rZU; ZXi ¼

�XL

j¼1

dXjGij

�
=rZX;

ZYi ¼
�XL

j¼1

dYjGij

�
=rZY :

ZU, ZX and ZY represent the additive allele scores of L in-

dependent SNPs on U, X and Y, modulated by the param-

eters dUj; dXj; dYj (j¼ 1,. . . L). b denotes the true causal

effect of X on Y that we wish to estimate. The underlying

Figure 1. Illustration of the ZEro Modal Pleiotropy Assumption (ZEMPA) in the simple (i.e. unweighted) mode-based estimate (MBE). bM is the simple

MBE causal effect and b is the true causal effect; nl denotes the number of variants with a given horizontal pleiotropic effect (n0 denotes the number

of valid instruments). Panel A: ZEMPA is satisfied. Panel B: ZEMPA is violated. SNP, single nucleotide polymorphism.
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genetic variables (Gij) were generated independently by

sampling from a Binomial (2, p) distribution with p itself

drawn from a Uniform(0.1,0.9) distribution, to mimic bi-

allelic SNPs in Hardy-Weinberg equilibrium. The resulting

allele scores were then divided by their sample standard de-

viations rZU; rZX; rZYð ), to set variances to one. The dir-

ect effects of U on X and Y are denoted by hX and hY ,

respectively. hX and hY are set to positive values in all

simulations, so as to always induce positive confounding.

Error terms eUi; eXi; eYi were independently generated

from a normal distribution, with mean¼ 0 and variances

r2
eU, r2

eX and r2
eY , respectively, whose values were chosen

to set the variances of U, X and Y to one.

Constraining the variances in this way enables easy

interpretation of the parameters in models (8)–(10). For

example, b¼ 0.1 implies that one standard deviation

increment in X causes a 0.1 standard deviation increment

in Y, and that the causal effect of X on Y explains

0.12¼ 1% of Y variance. A summary data interpret-

ation of our simulation model is provided in the

Supplementary Methods (available as Supplementary

data at IJE online).

Simulation scenarios

Although the consistency property of an estimator provides

a formal justification of the approach, it is equally import-

ant to understand how well it works in practice for realis-

tically sized datasets in comparison with other methods.

Therefore, we evaluated our proposed estimator in four

different simulation scenarios. In all simulations, the num-

ber of variants L¼30, hX ¼ hY ¼
ffiffiffiffiffiffiffi
0:3
p

, cX ¼
ffiffiffiffiffiffiffi
0:1
p

and cU ¼ cY ¼ q
ffiffiffiffiffiffiffi
0:1
p

=L, where q ¼ 0; 3; 6; . . . ;30 is

the number of invalid instruments.

Simulations 1 and 2 were aimed at evaluating the

performance of the MBE under the causal null (b¼ 0) in

the two-sample setting. Datasets of 100 000 individ-

uals were simulated and divided in half at random,

and each was used to estimate either SNP-exposure or

SNP-outcome associations. Simulations 3 and 4 were

aimed at evaluating weak instrument bias in the two-

sample and single-sample settings; sample sizes used to

estimate instrument-exposure (NX) and instrument-

outcome (NY) associations were allowed to vary, as

described below.

Simulation 1. In this scenario, dUj was 0 for all instru-

ments, implying that there is no InSIDE-violating horizon-

tal pleiotropy. InSIDE-respecting horizontal pleiotropic

effects dYj were drawn from a Uniform(0.01, 0.2) distribu-

tion for the q invalid instruments or were set to 0 for valid

instruments. Given that b¼ 0, power can be interpreted as

the type-I error rate.

Simulation 2. InSIDE-violating horizontal pleiotropy was

induced by setting dYj¼ 0 for all instruments, whereas dUj

values were drawn from a Uniform(0.01, 0.2) distribution

for the q invalid instruments.

Simulation 3. This simulation evaluated the performance

of the estimators to detect a positive causal effect of

b¼ 0.1 in the two-sample context. q¼ 0, implying that

there is no horizontal pleiotropy, and NX 2 {25 000,

50 000, 100 000}, and NY 2 {25 000, 50 000, 100 000}.

Simulation 4. This simulation evaluated the performance

of the estimators under the causal null when SNP-exposure

and SNP-outcome associations are estimated in partially

(50%) or fully (100%) overlapping samples (the latter

being equivalent to the single sample setting). It was imple-

mented as for simulation 3, except b¼0 and NX ¼ NY 2
{1 000, 5 000, 10 000}. We used smaller sample sizes to

purposely increase the bias due to sample overlap, thus

facilitating comparisons between methods.

Applied examples: plasma lipid fractions and

urate levels and coronary heart disease risk

Do and colleagues16 performed a two-sample MR analysis

to evaluate the causal effect of low-density lipoprotein cho-

lesterol (LDL-C), high-density lipoprotein cholesterol

(HDL-C) and triglycerides on coronary heart disease

(CHD) risk, using a total of 185 genetics variants.

Summary association results were obtained from the

Global Lipids Genetics Consortium17 and the Coronary

Artery Disease Genome-Wide Replication and Meta-

Analysis Consortium,18 and were downloaded from Do

and colleagues’ supplementary material (standard errors

were estimated based on the regression coefficients and

P-values). Genetic variants were classified as instruments

for each lipid fraction using a statistical criterion

(P< 1� 10�8), resulting in 73 instruments for LDL-C, 85

for HDL-C and 31 for triglycerides.

White and colleagues19 performed a similar analysis,

but with plasma urate levels rather than lipid fractions. 31

variants associated with urate levels (P< 5� 10�7) were

used as genetic instruments, and the required summary sta-

tistics were obtained from the GWAS catalogue [https://

www.ebi.ac.uk/gwas/].

Statistical analyses

In all simulation scenarios, causal effect estimates were

obtained using established MR methods (multiplicative
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random effects IVW,7 multiplicative random effects MR-

Egger regression7 and weighted median, all implemented

using inverse-variance weights calculated under NOME),

as well as the simple and the weighted MBEs. Each version

of the MBE was evaluated using weights calculated with

and without making the NOME assumption, thus yielding

four MBEs. Each of these four methods was evaluated for

two values of the tuning parameter u 2 f1;0:5g, totalling

eight versions of the MBE method. Parametric

bootstrap was used to estimate the standard errors of the

MBE using the median absolute deviation from the median

(multiplied by 1.4826 for asymptotically normal consis-

tency) of the bootstrap distribution of causal effect esti-

mates. These were used to derive symmetrical confidence

intervals.

In each scenario, coverage, power and average causal

effect estimates, standard errors, FGX�1

FGX
and I2

GX statistics

(which quantify the magnitude of violation of the NOME

assumption in IVW and MR-Egger regression estimates,

respectively7,13) were obtained across 10 000 simulated

datasets. Power was defined as the proportion of times that

95% confidence intervals excluded zero, and coverage as

the proportion of times that 95% confidence intervals

included the true causal effect.

MR methods were also applied to estimate the causal

effect of plasma lipid fractions and urate levels on CHD

risk. The magnitude of regression dilution bias in IVW and

MR-Egger regression was assessed by the FGX�1

FGX
and I2

GX

statistics, respectively. Cochran’s Q test was used to test

for the presence of horizontal pleiotropy (under the

assumption that this is the only source of heterogeneity

between b̂Rjs other than chance).20 All simulations and

analyses were performed using R 3.3.1 [www.r-project.

org]. R code for implementing the MBE is provided in

Supplementary Methods (available as Supplementary data

at IJE online).

Results

Performance under the causal null in the two-

sample context

The results of simulation 1 – where directional horizontal

pleiotropy (if any) occurs only under the InSIDE assump-

tion – are shown in Table 1. When all instruments were

valid, all methods were unbiased with type-I error rates �
5%. As expected, MR-Egger regression (which is consis-

tent if InSIDE holds) was the least biased method in this

scenario, especially when many instruments were invalid.

The four MBEs in Table 1 were less biased and less precise

than the IVW and the weighted median methods. The sim-

ple MBE was more biased than the weighted MBE

(noticeable especially when the proportion of invalid

instruments was high). Using weights derived under the

NOME assumption increased bias and false rejection rates.

Setting u¼0.5 (i.e. setting the bandwidth to half of the

default value) reduced both bias and precision

(Supplementary Table 1, available as Supplementary data

at IJE online).

When InSIDE is violated (Table 2), again the MBEs

were less biased than IVW and weighted median methods.

In this case, however, they were also less biased than MR-

Egger regression estimates, which is known to be highly

sensitive to InSIDE violation.8 The exception was for large

proportions (i.e. � 80%) of invalid instruments, where

MR-Egger estimates were the least biased. This is because

the degree of InSIDE violation, as quantified by the

inverse-variance weighted Pearson correlation between

instrument strength and horizontal pleiotropic effects,8 is

smaller in those situations (Supplementary Table 2, avail-

able as Supplementary data at IJE online). Moreover, in

this scenario, the simple MBE was generally less biased

than the weighted counterparts, and setting u¼0.5 had a

smaller effect when compared with simulation 1 (and

indeed only clear for the simple MBE–Supplementary

Table 3). The NOME assumption again increased bias and

false rejection rates.

Power to detect a causal effect in the two-sample

context

Table 3 displays the results for simulation 3 (no invalid

instruments). The IVW method was the most powered to

detect a causal effect, followed by the weighted median

method, the weighted MBE, the simple MBE and MR-

Egger regression. Assuming NOME reduced the bias

towards the null in the weighted MBEs and improved

power. Setting u¼ 0.5 had no consistent effect on bias, but

substantially reduced power (Supplementary Table 4,

available as Supplementary data at IJE online).

Performance under the causal null in overlapping

samples

Supplementary Table 5 (available as Supplementary data

at IJE online) displays the performance of the methods

under the causal null when the samples used to estimate

instrument-exposure and instrument-outcome associations

overlap. MR-Egger regression presented the largest bias,

followed by the weighted MBE assuming NOME,

the weighted MBE not assuming NOME, weighted

median, simple MBE and IVW. Setting u¼0.5 slightly

increased the bias (Supplementary Table 6, available as

Supplementary data at IJE online). Importantly, the
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precision of the MBE was very low, suggesting that the

method may be prohibitively underpowered in small sam-

ples, thus being best suited for the two-sample setting using

precise summary association results. Gains in precision by

making the NOME assumption were more noticeable than

in the other simulations with larger sample sizes.

Causal effect of plasma lipid fractions and urate

levels on CHD risk

We used real datasets of summary association results to

further explore the influence of the u parameter on the

MBE. First, we visually explored the distribution of ratio

estimates (Figure 2). In the case of LDL-C (panel A), most

of the distribution was above zero, and increasing the

stringency of u did not reveal substantial multimodality,

although there were some pronounced density peaks at the

left of the main distribution (which corresponds to the true

causal effect under the ZEMPA assumption), which may

result in attenuation of the causal effect estimate.

However, setting u¼0.25 resulted in some small peaks in

the main distribution which may suggest over-stringency,

so we used u¼ 0.5 in the MR analysis. For HDL-C (panel

B), the bulk of the distribution was centred close to zero,

and setting u¼ 0.25 revealed some peaks at the left of the

main distribution, suggesting that horizontal pleiotropy

could lead to an apparent protective effect. Since setting

u¼0.5 was sufficient to substantially reduce the density at

the tails, this was used in the MR analysis. Regarding tri-

glycerides (panel C), the main distribution was above zero

Table 3. Mean estimates from simulation 3: no horizontal pleiotropy and causal effect b¼0.1 (10 000 simulations per scenario).

Sample sizes NX and NY are in thousands

Estimator Statistic N Mean FGX�1

FGX
[%]; mean I2

GX [%]

99.3; 94.8 99.3; 94.8 99.3; 94.8 99.7; 97.4 99.7; 97.4 99.7; 97.4 99.8; 98.7 99.8; 98.7 99.8; 98.7

NX 25 25 25 50 50 50 100 100 100

NY 25 50 100 25 50 100 25 50 100

IVW Beta 0.099 0.099 0.099 0.099 0.099 0.100 0.100 0.100 0.100

SE 0.021 0.015 0.011 0.021 0.015 0.011 0.021 0.015 0.010

Coverage (%) 96.5 96.5 96.4 96.7 96.3 96.7 96.1 96.7 97.0

Power (%) 99.8 100.0 100.0 99.8 100.0 100.0 99.7 100.0 100.0

MR-Egger Beta 0.096 0.096 0.096 0.098 0.098 0.098 0.099 0.099 0.099

SE 0.045 0.032 0.023 0.046 0.032 0.023 0.046 0.033 0.023

Coverage (%) 96.7 96.2 96.2 96.8 96.5 96.5 96.1 96.8 96.6

Power (%) 53.7 82.1 97.8 54.2 84.0 98.1 54.9 83.9 98.5

Weighted Beta 0.099 0.098 0.098 0.099 0.099 0.099 0.100 0.099 0.100

Median SE 0.029 0.020 0.015 0.029 0.020 0.014 0.029 0.020 0.014

Coverage (%) 97.3 97.1 97.1 97.1 97.2 97.4 97.0 97.4 97.9

Power (%) 95.3 100.0 100.0 95.5 100.0 100.0 95.2 100.0 100.0

Simple Beta 0.099 0.098 0.099 0.099 0.099 0.100 0.100 0.099 0.100

MBEa SE 0.087 0.061 0.047 0.073 0.045 0.035 0.053 0.037 0.027

Coverage (%) 99.0 99.1 98.9 99.1 99.0 99.1 98.8 98.8 99.2

Power (%) 59.4 85.7 94.1 61.3 88.6 96.9 64.0 91.0 98.2

Weighted Beta 0.097 0.097 0.097 0.098 0.098 0.099 0.099 0.098 0.099

MBEa SE 0.079 0.055 0.043 0.065 0.040 0.031 0.044 0.031 0.022

Coverage (%) 98.4 98.4 98.2 98.3 98.1 98.2 98.0 98.3 98.4

Power (%) 75.2 90.9 94.7 77.5 94.5 97.1 80.0 96.7 98.7

Simple Beta 0.099 0.098 0.099 0.099 0.099 0.100 0.100 0.099 0.100

MBE SE 0.047 0.033 0.023 0.046 0.032 0.023 0.045 0.033 0.023

(under Coverage (%) 98.8 98.9 98.8 99.1 98.9 99.0 98.8 98.9 99.1

NOME)a Power (%) 64.1 91.1 98.8 64.2 91.4 99.2 64.9 91.7 99.3

Weighted Beta 0.099 0.098 0.098 0.099 0.099 0.099 0.100 0.099 0.100

MBE SE 0.038 0.027 0.019 0.038 0.026 0.019 0.037 0.026 0.018

(under Coverage (%) 98.1 98.0 97.9 98.1 97.9 98.0 97.9 98.3 98.3

NOME)a Power (%) 81.5 96.6 99.3 81.0 97.2 99.5 81.5 97.6 99.8

NX; sample size of the dataset used to estimate instrument-exposure associations; NY ; sample size of the dataset used to estimate instrument-outcome associa-

tions; IVW, inverse-variance weighting; SE, estimated standard error; NOME, NO Measurement Error; MBE, mode-based estimate.
au¼ 1.
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and the plot suggested that there may be negative horizon-

tal pleiotropy, leading to an underestimation of the causal

effect (u¼ 0.25 was used in MR analysis). Finally, in the

case of urate levels (panel D), by decreasing u it became

increasingly evident that the distribution was bi-modal,

which could only be clearly distinguished by setting

u¼0.25 (which was used in MR analysis) because the

main peaks were similar to one another. Comparing the

two distributions, the main one was the closest to zero,

suggesting that horizontal pleiotropy is biasing the causal

effect estimate upwards.

Results of the MR analysis are shown in Table 4. The

smallest values of FGX�1

FGX
and I2

GX were 0.996 and 0.993,

respectively, suggesting that IVW and MR-Egger regres-

sion estimates were not materially affected by regression

dilution bias. P-values of the Cochran’s Q test ranged from

0.0003 (urate) to 1.7� 10�21 (HDL-C), thus providing

strong statistical evidence for heterogeneity between the

ratio estimates. Nevertheless, results for LDL-C and

triglycerides consistently suggested risk-increasing causal

effects. In the case of HDL-C, the IVW method suggested a

protective effect, with one standard deviation increase in

HDL-C being associated with a 0.254 (95% CI: 0.115;

0.393) decrease in CHD ln(odds). However, the other

methods did not confirm this result, suggesting that it was

due to negative horizontal pleiotropy (as suggested by visu-

ally inspecting the distribution of ratio estimates). Finally,

the IVW method suggested a 0.163 (95% CI: 0.027;

0.298) increase in CHD ln(odds) per standard deviation

increase in urate levels. Other methods did not confirm

this finding, suggesting that it could be a result of positive

horizontal pleiotropy (as the empirical density plot

suggested).

Discussion

We have proposed a new MR method – the MBE – for

causal effect estimation using summary data of multiple

Figure 2. Weighteda empirical density function of all individual-instrument ratio causal effect estimates (b̂R j ) of plasma LDL-C (panel A), HDL-C (panel

B), triglycerides (panel C) and urate (panel D) levels on ln(odds ratio) of coronary heart disease for different values of the tuning parameter u. LDL-C,

low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol. The dashed line indicates the zero value. aWeights were calculated

without making the NOME assumption.
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genetic instruments. Its performance was evaluated in a

simulation study and its application illustrated in real data

examples. An overview of the summary data MR methods

that we evaluated (as well as the simple median) is pro-

vided in Table 5.

Consistent causal effect estimation using the MBE

requires that ZEMPA holds. ZEMPA is an assumption

that relates to the underlying bias parameters (the bj) that

contribute to the ratio estimand bj ¼ bþ bj identified by

the jth genetic instrument. If ZEMPA is satisfied, then the

MBE yields a consistent estimate for the causal effect.

However, due to imprecision in the b̂j’s in finite samples,

in practice the MBE may be contaminated by some invalid

invariants even if ZEMPA holds. This can be seen in our

simulations, where ZEMPA is only violated when all

instruments are invalid, but nevertheless there is bias in the

MBE when some of the instruments are valid. In practice,

the MBE also depends on the magnitude of the bias, with

invalid genetic instruments identifying causal effect param-

eters that are close to the true causal effect being more

likely to contaminate the MBE estimate. However, this

also means that genetic instruments that would introduce

strong bias are less likely to contaminate the MBE.

In our simulations, we evaluated eight different versions

of the MBE. Decreasing the tuning parameter u reduced

bias (at the cost of reduced precision) when horizontal plei-

otropy did not violate the InSIDE assumption. However,

when InSIDE was violated, a similar behaviour could only

be clearly seen for the simple MBE. Choosing the value of

the tuning parameter u is a bias-variance trade-off and

depends on how stringent the smoothing bandwidth needs

to be and how stringent it can be before being prohibitively

imprecise. In our applied example, we identified the strin-

gency required through a graphical examination, and veri-

fied that the MBEs were powered enough to detect a

causal effect between HDL-C and triglycerides on CHD

risk. Moreover, in the case of urate levels, the weighted

MBE was similarly precise to the IVW and weighted

median methods. This suggests that it may be feasible to

set u to stringent values in practice, especially when there

are multiple instruments selected based on genome-wide

significance. Evaluating a range of u values through a

Table 4. Mendelian randomization estimates of the causal effect of urate plasma levels (in standard deviation units) on CHD risk

[in ln(odds)] using 31 genetic instruments

Exposure Estimator Beta SE 95% CI P-value

LDL-C IVW 0.476 0.060 0.357; 0.595 1.8�10�11

MR-Egger b0 �0.009 0.005 �0.020; 0.001 0.083

MR-Egger b1 0.624 0.103 0.419; 0.828 5.3�10�8

Weighted median 0.457 0.064 0.331; 0.583 7.4�10�10

Simple MBEa 0.422 0.187 0.056; 0.788 0.027

Weighted MBEa,b 0.491 0.109 0.276; 0.705 2.7�10�5

HDL-C IVW �0.254 0.070 �0.393; -0.115 4.9�10�4

MR-Egger b0 �0.014 0.005 �0.025; -0.003 0.011

MR-Egger - b1 �0.013 0.115 �0.241; 0.215 0.913

Weighted median �0.069 0.068 �0.202; 0.065 0.314

Simple MBEa �0.174 0.171 �0.509; 0.161 0.311

Weighted MBEa,b �0.003 0.088 �0.175; 0.170 0.974

Triglycerides IVW 0.416 0.081 0.252; 0.580 6.0�10�6

MR-Egger - b0 0.000 0.007 �0.015; 0.015 0.962

MR-Egger - b1 0.422 0.140 0.140; 0.704 0.004

Weighted median 0.516 0.083 0.352; 0.679 1.5�10�7

Simple MBEc 0.875 0.259 0.367; 1.383 0.002

Weighted MBEc,b 0.547 0.134 0.284; 0.810 1.8�10�4

Urate levels IVW 0.163 0.066 0.027; 0.298 0.020

MR-Egger - b0 0.008 0.005 �0.002; 0.018 0.118

MR-Egger - b1 0.048 0.096 �0.148; 0.245 0.614

Weighted median 0.119 0.061 �0.001; 0.239 0.061

Simple MBEc 0.188 0.163 �0.132; 0.507 0.259

Weighted MBEc,b 0.092 0.066 �0.038; 0.221 0.175

LDL-C, low-density lipoprotein cholesterol; HDL-C, high-density lipoprotein cholesterol; IVW, inverse-variance weighting; SE, standard error; CI, confidence

interval; MBE, mode-based estimate.
au¼ 0.5.
bNot under the NO Measurement Error (NOME) assumption.
cu¼ 0.25.
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graphical examination may be useful to investigate how

susceptible the MBE is to contamination from invalid

instruments.

Assuming NOME increased bias and reduced the cover-

age of the 95% confidence intervals in the presence of

invalid instruments, but reduced regression dilution bias

and improved power in the two-sample setting. However,

such gains were relatively small and virtually disappeared

in simulations with larger sample sizes. Moreover, the

results in the applied example were virtually identical

whether or not NOME was assumed. These findings sug-

gest that the NOME assumption is not necessary (and

might be even unwarranted) when deriving weights for the

MBE.

Although the simple MBE was less precise than the

weighted MBE, it was less prone to bias due to violations

of the InSIDE assumption. However, it was more prone to

bias when InSIDE held. Indeed, a similar pattern has been

previously shown for the simple and weighted median.9

This suggests that comparing both methods would be a

useful sensitivity analysis in practice, although care must

be taken since the simple MBE may in some cases (as in

our real data example with urate levels) be prohibitively

imprecise. Importantly, all the recommendations above are

general, and we strongly encourage researchers to consider

study-specific factors when deciding upon these aspects.

One way of doing so is to perform simulations that reflect

the study-specific context and compare different thresholds

and filters in a range of different scenarios, keeping observ-

able parameters (e.g. sample size) constant. Such simula-

tions would also be useful to identify how strong the

violations of the assumptions must be in order to obtain

the observed results, which may be a useful sensitivity anal-

ysis that will either strengthen or weaken causal inference.

In our simulations, the 95% confidence intervals of the

MBE computed using the normal approximation presented

over-coverage (i.e. coverage larger than 95%). This may be

due to the MBE being less influenced by outlying instruments

(which is indeed the basis of the method), which correspond

to the most imprecise ones when all instruments are valid.

Therefore, the causal effect estimate fluctuates less around

the true causal effect b (i.e. is less influenced by sampling var-

iation). This may also explain the less pronounced over-

coverage in the weighted median. We compared the normal

approximation with the percentile method (Supplementary

Table 7, available as Supplementary data at IJE online), but

over-coverage in the latter was even greater when there were

no or few invalid instruments. Moreover, after a certain pro-

portion of invalid instruments (around 50%), coverage of the

percentile method reduced markedly, whereas this occurred

gradually in the normal approximation method. We therefore

proposed the latter method to compute confidence intervals,

but there might be better alternatives.

Another aspect of the MBE method (and of the

weighted median) that requires further research is regres-

sion dilution bias in the two-sample setting. Understanding

how regression dilution bias operates in IVW and MR-

Egger contributed to developing correction methods,13

thus reinforcing the importance of research in this area

regarding the MBE and the weighted median.

Although this is the first description of using the MBE

as a causal effect estimate in MR, other closely related

Table 5. Breakdown level and assumptions regarding horizontal pleiotropy of the inverse variance weighted (IVW), MR-Egger

regression, simple and weighted median, and simple and weighted MBEs

Method Breakdown level Assumptions regarding horizontal pleiotropy

IVW 0% Consistent if the sum of horizontal pleiotropic effects of all

instruments is zero and InSIDE holds

MR-Egger regression 100% Consistent even if all instruments are invalid if InSIDE

holds

Simple median 100 L=2þ1
L

� �
% Consistent if less than 50% of instruments are invalid,

regardless of the type of horizontal pleiotropy

Weighted median 50% (exclusive) Consistent if less than 50% of the weight is contributed by

invalid instruments, regardless of the type of horizontal

pleiotropy

Simple MBE Ranges from 100 L=2þ1
L

� �
% to 100 L�2

L

� �
% Consistent if the most common horizontal pleiotropy value

is zero (i.e. ZEMPA), regardless of the type of horizontal

pleiotropy

Weighted MBE Ranges from 50% (exclusive) to 100% (exclusive) Consistent if the largest weights among the k subsets are

contributed by valid instruments (i.e. ZEMPA), regard-

less of the type of horizontal pleiotropy

IVW, inverse-variance weighting; InSIDE, Instrument Strength Independent of Direct Effect; ZEMPA, ZEro Mode Pleiotropy Assumption; MBE, mode-based

estimate.
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methods have already been published. For example, Guo

et al.21 have recently described a method based on bivari-

ate comparisons of all pairs of instruments, which classify

instruments as estimating or not estimating the same causal

effect. The largest identified set of concordant instruments

can then be used to estimate the causal effect using, for

example, the IVW method. Therefore, Guo et al.’s

approach also relies on the assumption that the most com-

mon causal effect estimate is a consistent estimate of the

true causal effect (i.e. ZEMPA). In fact, both our approach

and Guo et al.’s can be viewed as methods that fully

exploit the power of the consistency criterion defined origi-

nally by Kang et al,22 who used it to propose a LASSO-

based variable selection procedure to detects and adjusts

for horizontally pleiotropic variants. However, Guo et al.’s

method and the MBE (which was developed independently

from their work) are very different in their implementa-

tion. Ours is designed to be simple to understand and

implement, does not require selecting instruments, and is

easy to extend to any weighting scheme one desires.

Moreover, plotting the empirical density function using

different bandwidths may be a useful tool to visually

explore the distribution of the b̂Rjs, and provides an intui-

tive way to select the optimal bandwidth value. In separate

work we conduct a thorough review Guo et al.’s method

after translating it to the two-sample context, and suggest

some simple modifications to improve its performance.23

It is also important to consider that there are other strat-

egies to compute the mode of continuous data. In prelimi-

nary simulations, the modified Silverman’s rule was both

generally more robust against horizontal pleiotropy than the

original Silverman’s rule24 and more powered to detect a

causal effect. Therefore, we opted for the modified rule.

However, many other kernels and bandwidth selection rules

could be used, as well as strategies that are not based on the

smoothed empirical density function, such as the simple and

robust parametric estimators,15 Grenander’s estimators25

and the half-sample mode method.14 Further research is

required to translate these mode estimators into the sum-

mary data MR context and compare their performance

under different scenarios.

We propose the MBE as an additional MR method

that should be used in combination with other approaches

in a sensitivity analysis framework. Using several methods

that make different assumptions, rather than a single

method, is a useful strategy to assess the robustness of the

results against violations of the instrumental variable

assumptions.26,27 Further developments in this area

(including some aspects of the MBE itself) will contribute

to expanding the arsenal of tools available to applied

researchers to interrogate causal hypotheses with observa-

tional data.

Supplementary Data

Supplementary data are available at IJE online.
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