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Abstract.—Recent work in estimating species relationships from gene trees has included inferring networks assuming that
past hybridization has occurred between species. Probabilistic models using the multispecies coalescent can be used in
this framework for likelihood-based inference of both network topologies and parameters, including branch lengths and
hybridization parameters. A difficulty for such methods is that it is not always clear whether, or to what extent, networks
are identifiable—that is whether there could be two distinct networks that lead to the same distribution of gene trees. For
cases in which incomplete lineage sorting occurs in addition to hybridization, we demonstrate a new representation of the
species network likelihood that expresses the probability distribution of the gene tree topologies as a linear combination of
gene tree distributions given a set of species trees. This representation makes it clear that in some cases in which two distinct
networks give the same distribution of gene trees when sampling one allele per species, the two networks can be distinguished
theoretically when multiple individuals are sampled per species. This result means that network identifiability is not only
a function of the trees displayed by the networks but also depends on allele sampling within species. We additionally give
an example in which two networks that display exactly the same trees can be distinguished from their gene trees even when
there is only one lineage sampled per species. [gene tree, hybridization, identifiability, maximum likelihood, species tree,
phylogeny.]

Hybridization between distinct species or populations
is often represented using a rooted phylogenetic network
rather than a tree (Huson et al. 2010; Bapteste et al. 2013;
Nakhleh 2013). In much of the literature on networks
representing hybridization, there has been interest in
which trees are displayed by a network, where a network
displays a particular tree if removing some subset of
hybridization edges results in the given tree (Huson
and Scornavacca 2011; Morrison 2011). For example,
several papers investigate finding a network with the
minimum number of hybridization events that displays
two conflicting input trees (Albrecht et al. 2012; Baroni
et al. 2006; Bordewich and Semple 2007; Chen and Wang
2010; van Iersel et al. 2014). These input trees are often
described as gene trees, and could arise, for example, from
estimating trees from sequences from two different loci
(e.g., one mitochondrial and one nuclear gene). However,
it is not always clear in the literature if a displayed
tree in a network refers to a gene tree or a species tree
(representing species history rather than ancestry for a
specific locus).

A number of methods have recently been developed
to infer species networks that explicitly represent species
relationships using a network while relationships at the
gene level are modeled as gene trees within the network
(Jones et al. 2013; Kubatko 2009; Meng and Kubatko
2009; Yu et al. 2011, 2012, 2014; Yu and Nakhleh 2015;
Solís-Lemus and Ané 2016). These models are motivated

by cases in which hybridization and incomplete
lineage sorting are likely to occur simultaneously. In
probabilistic versions of these models, gene trees are
assumed to be strictly tree-like, and although they are
embedded within the network, they do not have to be
displayed by the network. In particular, by modeling
species networks under the multispecies coalescent, all
gene trees have positive probability whether or not
they are displayed by the network. We refer to the
multispecies coalescent model applied to networks as
the Network Multispecies Coalescent (NMSC), and this
model is the focus of this article.

The NMSC is intended to represent the case of two
populations merging so that the hybrid population
is expected to have many individuals with ancestry
from both parental populations. Hybrid speciation due
to changes in ploidy can result in all descendants
of the hybrid having one ancestor, in which case
incomplete lineage sorting would not occur. Our model
is therefore restricted to homoploid hybridizations; see
(Jones et al. 2013) for models applicable to polyploid
hybridization. The NMSC is also not intended to model
horizontal gene transfer, which causes much of the
reticulation in bacterial networks, or recombination, two
other processes that motivate network representations,
including in likelihood frameworks (Strimmer and
Moulton 2000; Jin et al. 2006; Abbott et al. 2010; Nguyen
and Roos 2015).
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An early study concerning the multispecies coalescent
approach to networks assumed that a hybrid species
occurred sometime in the past, and that a single allele
is sampled from a population descended from this
hybrid species (Meng and Kubatko 2009). Under this
assumption, an allele from the hybrid species could
have descended from one of two possible ancestral
populations. This results in the probability of a gene
tree being a linear combination of the gene tree
probabilities from two parent species trees, where the
parent species trees are obtained by removing one of
the two hybridization edges. This reduces the network
into a set of two species trees, and takes advantage of
the fact that probabilities of gene trees given species
trees under the multispecies coalescent can be computed.
This approach is useful in cases where only one allele
is sampled per locus from any species that is the
result of hybridization. However, this approach does
not generalize easily to cases where an ancient hybrid
subsequently speciates or in which more than one allele
is sampled from a hybrid species.

To compute more general likelihoods than the
approach of Meng and Kubatko (2009), Yu et al. (2012)
developed an algorithm that represented a species
network as a multilabeled tree (MUL-tree) where species
descended from hybrids are represented more than once
in the tips of the MUL-tree. The likelihood is computed
by summing over possible assignments of alleles to
these nonuniquely labeled tips. This approach allows
multiple alleles to be sampled within populations as
well as hybrids to occur anciently in the network so that
populations descended from hybrids can subsequently
speciate.

A problem for inferring phylogenetic networks,
however, is that they are not always identifiable. That
is, examples can be found where two networks that
correspond to distinct biological hypotheses about
speciation and hybridization events can give rise to
the same distribution of gene trees. Two networks that
give the same probabilities on all gene tree topologies
can be said to be mathematically indistinguishable.
We might also differentiate between mathematical
distinguishability, by which we mean that two models
lead to distinct probability distributions, and practical
distinguishability, which would mean that one can
perform reasonably accurate model selection from finite
data. In this article, we are primarily interested in
mathematical distinguishability; however, we also do
simulations to address the more practical sense of
distinguishability.

Mathematical indistinguishability means that there
are some sets of networks for which no amount of
data could determine which of the networks gave rise
to the data. Although several positive results have
been found for identifying species trees from gene
trees and sequences evolving on gene trees (DeGiorgio
and Degnan 2010; Allman et al. 2011a,b; Chifman and
Kubatko 2015), the identifiability of networks is a more
challenging problem theoretically. One reason for this
is that the space of phylogenetic networks is much

FIGURE 1. Example of three-taxon network in which parameters are
not identifiable from gene tree topologies. The example is taken from
Yu et al. (2012), Figure 4, doi:10.1371/journal.pgen.1002660.g004.

larger than that of phylogenetic trees, and is infinite
if the number of hybridization events is not bounded.
Networks can also have “ghost” lineages (lineages that
once existed but that went extinct) that can also make
identifiability more difficult for networks than for trees
(Marcussen et al. 2015).

One factor that affects network identifiability is
whether or not gene trees have branch lengths (Pardi
and Scornavacca 2015). If only gene tree topologies are
used, then many distinct networks will give equivalent
gene tree topology probabilities if speciation times and
hybridization parameters are allowed to vary. In some
cases, the distribution of the coalescence times in the
gene trees (which are functions of the gene tree branch
lengths) will depend on hybridization events, thus
allowing it to be possible to distinguish two networks
that could not be distinguished using only topologies.

If only gene tree topologies are used, then the number
of hybridization events that it is possible to infer may
also be limited. An example is given in Yu et al. (2012) in
which a network has three species and two hybridization
events (Fig. 1). In that example, there are three times
corresponding to either speciation or hybridization
events, and there are two hybridization parameters.
With only three observed gene tree topologies and five
parameters, even if the network topology is known,
this results in a system of three (estimated) equations
and five unknowns (one equation for each gene tree
topology). It is therefore not surprising that it is not
possible to determine the five parameters using the gene
tree topologies alone.

Yu et al. (2012) show that for the three-taxon example,
identifiability is improved by allele sampling. If two
alleles are sampled from species B, then there are 15
possible gene tree topologies (since we now have gene
trees with four leaves). The 15 gene tree probabilities can
then be used to estimate the five parameters.

A more difficult case of identifiability might appear
to be that given by Pardi and Scornavacca (2015) (Fig. 2).
In this example, when there is one allele sampled per
species, the distribution of the gene trees, including their
branch lengths, is identical for two different networks.
The authors point out that there are three species trees
displayed by the networks and that the three species trees
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FIGURE 2. Networks N1 and N2 from Pardi and Scornavacca (2015), doi:10.1371/journal.pcbi.1004135.g003. The two networks both display
exactly the same three trees, T1, T2, and T3.

can have identical branch lengths given certain choices
of parameters in the two networks. The authors claim
that “no method based on this definition of likelihood
will be able to discriminate between” the two networks.

While we agree that the likelihood used in Yu et al.
(2012) cannot distinguish the two networks if one allele
per species is used (whether or not branch lengths are
used for this case), we disagree if the data can have
multiple alleles per species and if incomplete lineage
sorting is possible. Some likelihood approaches assume
that sequence alignments evolve on gene trees displayed
by the network (Jin et al. 2006; Park and Nakhleh 2012;
Pardi and Scornavacca 2015), leading to the likelihood:

m∏
i=1

∑
T∈T (Nk)

P(Ai|T)P(T|Nk) (1)

where T (Nk) is the set of trees displayed by network
Nk and Ai is the sequence alignment for the ith locus.
This likelihood sums over the trees displayed by the
network, and is motivated by cases such as horizontal
gene transfer in bacteria and hybrid speciation, in which
gene trees are expected to be trees displayed by the
network.

The likelihood used in Meng and Kubatko (2009) and
Yu et al. (2012) treats gene trees as data, and can be
written instead as

m∏
i=1

∑
Wj

ωjP(gi|Wj) (2)

where Wj are species trees called parental trees in Meng
and Kubatko (2009), and the ωj are weights based on the
probability that lineages take certain paths through the
network. In Meng and Kubatko (2009), in which there is
only one descendant from any hybrid node, the trees Wj
are indeed displayed by the network, whereas in Yu et al.
(2012), the trees Wj are generally MUL-trees which are
not always displayed the network. The approach in this
article can also be written using equation (2), where the
Wj terms are uniquely labeled trees (not MUL-trees), and
can be interpreted as parental trees, similarly to Meng
and Kubatko (2009), but are not necessarily displayed by
the network.

The description of the likelihood in Pardi and
Scornavacca applies to cases where gene trees are
considered known and can only arise as displayed
trees within the network. This assumption might be
reasonable for a number of biological processes such
as hybrid speciation, in which an individual hybrid
can be ancestral to a new species (Abbott et al. 2010),
recombination among viruses, and horizontal gene
transfer. Under the NMSC, gene trees are not necessarily
displayed by the network. In the parental species tree
approach of Meng and Kubatko (2009), parental species
trees are displayed by the network if there is only
one individual descended from each hybrid, or if all
lineages are constrained to coalesce more recently than
a hybridization event (such as for hybrid speciation).
However, for cases where there are several lineages in
a hybrid population, such as is allowed in Yu et al.
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(2012), parental species trees under the NMSC are also
not necessarily displayed by the network.

The likelihood used in Yu et al. (2012) is calculated
over a sum of probabilities based on MUL trees, with
the summation being over allele assignments. Some
allele assignments will correspond to displayed trees,
but some may not, particularly when two lineages
(whether or not they are from the same species) follow
different paths up the network at a hybridization node.
In these cases, the probability cannot be written in terms
of a displayed tree obtained by dropping one of the
hybridization edges. Consequently, equation (1) is not
in general an accurate representation of the likelihood
used in Yu et al. (2012).

In the next section, we describe an alternative method
for representing gene tree probabilities that does not
use MUL trees, and describes the probabilities of gene
trees as linear combinations as in Equation (1), except
that the sum is not necessarily over trees displayed by
the network. This helps to explain why equivalence of
displayed trees is not sufficient for determining that two
networks are indistinguishable.

GENE TREE PROBABILITIES AS LINEAR COMBINATIONS UNDER

DIFFERENT SPECIES TREES

An alternative way of deriving the likelihood of
the network given the gene trees can be obtained
by conditioning on events at hybridization nodes and
branches descended from them and using recursion.
This results in an alternative algorithm to that of Yu et al.
(2012) for computing the likelihood of a gene tree and
results in an expression more similar to the strategy of
Meng and Kubatko (2009) of reducing the probability
given a network to a linear combination of probabilities
given species trees. Following Meng and Kubatko, we
refer to these species trees as parental trees or parental
species trees. For networks with more than one lineage
descended from a hybridization node, the recursion
results in a linear combination including some species
trees that are not displayed by the network. An example
is shown in Figure 3, which gives an intuitive picture of
the procedure. The example generalizes the three-taxon
example in Figure 1 by splitting taxon B into two species
and making hybridization edges to not be horizontal.

At each step in the recursive approach, we condition
on whether lineages either coalesce or do not coalesce, or
we condition on whether lineages go left versus right at a
hybridization node. Each step reduces the network into a
larger number of smaller networks until the process ends
with a collection of species trees. Details of the algorithm
are given in the Appendix.

DISTINGUISHABILITY OF NETWORKS WITH THE SAME

DISPLAYED TREES

Decomposition of Networks N1 and N2

We use the networks N1 and N2 described as
indistinguishable (Pardi and Scornavacca 2015) (Fig. 2).

These networks are slightly modified from Pardi and
Scornavacca (2015) with species written with capital
letters. We then consider a modified version in which
the population descended from both hybrid nodes
undergoes speciation, resulting in species B and E
(networks N′1 and N′2 in Fig. 4). The networks N′1 and
N′2 are similar to N1 and N2, respectively, when there
are two lineages sampled from B (Fig. 2). The number of
lineages sampled per species affects the decomposition
of the networks into parental species trees.

When there are two lineages sampled from species
B in N1, we denote the lineages by b1 and b2.
They fail to coalesce in this branch with probability
g22(�7)=e−�7 . Assuming no coalescence, the lineages
from species B either both go to the left, one goes
leftward and one rightward, or both go to the right
at the lower hybridization node. The cases are listed
in Supplementary Table 1 (available on Dryad). An
example corresponding to case W2 in Supplementary
Table 1 (available on Dryad) is shown in Figure 5. We
use �1 and �2 for the probability that a lineage goes
left at the more recent and less recent hybridization
nodes, respectively, in network N1. Similarly, �3 and
�4 are the probabilities that a lineage goes left at
the more recent and less recent hybridization nodes,
respectively, in N2. These hybridization parameters are
also called inheritance probabilities (Pardi and Scornavacca
2015). The parental species trees W1–W28 referred to in
Supplementary Table 1 (available on Dryad) are given
in newick format in Supplementary Tables 2 and 3
(available on Dryad).

We wish to show that there is at least one gene
tree topology with different probabilities under the two
networks. The calculations are simplest for a gene tree
that is very unlikely, in which case calculations can be
done “by hand.” For example, consider the gene tree
g= ((((a,d),c),b1),b2). The probability of this gene tree
topology conditional on the above parental species trees
is given in Supplementary Table 1 (available on Dryad).

The probabilty of the gene tree g under the two
networks can be written as

PN1 (g)=
14∑

i=1

ωiP(g|Wi), PN2 (g)=
28∑

i=15

ωiP(g|Wi)

where ωi=PNj (Wi|Nj). To illustrate using Supplemen-
tary Table 1 (available on Dryad), the probability of g
under N1 is

PN1 (g)=g22(�7)�2
1g22(�6)g33(�1)g22(�2)/180

+g22(�7)�1(1−�1)�2g22(�1)g22(�3)g33(�2)/180

+···+g21(�7)(1−�1)(1−�2)·0

Here gii(t)=e−
( i

2

)
t from equation (A.2).

The probabilities do not depend on �4, �11, or �12 due
to there only being one lineage on each of these pendant
edges and therefore no probability of coalescence on
these edges. The terms P(g|Wi) are equal to 0 for five
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FIGURE 3. Decomposition of network into parental species trees. Wiggly arrows indicate conditioning on a coalescence event. Solid arrows
indicate conditioning on paths taken at a hybridization node. When a taxon is labeled B&C, this can be interpreted as a leaf where B and C have
been merged, or as a two-taxon tree where there is an infinite branch for the ancestor of B and C, guaranteeing that lineages sampled from B and
C coalesce with each other more recently than with any other taxa.

choices of i under both networks. These cases correspond
to parental species trees that have conditioned on the
event that lineages b1 and b2 have coalesced more
recently than one of the hybridization nodes, which is

impossible for gene tree g. This reduces the number of
parental species trees needed in the sums from 14 to 9.

In addition, the gene tree forces all coalescences to
occur more anciently than the root of the network for
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FIGURE 4. Extension of networks N1 and N2 to allow two species descended from the most recent hybridization node. The figure is modified
from doi:10.1371/journal.pcbi.1004135.g003.

both networks. This means that only one coalescent
history needs to be computed (instead of enumerating
over several coalescent histories for each parental species
tree). Because of the asymmetry in the gene tree, only
one sequence of coalescences, out of

(5
2
)(4

2
)(3

2
)(2

2
)=180,

produces the gene tree, which leads to the denominators
in the probabilities.

When there is only one lineage sampled per species,
N1 and N2 are indistinguishable under the following
conditions (Pardi and Scornavacca 2015):

1. �3=1−(1−�1)(1−�2)

2. �4=�1/�3

3. 0<x<min{�6,�5+�8}
4. 0<y<�7

We pick a particular set of parameters to show that
the networks are distinguishable when two lineages are
sampled in species B. For the choice of parameters

�1=1/3, �2=2/3, �3=7/9, �4=3/7,

x=y=1/2, �i=1, i∈{1,...,12},
the conditions for indistinguishability specified by Pardi
and Scornavacca (2015) are met, and the probability of
gene tree topology g= ((((a,d),c),b1),b2) under the two
networks is

PN1 (g)≈7.7×10−6, PN2 (g)≈7.6×10−6,

Thus, the gene tree probability is approximately 1.4%
higher under N1 than N2. Both probabilities are small
because this gene tree is quite unlikely for both networks,
requiring no coalescences to occur except more anciently
than the root. Nevertheless, it shows that the two
networks have different gene tree distributions.

Rather than using gene tree probabilities, clade
probabilities could also be used to distinguish the two
networks for many parameter values. Let �6 and �8
both be very large and let x be very small, so that any
two lineages on branches with these lengths will almost
certainly coalesce. Similarly, let �7 be very small, so
that b1 and b2 are very unlikely to coalesce. For these
parameters, with high probability, {b1,b2} is a clade on
the gene tree when, and only when, both lineages both
go to the left or both go to the right at the more recent
hybridization node. Then using the above values of
�1 and �3, the probability that a gene tree has clade
{b1,b2} is approximately �2

1+(1−�1)2=45/81 under N1
and is approximately �2

3+(1−�3)2=53/81 under N2.
The clade probability will therefore distinguish the two
networks.

We emphasize that if there is only one lineage sampled
per species, then there is at most one lineage present at
each hybrid node for N1 and N2. In this case, the methods
of Meng and Kubatko (2009) can be applied to calculate
gene tree probabilities, but we agree with Pardi and
Scornavacca (2015) that N1 and N2 are indistinguishable
in this situation.
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a b ed c
A B ED C

a b1 b2d ca
A BD CA

N1

a b e d c
A B E D C

a b1 b2 d ca
A B D CA

N2

a b ed c
A B ED C

N ′1

a b e d c
A B E D C

N ′2

FIGURE 5. Gene trees in networks that display the same trees. Here N1 and N2 display the same trees with the same branch lengths given
suitable choices of parameters. Similarly, N′1 and N′2 display the same trees. Two gene trees are shown with coalescence times that are compatible
with both N1 and N2, and another two gene trees are shown with coalescence times compatible with both N′1 and N′2 so that knowing the
coalescence times in the gene tree does not determine which network it evolved in. The gene trees in this figure cannot be represented as having
evolved in a species tree displayed by the networks. The gene tree in N1 corresponds to case W2 where b1 goes left, b2 goes right, then left. The
gene tree in N2 corresponds to case W16, where both go left, then b1 goes left, b2 goes right.

FIGURE 6. Two networks taken from Figure 2 of Yu and
Nakhleh (2015) that display the same trees and triplets. The networks
are distinguishable using gene tree probabilities but not using rooted
triple probabilities.

Rooted triples and quartets have also been used to
reconstruct or infer networks under the NMSC (Yu and
Nakhleh 2015) and Solís-Lemus and Ané (2016). Yu and
Nakhleh (2015) give an example of networks that are
not distinguishable using probabilities of triples in the
gene trees that have evolved in the network (Fig. 6). They
give an explanation that the networks display the same
sets of triples. We agree that for this particular example,
triples cannot be used to distinguish their networks �1
and �2,. However, for the case of N1 and N2, triples can
be used to distinguish the networks when there are two
lineages sampled from B, even though N1 and N2 display

the same set of rooted triples. For example, using the
previous parameters, the probability of triple ((a,b1),b2)
is approximately 0.081 under N1 and approximately
0.089 under N2.

As an alternative explanation for why triples cannot
be used to distinguish �1 and �2, it is noticed that
equating triple probabilities for the two networks,
such as P�1 [((a,b),c)]=P�2 [((a,b),c)] results in a system
of 12 equations. Removing linear dependencies, such
as P�i [((a,b),c)]=P�i [((a,b),d)] and that for any three
taxa, the sum of the three rooted triple probabilities
sums to 1. Removing such linearly dependencies
from the system results in five linearly independent
equations for a system with nine parameters, making
the system underdetermined. This makes it possible to
find parameters for �2 that will make the rooted triple
probabilities match those for �1.

Probabilities of unrooted quartets can also be
calculated, and again, these distinguish the networks
N1 and N2 when there are two lineages sampled from
species B. For the same parameters as above, with �i=1,
x=y=1/2, �1=1/3, and �2=2/3, the probability that
a rooted gene tree displays the quartet ((a,b1),(d,b2) is
approximately 0.10 and 0.14 for networks N1 and N2,
respectively. We note this example in particular because
the recently introduced method for inferring networks
from quartets (Solís-Lemus and Ané 2016) cited the
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results in Pardi and Scornavacca (2015) as a reason to not
apply the method to level-k networks for k >1 (networks
in which an edge can appear in more than one cycle of
the graph, such as N1 and N2).

The example from Yu and Nakhleh (2015) suggests that
caution is indeed needed, since there are cases where
trees but not summary statistics such as rooted triples
can distinguish the networks. The example of N1 and
N2 with multiple lineages per species, however, suggests
that even more complicated networks are potentially
distinguishable from rooted triples or quartets. In
the Yu and Nakhleh (2015) example, we suspect that
distinguishability would be achieved by sampling
additional lineages. Their example is somewhat different
from that of N1 and N2 in that the different networks
do not have the same species descended from the
hybrid, and the number of descendants of the hybrid
is not the same for the two networks. The networks
are also level 1, with only one hybridization event,
and distinguishability is a problem not because of the
complexity of the networks but rather because of the
small number of taxa and resulting small set of linearly
independent rooted triple probabilities for the number
of parameters.

It is also possible to have distinguishability between
two networks that each display the same set of trees
when there is only one lineage sampled per species.
In particular, the networks N′1 and N′2 are essentially
identical to N1 and N2, respectively, when the pendant
branches leading to species B and E have length 0. In
this case, the most recent ancestral population to B and
E is a single population, and the lineages b and e are
two lineages from the same population. As a result, the
distributions of gene tree topologies under N′1 and N′2
are identical with those of N1 and N2 when lineage b is
replaced by b1 and lineage e is replaced by b2. Similarly,
the networks N′1 and N′2 both display the trees T′1,T′2, and
T′3 (Fig. 4), which are equivalent to T1,T2, and T3 (Fig. 2),
respectively, when B is replaced by (B,E). The length of
the pendant edges does not affect gene tree probabilities
when one lineage is sampled per species. Consequently,
gene tree g′ = ((((a,d),c),b),e) has the same probabilities
under N′1 and N′2 ((((a,d),c),b1),b2) has under N1 and N2,
respectively: PN′i (g

′)=PNi (g) for i=1,2.
The important point is that there exist pairs of

networks that display the same trees but can be
distinguished under the NMSC model, even when there
is only one lineage sampled per species. This example
demonstrates that showing that two networks display
the same trees (including branch lengths and inheritance
probabilities) is not sufficient for showing that the
networks are indistinguishable. In this particular case,
the networks N′1 and N′2 are also distinguishable using
rooted triplets, quartets, or clades, in spite of the two
networks displaying exactly the same rooted triplets,
quartets, and clades. A crucial reason for the ability
to distinguish networks is the following: if there is
more than one lineage descended from a hybrid node
(either due to the hybrid population speciating or due

to sampling more than one lineage from a population
descended from a hybrid), there can exist gene trees that
are not embedded in a tree displayed by the network.

SIMULATION

Distinguishability of N1 and N2 Using Model Selection
To illustrate the ability of network methods to

distinguish two networks that display the same trees, we
simulated gene trees from N1 with two and three alleles
sampled from species B and one allele sampled from
each of the other species. We used phylonet (Than et al.
2008) to compute likelihood scores by optimizing branch
lengths and hybridization parameters assuming the
fixed network topologies N1 and N2. The network branch
lengths were based on using the network N1 (Fig. 5) with
the height of the network being 10 coalescent units. The
networks used for simulation in hybrid-Lambda (Zhu
et al. 2015) are, in coalescent units:

(((A:5,(B:3)h1#.5:2)s2:5,((D:5.6,(h1#.5:1.3)h2#.6:1.3)s3:2.3,

(h2#.6:.1,C:4.4)s4:3.5)s5:2.1)s6:10,O:20)r;
(((A:5,(B:1)h1#.5:4)s2:5,((D:5.6,(h1#.5:3.3)h2#.6:1.3)s3:2.3,

(h2#.6:.1,C:4.4)s4:3.5)s5:2.1)s6:10,O:20)r;
where species O is an out-group. In this notation, all

internal nodes (both hybridization and speciation nodes)
are labeled. After the hybridization nodes, hi, the first
number represents the probability of going “left,” and
the second number represents the branch length from
the hybridization node to the next node (either left or
right). Thus, for both networks used in the simulation,
the probability of going left for h2 is �2=0.6. In the
extended newick string, the branch length after the first
(second) instance (reading from the left) of hi is the length
of the branch leading from hi to the left (right) parent
of hi.

The networks have identical topologies, inheritance
probabilities, and branch lengths, except that �7=3.0 for
the first network and �7=1.0 for the second network. The
second network has a higher probability that the lineages
sampled from B will fail to coalesce more recently than
the most recent hybridization node, and therefore has a
higher level of incomplete lineage sorting. We therefore
refer to this as the “high ILS” network. Gene trees on
this network are much less likely to have monophyly of
lineages sampled from B. The other network is referred
to as the “low ILS” network.

For each set of gene trees, the likelihood under
the estimated parameters was compared with the two
networks and the proportion of times that N′1 had a
higher likelihood than N′2 was reported. The simulation
was performed with 50,100,200 and 400 independent
loci. For each gene tree, alignments with 500 sites were
simulated using seq-gen (Rambaut and Grassly 1997)
under the GTR+�+I model with base frequencies of
0.3,0.2,0.2, and 0.3 for A,C,G, and T, respectively, with
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FIGURE 7. Performance of phylonet for distinguishing networks N1 and N2 when data was simulated from N1, with the indicated number
of alleles sampled from species B and all other species having one allele sampled. The fraction of times out of 300 iterations that the N1 had
a higher likelihood than N2 is reported when both networks were fixed and phylonet optimized branch lengths and inheritance probabilities.
“High ILS” refers to �=1.0, and “Low ILS” refers to �7=3.0, with all other parameters kept the same.

four rate categories and 10% invariable sites. As is
typical with multilocus simulations, gene trees were
independent with no recombination within loci. An out-
group was added to the network with the MRCA of
the out-group and in-group taxa being 10 coalescent
units deeper than the root of the in-group taxa. This
ensures extremely high probabilities that the in-group
taxa are monophyletic in the gene trees. Gene trees were
estimated using phyml (Guindon et al. 2010) under the
GTR+�+I model assuming four rate categories and
estimating all other parameters, and using default tree
searches. Unrooted gene trees estimated by phyml were
rooted using the out-group, and the out-group was then
removed before inputting the estimated rooted gene
trees into phyml.

Not surprisingly, increasing the number of loci
increased the ability to distinguish the two networks
(Fig. 7). Increasing the number of alleles (from 2 to
3) increased the ability of maximum likelihood to
distinguish the networks. An intuitive explanation is that
with more alleles, it is more likely that lineages cannot
be embedded in a tree displayed by the network. Having
the higher level of ILS lineages (obtained by having
a smaller value for �7) greatly increases the ability of
phylonet to distinguish the two networks, and this also

has the explanation that since B lineages are less likely to
have coalesced more recently than the first hybridization
node, gene trees in the high ILS case are less likely to be
embedded in a tree displayed by the network than gene
trees in the low ILS case. The fact that increasing allele
sampling can improve inference of species relationships
has been emphasized in the species tree literature as well
(Maddison and Knowles 2006; DeGiorgio and Degnan
2014; Heled and Drummond 2010; Huang et al. 2010).
In this case, however, sampling multiple alleles not only
improves inference, but is also crucial for being able to
distinguish the networks at all.

The “high ILS” case, with a branch length of 1.0
coalescent units, is typical for cases known to have
significant amounts of ILS For example, the level of
gene tree incongruence, for which approximately 60–
80% of trees have humans and chimpanzees being
the most closely related among humans, chimpanzees,
and gorillas (Ebersberger et al. 2007) suggests an
internal branch length of between 0.5 and 1.2 coalescent
units (Ané 2010; Degnan 2010). The probability that
two lineages coalesce within 1.0 coalescent units is
1−e−1.0=0.63, whereas the probability that two lineages
coalesce within 3.0 units (the low ILS case in our
simulations) is 0.95. Thus, for the low ILS case with
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two alleles from B, more than 19 in 20 gene trees evolve
on a tree displayed by the network, making it difficult
to distinguish the two networks; for the high ILS case,
using �1=0.5, the proportion of gene trees evolving
on a tree not displayed by the network is close to
(1−0.36)(0.5)≈32%.

COMPARISON OF PHYLONET AND HYBRID-COAL

Both phylonet and hybrid-coal compute probabilities
of gene tree topologies given species networks, but the
two programs use different algorithms. The program
hybrid-coal uses a recursion that allows representing the
gene tree topology probability as a linear combination
of probabilities given species trees. In contrast, phylonet
initially represented probabilities as a sum over
probabilities of coalescent histories given MUL-tree
representations of networks, and more recently also
implemented the ancestral configuration approach (Wu
2012), which tends to run more quickly than the
coalescent history approach for larger trees (roughly
more than 10 taxa, depending on tree shape). There
are also many features in phylonet not implemented in
hybrid-coal, such as algorithms to infer the network from
a set of gene trees, searching over network topologies,
branch lengths, and inheritance probabilities, and using
branch lengths in the gene trees.

The main idea of hybrid-coal is compatible with
both the coalescent history and ancestral configuration
approaches, since once the parental species trees have
been enumerated, either coalescent histories or ancestral
configurations could be used to compute the probability
of the gene tree given the parental species tree. Currently,
only the coalescent history approach is implemented
in hybrid-coal, but the ancestral configuration method
could be added in the future. In comparison with
phylonet, hybrid-coal breaks down the network into a
larger number of smaller problems, with the parental
species trees tending to be smaller trees than the MUL-
tree representation of the network, which can have
more leaves than there are taxa. This could potentially
be an advantage in future parallel programming
implementations of the algorithm.

The main advantage for having the new algorithm in
hybrid-coal is perhaps the theoretical insight it gives in
terms of representing gene tree probabilities in terms
of parental species trees. This appears to be a fairly
intuitive way to think about the relationship between
gene trees and species networks (Holland et al. 2008;
Meng and Kubatko 2009), although we have shown
that perhaps counterintuitively, the parental species
trees are often not displayed by the network. We hope
that future theoretical work will make use of the
representation of gene tree probabilities as mixtures
arising from different species trees. In other contexts,
mixtures of trees have proved identifiable (Allman et al.
2012; Rhodes and Sullivant 2012), and this might be
a useful approach for thinking about identifiability of
networks.

DISCUSSION

The Effect of Branch Lengths
Consideration of branch lengths in the gene trees can

lead to the ability to distinguish networks which could
not be distinguished using only topologies. For example,
if a species history has multi-edges—cases where two
nodes are directly connected by two distinct edges—
it can still be possible to estimate parameters of this
model and to distinguish it from a model in which
multi-edges are collapsed. An example of networks with
multi-edges is shown in Figure 8. Biologically, a multi-
edge could depict a population temporarily splitting
into two populations with no gene flow followed
by the populations merging at a later time before
either population splits. This type of history would be
desirable to be able to estimate since it could occur, for
example, due to glaciation or other episodic events that
temporarily divide populations (Comes and Kadereit
1998; Marshall et al. 2009).

Coalescence times are potentially useful in these
cases because multi-edges affect the distribution of
coalescence times. Theoretically, a multi-edge will result
in a bimodal distribution of coalescence times. In
practice, estimated coalescence times are highly variable
and subject to estimation error, so that a bimodal
signature might be difficult to detect. However, this
does not affect the point that multi-edges are potentially
inferable given ideal data.

The example from Figure 8 essentially arises from
the three-taxon network in Figure 1 when taxon A
is dropped and �=0. The example illustrates that
this network has potentially identifiable parameters
when using branch lengths in the gene trees even
when topologies cannot identify the parameters in the
network.

A deeper difficulty with identifiability is that it is
not clear that hybridization can be distinguished from
other population genetic processes that can result in
gene tree incongruence and complicated distributions of
coalescence times. For example, alternating bottlenecks
and population expansions can result in similar
multimodal distributions of coalescence times as that
found in Fig. 8 (DeGiorgio et al. 2011). Bottlenecks
can also be a problem in practice for distinguishing
two networks since a smaller population size makes
incomplete lineage sorting less likely, thereby making
gene trees more likely to be displayed by the network.
The extreme case is a bottleneck of size one, which can
occur in hybrid speciation, and guarantees that all gene
trees are displayed by the network.

As another example, it is well known that the
multispecies coalescent on a three-taxon tree with no
ancestral population structure predicts that one triplet
is most frequent while the other two triplets are tied
in probability, and that these tied probabilities are less
frequent (Nei 1987). Consequently, a test of equality
of proportions is sometimes used for the less frequent
triplets as a goodness of fit test for the multispecies
coalescent (Degnan and Rosenberg 2009; White et al.
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FIGURE 8. Coalescence times for networks with multi-edges. a) The leftmost species history is a two-taxon species tree. The middle and right
species histories have one or two sets of multi-edges, reflecting species diverging and subsequently hybridizing without any other speciation.
Histograms of 100,000 coalescence times for single genes sampled from species A and B are depicted in (b)–(d). (c) and (d) correspond to
the middle and rightmost species histories, respectively. Simulations are based on �i= i/2 coalescent units and were done in the program ms
(Hudson 2002).

2009; Ané 2010; Cranston 2010; Song et al. 2012).
Asymmetry in the less frequent triplet can be explained
by hybridization, but could also be explained by
ancient population structure (Slatkin and Pollack 2008).
Distinguishing hybridization from processes such as
ancient population structure and changing population
sizes might be at least as challenging as distinguishing
one hybridization network from another assuming that
population structure and population sizes that do not
fluctuate.

Summary
To summarize our results, we find that

• Two networks that display the same trees,
including branch lengths and inheritance
probabilities, might or might not be
distinguishable under the NMSC in the sense
of leading to the same probability distribution
of gene tree topologies. In particular, there are
examples where two networks display exactly the
same trees, clades, triples, and quartets, yet are
distinguishable from the probabilities of trees,
clades, triples, and quartets.

• Network distinguishability can be improved in
some cases by using branch length information
and/or by sampling more than one individual per
species descended from a hybrid population.

• Higher levels of incomplete lineage sorting can
make inference of hybridization events easier in
some cases.

• A desirable property of a network inference
method is to be able to distinguish networks that
are in fact distinguishable, even when they display
the same trees. We have shown that maximum
likelihood can do this in at least some cases.

We agree with Pardi and Scornavacca (2015) that
identifiability is an important topic when trying to
infer networks. Much of the effort in the literature
on hybridization networks has focused on constructing
networks that display a set of input trees, which are
treated as data (Bordewich and Semple 2007; Holland
et al. 2008; van Iersel and Linz 2013). From this point
of view, it is crucial to understand when two networks
might display the same set of trees.

Much less work has been done on what we are
calling the NMSC, which has only recently become
an active area of research. We have shown that
identifiability results from the combinatorial point of
view do not necessarily immediately transfer to the
NMSC framework, and that many cases thought to be
indistinguishable turn out to be distinguishable using
this probabilistic modeling approach. An analogy is that
in the case of trees (rather than networks), unrooted trees
might not be expected to have any information about
the root of the trees from which they came. However,
under a probabilistic model, unrooted trees can have
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information about the root (Steel 2012), and in particular,
under the multispecies coalescent, the distribution of
unrooted trees determines the rooted species tree when
there are five or more taxa (but not for four taxa) (Allman
et al. 2011b).

We hope that there will be more of an intersection
in future phylogenetic network research between
combinatorial approaches and the NMSC framework.
A particular problem in need of more theoretical work
is that of distances between networks. In particular,
standard definitions of distance between networks, such
as cluster-based definitions which extend Robinson–
Foulds distances (Robinson and Foulds 1981) to networks
(Cardona et al. 2009), return a distance of 0 between N1
and N2 and between N′1 and N′2. This makes it difficult to
determine whether an inferred network is closer to N1
versus N2 (or N′1 vs. N′2), even for methods capable of
distinguishing these networks.

The increased ability to distinguish networks using
probabilistic models is good news for biologists
interested in being able to infer biologically meaningful
networks. However, much is still not understood about
the space of networks in which we are interested
in making inferences, and more theory is needed to
determine what is and what is not distinguishable
or identifiable under the NMSC. We showed that the
particular example given by Pardi and Scornavacca
(2015) turned out to be distinguishable if there is more
than one lineage sampled from species B, and that
generally there are cases of two networks that display
exactly the same species trees (including branch lengths)
that are nevertheless distinguishable under the NMSC,
even with one lineage sampled per species.

However, we did not establish that N1 and N2 are
distinguishable from all networks on four taxa, even if
the number of hybridization nodes is capped. Nor did
we establish that if, say, the topology of N1 is known, then
the parameters of the network would be identifiable.
Here lack of identifiability would mean that two distinct
sets of branch lengths and/or hybridization parameters
(�i), lead to the same distribution of gene trees. Since
networks of any complexity can be conceived, we can
construct networks on n taxa with more parameters than
there are gene tree topologies (assuming a fixed number
of alleles sampled per species), and this will certainly
result in lack of identifiability of the parameters from
gene tree topologies even if the network topology is
known. The challenge remains to determine what is and
what is not identifiable for networks under the NMSC.
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APPENDIX

Recursive Method to Compute Gene Tree Probabilities Given
Species Networks

In this section, we introduce a novel method to
compute gene tree probabilities of a given species
network. Nodes of the network are visited in a modified
post-order traversal so that the algorithm works on the
deepest nodes descended from hybrid nodes first and
works from this node toward the root until all hybrid
nodes are eliminated. We introduce two operations to
decompose a network into reduced networks that have
a smaller number of edges or nodes. The post-order
traversal ensures that we perform the simplification
operations in a correct order—a node is never operated
on before removing its descendant internal nodes.

Decomposition Operations
In this section, we propose two operations to simplify

a complex phylogeny structure into simpler structures
with fewer hybridization events. To demonstrate this
procedure, we first consider simple cases where
one individual is sampled from each population at
the present. We first make several restrictions and
assumptions for the gene tree T and the network W in
this section:

• The gene tree T and the network W are rooted.

• Gene tree T and network W have the same number
of external edges.

• Gene tree T is binary.

• An interior node of W can only have at most two
parent nodes; a hybrid node refers to an internal
node of W which has two parent nodes.

http://dx.doi.org/10.5061/dryad.t2d38
https://github.com/hybridLambda/
https://github.com/hybridLambda/
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• We do not consider the case that a hybrid node is
also a leaf node.

The network W is initially reduced to a set of simpler
networks (SG(W)) in a single step in the reduction
process. Let P(T|W) be the probability of gene tree T
given a species network W, by the law of total probability,
we have the following:

P(T|W)=
∑

w∗∈SG(W)

P(T|W∗=w∗,W)P(W∗=w∗|W)

=
∑

w∗∈SG(W)

P(T|W∗=w∗)P(W∗=w∗|W),

(A.1)

where W∗ is a random variable that depends on W.
For any w∗ ∈SG(W), w* implies either a particular

parental branch that some lineages have followed at
a hybrid node or some specific coalescences that have
occurred beneath a hybridization node.

Prior to decomposing a network, nodes are ranked
from the leaves of the network to the top: tip nodes have
rank one; an interior node’s rank is one plus the highest
rank of its child nodes.

The key to simplifying a network is to remove the
interior nodes of the network in a specific order, along
with the branches that are connected to the node. Here
we define several functions to assist us identifying which
nodes should be removed first. Let V be the set of nodes
in the network; for v∈V, let r(v) be the rank of v (the
number of edges from v to the root), and p(v) be the
number parent node of v. We use indicator function h(v)
to identify if a node v is a hybrid node:

h(v)=
{

1, if p(v)=2;
0, otherwise.

Let hd(v) and t(v) be the indicator functions that take
values

hd(v)=
{

1, if v is a descendant node of a hybrid node;
0, otherwise;

and

t(v)=
{

1, if v is a leaf node;
0, otherwise

respectively.
Thus, we can apply Algorithm 1 to find which node

should be removed from the network: If the algorithm
returns value−1, it means that W is already tree-like, and
does not need to be simplified; otherwise, it returns the
index of the node that we need to perform the following
operations.

Decomposition operation 1.—If the chosen node is an
interior descendant node s of a hybrid node, then this
implies that s has a single parent node (otherwise s is a
hybrid node), and child nodes of s are the leaf nodes of
W (since s has the lowest rank beside the tips). The first

Algorithm 1 Algorithm to choose the index of the node to be removed
in order to simplify a network.

1. index=|V|−1; I=1;
2. for I < |V| do
3. if (h(vI)+hd(vI))∗(1−t(vI))≥1 and r(vI)<r(vindex)

then
4. index= I;
5. end if
6. I= I+1;
7. end for
8. if I=|V|−1 then
9. return index=−1

10. else
11. return index
12. end if

step of operation 1 is to remove s from W, along with all
of the edges that are connected to s.

Let D denote all of the leaf nodes descended
from s. We now enumerate all possible ways to
partition D. For example, if D={�1,�2,�3}, let D′
be one of the possible partitions of D. D′ could
be {{�1},{�2},{�3}}, {{�1,�2},{�3}}, {{�1},{�2,�3}},{{�1,�3},{�2}} or {{�1,�2,�3}}. We treat every element
of any D′ as a new leaf node. In the second part of
operation 1, we create a new graph w∗, by connecting
the elements of D′ to the parent node of s. Notice, if the
element of D′ contains more than one leaf node, this
implies that by changing from graph W to w∗, we need
to coalesce these leaves on the branch that connects s
and its parent node.

To calculate the probability of these events, we let
u=|D|, and v=|D′| and t be the branch length from s
to its parent node. Then the probability of u lineages
coalesce into v lineages within time t is (Tajima 1983;
Saunders et al. 1984; Takahata and Nei 1985; Rosenberg
2002; Degnan and Salter 2005):

gij(t)=
i∑

k=j

e−
(k

2

)
t (2k−1)(−1)k−j

j!(k−j)!(j+k−1)
×

k−1∏
y=0

(j+y)(i−y)
(i+y)

.

(A.2)
Therefore, we have:

P(W∗=w∗|W)= w
c

gij(t)Iw∗ (T), for w∗ ∈SG(W), (A.3)

where c is the number of ways for i lineages to coalesce
into j lineages, which is equal to

∏i
k=j

(k
2
)
, and w is the

number of sequences of coalescences resulting in the
same topology with i lineages coalescing into j lineages.

This is equal to w= (i−j)!∏i−j
k=1

1
1+ak

, where aj is the
number of interior nodes that are descended from the
coalesced nodes (Degnan and Salter 2005), and c is the
number of ways for i lineages to coalesce into j lineages,
which is equal to

∏u
i=v

( i
2
)
. The indicator function is
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defined as

Iw∗ (T)=
{

1, if the lineages in w∗ can lead to topology T;
0, otherwise.

For instance, if the gene tree is (((a,d),c),b) and w∗=W1
in Fig. 3, then Iw∗ (T)=0.

Operation 1 removes an internal node of network W.
Therefore, any reduced network w∗, w∗ ∈SG(W), has
fewer interior nodes than network W.

Decomposition operation 2.—Before applying operation 2
on a hybrid node h of W, we need to make sure that
operation 1 has been applied to all of the interior nodes
descended from h. This implies that all of the child nodes
of h are the leaf nodes of W. Let pL and pR be the two
parent nodes of h. We use H to denote the set of child
nodes of h and CH to denote the collection of all of the
subsets of H. The first step of operation 2, is to remove h
from W, and all of the edges connected to h.

We then introduce two new nodes, hL and hR. For any
L∈CH , we have a new graph w∗, connect l∈L to hL, then
connect hL to pL, and connect r∈H\L to hR, then connect
hR to pR. Let mL=|L|, mR=|H\L|, and m=|H|. The
parameter � is the probability that one lineage is attached
to pL. Thus, we obtain the set of simpler networks SG(W)
and the probabilities P(W∗=w∗|W) for any w∗ ∈SG(W):

P(W∗=w∗|W)=�mL (1−�)mR , where mL+mR=m. (A.4)

Operation 2 removes an internal node of network
W. The newly added nodes hL and hR are effectively
external nodes: as all of the nodes descended from hL
and hR are leaf nodes, we can treat hL and hR as leaf
nodes, but sampling multiple lineages from each of
them. Therefore, any reduced network w∗, w∗ ∈SG(W),
has fewer interior nodes than network W.

Simplifying a Network Recursively
Operations 1 and 2 are applied recursively on any

networks in SG(W) until all of the simplified network
structures are tree-like. Gene tree probabilities can be
computed using either coalescent histories (Degnan and
Salter 2005) or ancestral configurations (Wu 2012). The
approach outlined in this article will therefore reduce
the probability of a gene tree, given a species network, to
a linear combination of gene tree probabilities of given
species trees.

Let AGT(W) be an ordered list of directed graphs (trees
or networks). Then |AGT(W)| is the number of elements
in the list. Here we borrow the concepts of set operations
“
⋃

” and “\” for our use. Let AGT(W)
⋃

SG(W) denote
gradually appending the elements of SG(W) to the end
of the list AGT(W), then indexing the new elements of
AGT(W) from |AGT(W)|+1 to |AGT(W)|+|SG(W)|. For
an element G of |AGT(W)|, we define operation AGT(W)\
{G}, as removing the element G from AGT(W), the index
of any element behind G is now one less.

Algorithm 2 Recursive algorithm for simplifying a network.

1. Initialize AGT(W)={W} and I=1;
2. while I≤|AGT(W)| do
3. Apply Algorithm 1 to GI , GI ∈AGT(W) to choose

the index of the node that needs to be removed;
4. if index is positive then
5. if p(vindex) is 1 then
6. Perform decomposition operation 1 on vindex,

obtain SG(GI).
7. else
8. Perform decomposition operation 2 on vindex,

obtain SG(GI).
9. end if

10. AGT(W)←AGT(W)\{GI}.
11. AGT(W)←AGT(W)

⋃
SG(GI).

12. else
13. I= I+1;
14. end if
15. end while

Then we apply Algorithm 2 to simplify a network W,
and then compute the probability for gene tree T.

During the decomposition process, different
sequences of removing the hybrid nodes may lead
to the same subspecies trees W ′. For W ′ ∈AGT(W),
we use C(W,W ′) to denote the collection of ways to
decompose W into W ′. Each sequence of decomposition
corresponds to a unique weight ωc. Thus by simplifying
Equation (A.1), we have:

P(T|W)=
∑

W ′∈AGT (W)

P(T|W∗=W ′,W)
∑

c∈C(W,W ′)
ωc. (A.5)

Figure 3 illustrates the decomposition of a species
network on four taxa with two hybridization nodes.

Notice that even though W1 and W14 have the same
topology, the branch lengths of these two trees differ. We
consider them to be different species trees. For different
gene trees, according to coalescent events, AGT(W2

IV)
may differ. For example, if the gene tree is (((a,d),c),b),
AGT(W2

IV)={W ′4,W ′5,...,W ′12}, but when the gene tree is
(((a,b),c),d), AGT(W2

IV)={W ′1,W ′2,...,W ′12}.
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