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Abstract

The central amygdala (CeA) GABAergic system is hypothesized to drive the development of 

alcohol dependence, due to its pivotal roles in the reinforcing actions of alcohol and the expression 

of negative emotion, anxiety and stress. Recent work has also identified an important role for the 

CeA corticotropin-releasing factor (CRF) system in the interaction between anxiety/stress and 

alcohol dependence. We have previously shown that acute alcohol and CRF each increase action 

potential-independent GABA release in the CeA via their actions at presynaptic CRF type 1 

receptors (CRF1s); however, the shared mechanism employed by these two compounds requires 

further investigation. Here we report that acute alcohol interacts with the CRF/CRF1 system, such 

that CRF and alcohol act via presynaptic CRF1s and P/Q-type voltage-gated calcium channels to 

promote vesicular GABA release and that both compounds occlude the effects of each other at 

these synapses. Chronic alcohol exposure does not alter P/Q-type voltage-gated calcium channel 

membrane abundance or this CRF1/P/Q-type voltage-gated calcium channel mechanism of acute 

alcohol-induced GABA release, indicating that alcohol engages this molecular mechanism at CeA 

GABAergic synapses throughout the transition to dependence. Thus, P/Q-type voltage-gated 

calcium channels, like CRF1s, are key regulators of the effects of alcohol on GABAergic signaling 

in the CeA.
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1. Introduction

The central amygdala (CeA) is hypothesized to drive the development of alcohol 

dependence, due to its pivotal roles in the reinforcing actions of alcohol and the expression 

of negative emotion, anxiety and stress (Gilpin et al., 2015; Koob and Volkow, 2010). 

Alcoholics often cite anxiety and stress as strong motivators for drinking (Litman et al., 

1977, 1983; Ludwig and Wikler, 1974; Sinha, 2009), and both cue-elicited craving and 

intoxication increase the amygdalar activity of alcohol-dependent patients (Koob and 
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Volkow, 2010). The CeA comprises an interconnected network of γ-aminobutyric acid 

(GABA) interneurons and GABA projection neurons (Haubensak et al., 2010; Lopez de 

Armentia and Sah, 2004; Marek et al., 2013), and this inhibitory drive regulates the 

escalated alcohol intake and anxiety-like behavior of alcohol-dependent rats (Gilpin et al., 

2015; Koob and Volkow, 2010; Rassnick et al., 1993).

Recent work has also identified an important role for the CeA corticotropin-releasing factor 

(CRF) system in the interaction between anxiety/stress and alcohol dependence (Gilpin et 

al., 2015; Rassnick et al., 1993; Roberto et al., 2010b). Notably, CRF is co-released with 

GABA in the CeA (Partridge et al., 2016), typically in response to neuronal burst firing 

(Rainnie et al., 1992; Yu and Shinnick-Gallagher, 1998), and the expression levels of CRF 

and its type 1 receptor (CRF1), as well as the basal concentration of GABA, are increased in 

the CeA of alcohol-dependent rats (Roberto et al., 2010b). Moreover, CeA-specific CRF1 

antagonism reduced the alcohol intake (Funk et al., 2006; Varodayan et al., 2017b) and 

anxiety-like behavior (Rassnick et al., 1993) of alcohol-dependent rats. Critically, we have 

previously shown that acute alcohol and CRF each increase action potential-independent 

GABA release in the CeA via their actions at presynaptic CRF1s (Roberto et al., 2010b); 

however, the shared mechanism employed by these two compounds to activate CeA 

GABAergic synapses is not fully understood.

GABA release is strictly controlled by calcium influx through voltage-gated calcium 

channels, with the different channel subtypes displaying distinct distribution patterns based 

on their physiological roles (Catterall and Few, 2008). P/Q- and N-type voltage-gated 

calcium channels couple to presynaptic vesicles to promote neurotransmitter release, while 

L-type voltage-gated calcium channels are primarily somatodendritic (Hell et al., 1993; 

Sinnegger-Brauns et al., 2009). Previous studies have implicated voltage-gated calcium 

channels in several alcohol-related behaviors, including alcohol consumption and 

withdrawal syndrome (Newton et al., 2004; Varodayan et al., 2017b; Walter and Messing, 

1999; Watson and Little, 2002). Multiple groups have also reported that alcohol both inhibits 

(Belia et al., 1995; Maldve et al., 2004; Mullikin-Kilpatrick and Treistman, 1993; 

Pietrzykowski et al., 2013; Xiao et al., 2005; Zucca and Valenzuela, 2010) and enhances 

(Belia et al., 1995; Pietrzykowski et al., 2013; Simasko et al., 1999) voltage-gated calcium 

channel activity, and alcohol’s actions on voltage-gated calcium channels regulate GABA 

release in several brain regions (Hirono et al., 2009; Varodayan et al., 2017b; Zucca and 

Valenzuela, 2010). Similarly, the CRF system can inhibit (Tao et al., 2008, 2009, 2006) or 

enhance (Yu and Shinnick-Gallagher, 1998) voltage-gated calcium channel activity to 

modulate CeA synaptic transmission (Krishnan et al., 2010; Pollandt et al., 2006).

Given the critical role of the CeA in the reinforcing actions of alcohol and the transition to 

dependence, a clearer understanding of the shared neurobiological mechanisms driving its 

activation by acute alcohol and the CRF/CRF1 system may provide insight into the 

development of this disease and promote therapeutic strategies for alcohol use disorders. 

Here we investigated the hypothesis that voltage-gated calcium channels may represent 

novel mechanisms by which acute alcohol and CRF co-stimulate CeA GABAergic synapses, 

and explored their potential neuroadaptation in the transition to alcohol dependence.
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2. Material and methods

All the procedures in this study were approved by The Scripps Research Institute (TSRI) 

Institutional Animal Care and Use Committee and were consistent with the National 

Institutes of Health Guide for the Care and Use of Laboratory Animals.

2.1. Chronic intermittent ethanol exposure

Male Sprague Dawley rats (n = 63; 329.8 ± 9.3 g) were purchased from Charles River 

Laboratories (Raleigh, NC). Chronic intermittent ethanol (CIE) rats (n = 17) were exposed 

daily to ethanol vapor (14 h vapor/10 h air) for 5–7 weeks. We, and others, have previously 

shown that rats that experience CIE become physically alcohol-dependent, with increased 

alcohol-drinking behavior, anxiety-like behavior, and reward deficits (Gilpin et al., 2008; 

O’Dell et al., 2004; Roberto et al., 2010b). Blood alcohol levels (BALs) were measured 

twice weekly by tail-bleeding and immediately prior to sacrifice. The mean BAL for all 

animals across the study was 206 ± 8 mg/dL. The naive rats (n = 46) were treated similarly, 

but received continuous air. CIE rats were taken directly from the ethanol-filled vapor 

chambers for sacrifice. However, electrophysiology slice preparation occurred in ethanol-

free solutions, so all recordings were performed during an acute in vitro withdrawal period 

(1–8 h).

2.2. Electrophysiology

Rats were anesthetized (3–5% isoflurane) and decapitated, and the brains placed in 

oxygenated (95% O2/5% CO2), cold high-sucrose solution (pH 7.3–7.4; in mM): 206.0 

sucrose; 2.5 KCl; 0.5 CaCl2; 7.0 MgCl2; 1.2 NaH2PO4; 26.0 NaHCO3; 5.0 glucose; 5.0 

HEPES, as previously described (Herman et al., 2013; Herman and Roberto, 2016; Roberto 

et al., 2010b; Varodayan et al., 2016). The brains were coronally sliced (300 μm) and the 

tissue incubated (30 min at 37 °C, then 30 min at room temperature) in oxygenated artificial 

cerebrospinal fluid (aCSF; in mM): 130.0 NaCl; 3.5 KCl; 2 CaCl2; 1.25 NaH2PO4; 1.5 

MgSO4; 24 NaHCO3; 10 glucose.

We recorded from neurons located in the medial subdivision of the central amygdala (CeA) 

using infrared differential interference contrast (IR-DIC) optics, a w60 water immersion 

objective (Olympus BX51WI, Tokyo, Japan) and a CCD camera (EXi Aqua, QImaging, 

Surrey, BC, Canada). Whole-cell voltage-clamp recordings were performed in gap-free 

acquisition mode with a sampling rate per signal of 10 kHz and low-pass filtered at 10 k Hz, 

using a Multiclamp 700B amplifier, Digidata 1440A and pClamp 10 software (Molecular 

Devices, Sunnyvale, CA). Recording pipettes (3–7 MΏ; King Precision, Claremont, CA) 

were filled with potassium-chloride internal solution (in mM): 145.0 KCl; 5.0 EGTA; 5.0 

MgCl2; 10.0 HEPES; 2.0 Na+-ATP; 0.2 Na+-GTP. Miniature spontaneous GABAA–

mediated inhibitory postsynaptic currents (mIPSCs) were isolated with 6,7-

dinitroquinoxaline-2,3-dione (DNQX, 20 μM), DL-2-amino-5-phosphonovalerate (AP-5, 30 

μM), CGP 55845A (1 μM) and tetrodotoxin (TTX, 0.5 μM). TTX is a voltage-gated sodium 

channel blocker and so prevents action potential generation/propagation, allowing for the 

mechanistic study of synaptic transmission at isolated synapses and the identification of pre 

vs. postsynaptic drug effects. The neurons were clamped at −60 mV and experiments with a 
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series resistance >15 MΏ or a >20% change in series resistance, as monitored with a 10 mV 

pulse, were excluded. For all experiments involving altered aCSF calcium concentration, the 

aCSF magnesium levels were adjusted to compensate.

Recording frequencies, amplitudes and kinetics were analyzed over a 3 min interval using 

Mini Analysis (Synaptosoft Inc., Fort Lee, NJ) and visually confirmed, with mIPSC events 

<5 pA excluded and cells with less than 60 events/3 min interval excluded. To control for 

cell-to-cell variation in baseline electrophysiology properties, drug effects were normalized 

to their own neuron’s baseline prior to group analyses. Final values were analyzed (Prism 

5.02; Graph-Pad, San Diego, CA) for independent significance using one-sample t-tests and 

compared using two-tailed t-tests. Data are presented as mean ± standard error of the mean 

(SEM), with the number of cells and animals used for each experiment reported in the figure 

legend.

2.3. Western blotting

Rats were anesthetized with isoflurane and decapitated. Naïve and CIE rat brains (n = 6 per 

group) were coronally sliced (2 mm) with a wire matrix and the CeA punched on a chilled 

stage with an 18-gage blunt needle. The 2 CeA from each animal were combined and the 

tissue stored at −80 °C.

The samples were homogenized with a rotor-stator homogenizer (Tissue Tearor, Cole-

Parmer Instrument Co., Vernon Hills, IL) in 250 μL buffer A (in mM): 4.0 HEPES pH 7; 

320.0 sucrose; 5.0 EDTA pH 8; phosphatase inhibitor cocktail (PhosSTOP; Roche Life 

Science, Basel, Switzerland); protease inhibitor cocktail (cOmplete, EDTA-free; Roche), 

and then enriched for membrane proteins ((Goebel-Goody et al., 2009), with slight 

modifications (Varodayan et al., 2017b)). Specifically, the homogenate was centrifuged 

twice (1000g, 10 min, 4 °C) and supernatant collected and combined. This total supernatant 

was then re-centrifuged (100,000g, 1 h, 4 °C) and the pellet re-suspended in 50 μL buffer A. 

25 μg samples were loaded onto a 7.5% SDS polyacrylamide gel (Mini-PROTEAN TGX, 

Bio-rad Laboratories; Hercules, CA), electrophoresed (100 V, 2 h), and transferred to a 

PVDF membrane (100 mA, 22 h, 4 °C; Immobilon-P, EMD Millipore, Billerica, MA). The 

membranes were washed in Tris-buffered saline with 0.1% Tween-20 (TBST; Sigma-

Aldrich, Inc., St. Louis, MO), blocked in 5% milk/TBST (2 h, room temperature), incubated 

in primary antibody (overnight, 4 °C; Cav2.1, 190 kDa, 1:500, Alomone Labs #ACC-001; 

Jerusalem, Israel) and incubated in HRP-conjugated secondary antibody (1 h, room 

temperature; donkey anti-rabbit, 1:5000, EMD Millipore AP182PMI). The protein was 

visualized using enhanced chemiluminescence (SuperSignal West Pico, Thermo Scientific 

Pierce, Pittsburgh, PA) and exposed to Hy-Blot CL film (Denville Scientific, South 

Plainfield, NJ). To obtain a loading control, the membranes were incubated for 15 min in 

0.4% Coomassie stain (in 50% methanol, 10% acetic acid, 40% ddH2O; Coomassie Brilliant 

Blue R-250, Bio-Rad), de-stained (50% ddH2O, 43% methanol, 7% acetic acid) and dried 

(Lee et al., 2015). Digital images were acquired using light transmission (film) or reflective 

(membrane) scanning on a Scanjet G4050 (Hewlett-Packard Company, Palo Alto, CA).

Protein band optical densities (OD) and Coomassie staining were measured using Image 

Studio Lite (Li-Cor Biosciences, Lincoln, NE). To control for protein loading variation, each 

Varodayan et al. Page 4

Neuropharmacology. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



protein OD was normalized to its own lane’s Coomassie staining (50–150 kDa) (Welinder 

and Ekblad, 2011). To allow for sample comparison across blots, Coomassie-normalized 

protein values were expressed relative to the mean value for naïve rats on the same 

membrane. The final values were compared using two-tailed t-tests in Prism 5.02. Data are 

presented as mean ± SEM.

2.4. Drugs and chemicals

We purchased ω-Agatoxin TK, AP-5, CGP 55845A and DNQX from Tocris (Bristol, UK); 

1,2-Bis(2-Aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (BAPTA), Nifedipine and TTX 

from Sigma (St. Louis, MO); ω-Conotoxin GVIA from AnaSpec (Fremont, CA); and 

ethanol from Remet (La Mirada, CA). CRF was synthesized by Dr. Jean Rivier at the Salk 

Institute for Biological Studies, and R121919 was synthesized by Dr. Kenner Rice at the 

Drug Design and Synthesis Section of the National Institute on Drug Abuse. Drugs were 

dissolved in aCSF and applied locally by Y-tubing (Murase et al., 1989) or bath perfusion.

3. Results

3.1. Acute ethanol increased GABA release via P/Q-type voltage-gated calcium channels

We first assessed the effects of acute alcohol on GABA transmission in the CeA of naïve rats 

by recording action potential-independent mIPSCs in the presence of the voltage-gated 

sodium channel blocker TTX (across the entire study the mean baseline mIPSC frequency = 

0.34 ± 0.02 Hz, amplitude = 48.4 ± 1.7 pA, rise time = 2.40 ± 0.06 ms and decay time = 

5.67 ± 0.26 ms). As previously reported (Roberto et al., 2004; Varodayan et al., 2016), here 

we found that application of a maximal effective concentration of ethanol (44 mM EtOH; 

see (Nie et al., 2009; Roberto et al., 2003, 2004) for concentration-effect curves on GABA 

transmission in the CeA) significantly increased the mIPSC frequency to 133.3 ± 7.5% of 

baseline ([t(13) = 4.46, p < 0.001 by one-sample t-test]; Fig. 1A). There were no significant 

changes in the mean mIPSC amplitude or kinetics, but ethanol increased mIPSC amplitudes 

in 3/14 neurons (to 130.7 ± 5.9% of baseline; [t(2) = 5.20, p < 0.05 by one-sample t-test]), 

with no effect in the remaining 11/14 neurons (similar to (Herman et al., 2013; Roberto et 

al., 2004; Varodayan et al., 2016)). As mIPSCs are action potential-independent, increased 

frequencies indicate higher GABA release probabilities and altered amplitudes/kinetics 

reflect changed GABAA receptor sensitivity (De Koninck and Mody, 1994; Otis et al., 

1994). Therefore, acute ethanol increased GABA release at CeA synapses, without 

significantly affecting the region’s GABAA receptor composition or expression.

Since calcium promotes synaptic vesicle fusion and neurotransmitter release (Catterall and 

Few, 2008), we suspected that ethanol’s actions on GABA release may involve changes in 

local calcium signaling. To investigate whether calcium in the postsynaptic recording cell 

mediates ethanol’s effects, we added the calcium chelator BAPTA (10 mM) to the recording 

pipette. Ethanol continued to increase the mIPSC frequency in these BAPTA-loaded neurons 

(147.2 ± 17.6%; [t(8) = 2.68, p < 0.05 by one-sample t-test]), indicating that its actions on 

GABA release do not require calcium signaling in the postsynaptic cell (Fig. 1B). We next 

assessed if ethanol-induced GABA release requires presynaptic neuronal calcium influx, by 

altering the extracellular calcium concentration (from the normal artificial cerebrospinal 
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fluid (aCSF) calcium concentration of 2 mM to low (0.5 mM) or high (5 mM) calcium). 

Ethanol increased the mIPSC frequency in high Ca2+ aCSF (122.2 ± 4.9%; [t(5) = 4.57, p < 

0.01 by one-sample t-test]), but had no effect in low Ca2+ aCSF (93.7 ± 3.9%; [t(6) = 1.61, p 
= n.s. by one-sample t-test]), revealing a role for extracellular calcium in ethanol-induced 

GABA release (Fig. 1C). There were no other ethanol- or calcium concentration-induced 

effects on mIPSC characteristics in these experiments. Thus, we find that ethanol requires 

presynaptic neuronal calcium influx in order to enhance CeA GABA release.

As calcium influx through voltage-gated calcium channels can directly stimulate 

neurotransmitter release (Catterall and Few, 2008), we investigated the possible role that 

voltage-gated calcium channels may play in ethanol’s enhancement of CeA GABA release. 

P/Q-type voltage-gated calcium channel blockade with ω-Agatoxin TK (500 nM) prevented 

ethanol’s effects on the mIPSC frequency (96.0 ± 6.5; [t(9) = 0.63, p = n.s. by one-sample t-
test]), while L- and N-type voltage-gated calcium channel blockers had no effect (10 μM 

Nifedipine; [t(5) = 4.96, p < 0.01 by one-sample t-test] and 1 μM ω-Conotoxin GVIA; [t(5) 

= 6.13, p < 0.01 by one-sample t-test], respectively; Fig. 1D). ω-Agatoxin TK also had a per 
se effect on the mIPSC frequency (across the study it increased the mIPSC frequency to 

134.4 ± 10.6% in nine cells; [t(8) = 3.25, p < 0.05 by one-sample t-test]), which was 

surprising given the role of these channels in regulating baseline GABA release (Catterall 

and Few, 2008; Hell et al., 1993; Sinnegger-Brauns et al., 2009). Of note, in three of these 

nine cells, ω-Agatoxin TK had no per se effect on the mIPSC frequency (105.0 ± 4.1%), but 

still prevented the ethanol/CRF facilitation (100.7 ± 1.4%; see section 3.2 for CRF 

facilitation), suggesting a lack of ceiling effect. Additionally, all three voltage-gated calcium 

channel blockers had no effects on mIPSC amplitudes or kinetics throughout the experiment. 

Collectively, these data reveal that acute ethanol acts via P/Q-type voltage-gated calcium 

channels to stimulate action potential-independent GABA release at naïve rat CeA synapses.

3.2. CRF increased GABA release via P/Q-type voltage-gated calcium channels

Ethanol’s actions in the CeA have previously been linked to the CRF1 (Roberto et al., 

2010b), and so we next investigated the influence of CRF at CeA GABAergic synapses. 

Similar to acute ethanol, CRF (200 nM; see (Nie et al., 2009; Roberto et al., 2010b) for 

concentration-effect curves on GABA transmission in the CeA) significantly increased the 

mIPSC frequency to 163.2 ± 19.5% of baseline in CeA neurons from naïve rats ([t(7) = 3.24, 

p < 0.05 by one-sample t-test]; Fig. 2A). As before, there were no significant changes in the 

mean mIPSC amplitude or kinetics, although CRF did increase mIPSC amplitudes in 3/8 

cells (to 126.7 ± 5.7% of baseline; [t(2) = 4.67, p < 0.05 by one-sample t-test]; similar to 

(Herman et al., 2013)). CRF continued to enhance the mIPSC frequency in BAPTA-loaded 

neurons (145.7 ± 10.7%; [t(5) = 4.27, p < 0.01 by one-sample t-test]; Fig. 2B) and in the 

presence of high Ca2+ aCSF (180.0 ± 27.4%; [t(5) = 2.92, p < 0.05 by one-sample t-test]), 

but not in low Ca2+ aCSF (95.0 ± 6.1%; [t(6) = 0.81, p = n.s. by one-sample t-test]; Fig. 2C). 

Moreover, ω-Agatoxin TK prevented CRF’s enhancement of the mIPSC frequency (100.2 

± 7.5%; [t(4) = 0.02, p = n.s. by one-sample t-test]; Fig. 2D). There were no additional 

effects on mIPSC characteristics in these experiments. Thus, CRF acts similarly to acute 

ethanol by employing P/Q-type voltage-gated calcium channels to induce CeA GABA 

release in naïve rats.
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3.3. Acute ethanol interacts with the CRF/CRF1 system to enhance GABA release

In order to clarify the relationship between ethanol and the CRF/CRF1 system in terms of 

their respective effects on GABA release in naïve rats, we next performed a series of 

interaction studies. We found that CRF prevented ethanol-induced GABA release ([t(5) = 

1.94, p = n.s. by two-tailed paired t-test]; Fig. 3A). Specifically, the mIPSC frequency was 

potentiated by CRF to 132.1 ± 7.2% of baseline ([t(5) = 4.46, p < 0.01 by one-sample t-
test]), and after the subsequent addition of ethanol (in the presence of CRF) it remained at 

140.2 ± 10.2% of baseline ([t(5) = 3.92, p < 0.05 by one-sample t-test]). Similar to this 

interaction, ethanol occluded the effects of CRF on GABA release ([t(8) = 0.72, p = n.s. by 

two-tailed paired t-test]; Fig. 3B); ethanol increased the mIPSC frequency to 144.7 ± 10.1% 

of baseline ([t(8) = 4.43, p < 0.01 by one-sample t-test]), and CRF (in the presence of 

ethanol) maintained it at 154.6 ± 10.2% of baseline ([t(8) = 5.36, p < 0.001 by one-sample t-
test]). Finally, the CRF1-specific antagonist R121919 (1 μM) prevented ethanol’s 

enhancement of the mIPSC frequency (96.4 ± 5.5%; [t(6) = 0.66, p = n.s. by one-sample t-
test]; Fig. 3C), with no additional effects on mIPSC characteristics. Thus, alcohol interacts 

with the CRF/CRF1 system to enhance CeA GABA release in naïve rats.

3.4. Alcohol dependence does not alter the effects of acute ethanol at CeA GABAergic 
synapses

To investigate whether chronic alcohol exposure alters the response of CeA GABAergic 

synapses to acute ethanol, we next exposed rats to chronic intermittent alcohol exposure 

(CIE) to induce physical dependence (O’Dell et al., 2004; Roberto et al., 2010b). We found 

that CeA neurons from CIE rats had a significantly higher baseline mIPSC frequency vs. 

naïve rats ([t(103) = 3.05, p < 0.01 by unpaired two-tailed t-test] (Roberto et al., 2004)), with 

a mean CIE baseline mIPSC frequency = 0.46 ± 0.03 Hz, amplitude = 49.7 ± 1.7 pA, rise 

time = 2.35 ± 0.06 ms and decay time = 5.64 ± 0.21 ms. CIE rats also displayed a similar 

increase in the mean mIPSC frequency (139.8 ± 9.7%; [t(5) = 4.12, p < 0.01 by one-sample 

t-test]; Fig. 4A) after acute ethanol application as observed in naïve rats, with no significant 

changes in the mean mIPSC amplitude or kinetics (though acute ethanol increased mIPSC 

amplitudes in 2/6 cells to 117.7 ± 4.2% of baseline; [p=n.s. by one-sample t-test]; similar to 

(Roberto et al., 2004)). Therefore, chronic alcohol exposure does not produce tolerance to 

ethanol’s acute actions at CeA GABAergic synapses.

Similar to its effects in the naïve rats, acute ethanol enhanced the mIPSC frequency in CIE 

rat CeA neurons that were loaded with BAPTA (143.2 ± 16.5; [t(5) = 2.61, p < 0.05 by one-

sample t-test]; Fig. 4B) or exposed to high Ca2+ aCSF (139.6 ± 8.7%; [t(5) = 4.58, p < 0.01 

by one-sample t-test]), but not low Ca2+ aCSF (113.2 ± 10.3%; [t(5) = 1.28, p = n.s. by one-

sample t-test]; Fig. 4C). Moreover, as in the naïve rats, ω-Agatoxin TK had a per se effect on 

the mIPSC frequency (138.4 ± 10.3% in 5 cells from 3 CIE rats; [t(4) = 3.75, p < 0.05 by 

one-sample t-test]), and prevented ethanol’s enhancement of the mIPSC frequency in CIE 

rats (102.4 ± 7.3; [t(4) = 0.33, p = n.s. by one-sample t-test]; Fig. 4D). In accordance with 

these findings, western blotting studies revealed that chronic alcohol exposure did not 

change the CeA membrane abundance of P/Q-type voltage calcium channels (Cav2.1; [t(10) 

= 1.18, p = n.s. by unpaired two-tailed t-test]; Fig. 4E). Finally, CRF1 antagonism by 

R121919 blocked ethanol’s actions on the mIPSC frequency (102.9 ± 5.0%; [t(5) = 0.58, p = 
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n.s. by one-sample t-test]; Fig. 4F). There were no additional effects on mIPSC 

characteristics in these experiments. Thus, acute ethanol acts similarly in the CeA of both 

naïve and alcohol-dependent rats by employing CRF1s and P/Q-type voltage-gated calcium 

channels to induce GABA release.

4. Discussion

Collectively, these data indicate that acute alcohol interacts with the CRF/CRF1 system to 

increase CeA GABA release, via P/Q-type voltage-gated calcium channel activity. As the 

CeA is primarily GABAergic, alcohol- and CRF-induced inhibition of local interneurons can 

lead to the disinhibition of CeA inhibitory projection neurons and thus, the inhibition of 

downstream brain regions (e.g. the bed nucleus of the stria terminalis (BNST), 

hypothalamus, midbrain and brainstem (Alheid, 2003; Herman and Roberto, 2016)). 

Chronic alcohol exposure does not alter P/Q-type voltage-gated calcium channel membrane 

abundance or this CRF1/P/Q-type voltage-gated calcium channel mechanism of acute 

alcohol-induced GABA release, so alcohol’s stimulation of CeA synaptic function with each 

and every alcohol exposure may contribute to the region’s over-activation during 

dependence (Gilpin et al., 2015; Koob and Volkow, 2010).

Notably, basal GABA release was enhanced in the CeA of CIE rats compared to naïve rats, 

suggesting greater local inhibition of CeA neurons in alcohol-dependent rats. CRF1 and 

P/Q-type voltage-gated calcium channel activity did not mediate this change, as there were 

no differences in the per se effects of their respective antagonists on CeA GABA 

transmission in naïve vs. alcohol-dependent rats. Additionally, both alcohol and CRF 

increased CeA GABA release, and in a subset of CeA neurons, enhanced GABAA receptor 

function. While we identified a shared presynaptic mechanism in this study, future work is 

needed to elucidate whether alcohol and CRF’s postsynaptic actions occur within the same 

neuronal populations and share common mechanisms of action. Finally, acute alcohol 

increased CeA GABA release in alcohol-dependent rats to a similar magnitude as in naïve 

rats, indicating a lack of functional tolerance to acute alcohol’s actions at CeA GABAergic 

synapses (Roberto et al., 2004, 2010b). Others have reported alcohol-induced GABA release 

in the basolateral amygdala (BLA), brainstem, cerebellum, hippocampus, substantia nigra 

and ventral tegmental area (VTA) of naïve rodents (Hirono et al., 2009; Kelm et al., 2011; Qi 

et al., 2010; Theile et al., 2009; Weiner and Valenzuela, 2006). Multiple mechanisms likely 

govern these effects, but only a few intracellular pathways have been identified. Specifically, 

alcohol increased GABA release in cerebellar interneurons through protein kinase A (PKA), 

protein kinase C (PKC) and intracellular calcium pathways (Hirono et al., 2009; Kelm et al., 

2011) and in VTA neurons via 5-hydroxytryptomine-2C (5HT-2C) receptors and 

intracellular calcium stores (Theile et al., 2009). Therefore, alcohol has widespread effects 

on GABA transmission throughout many brain regions, but only a few intracellular 

pathways have been identified and these mechanisms appear to be region-specific.

Here we report that CRF1 antagonism prevented alcohol-induced GABA release in the CeA 

of naïve rats (as previously described in (Herman et al., 2013)) and alcohol-dependent rats. 

Moreover, pretreatment with either acute alcohol or CRF occluded the effect of the other 

compound in naïve rats, indicating a clear interaction between alcohol and the CRF/CRF1 
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system. While the direct site of alcohol’s actions remains unknown, the most parsimonious 

explanation is that alcohol activates CRF1s to induce CeA GABA release. Alternatively, 

alcohol may activate intracellular pathways (see below), or may induce CRF release from 

the lateral subdivision of the CeA (Veening et al., 1984) (though the lateral CeA CRF input 

to the medial CeA seems to be minor in rats (Pomrenze et al., 2015)) or from distal inputs 

from other known CRF-expressing regions, such as the BNST or paraventricular 

hypothalamic nucleus (Gafford et al., 2012; Merchenthaler, 1984; Wang et al., 2011). Other 

G protein-coupled receptors (GPCRs) have also been implicated in alcohol-induced CeA 

GABA release, including the type 1 cannabinoid receptor (CB1) (Roberto et al., 2010a; 

Varodayan et al., 2016), δ-opioid receptor (Kang-Park et al., 2009) and neuropeptide Y 

receptor (Gilpin et al., 2011). Additionally, CB1 and GABAB receptors mediate alcohol’s 

potentiation of GABA release in the BLA and cerebellum (Kelm et al., 2011; Talani and 

Lovinger, 2015; Varodayan et al., 2017a), while in the VTA, μ-opioid and 5HT-2C receptors 

are involved (Theile et al., 2009). Therefore, alcohol’s actions on CeA GABA release via 

CRF1 do not occur in isolation, and future studies must identify which alcohol-induced 

GPCR pathways interact and predominate, and whether they are dysregulated after chronic 

ethanol exposure.

CRF1s also regulate P/Q-type voltage-gated calcium channel activity (Kuryshev et al., 1996; 

Ritchie et al., 1996), and here we demonstrated that both alcohol- and CRF-induced GABA 

release were mediated by P/Q-type voltage-gated calcium channels. P/Q-type voltage-gated 

calcium channels closely interact with synaptic vesicle fusion machinery proteins so that 

their activation produces a calcium influx that can directly trigger GABA release (Catterall 

and Few, 2008). CRF1 activity can also induce the adenylyl cyclase (AC)/PKA and 

phospholipase C/PKC pathways (Blank et al., 2003; Gutknecht et al., 2009; Riegel and 

Williams, 2008), and our laboratory has previously reported a role for AC7, PKA and PKCε 
in alcohol- and CRF-induced GABA release in the rodent CeA (Bajo et al., 2008; Cruz et al., 

2011, 2012). These 2nd messenger systems have significant crosstalk, and both can interact 

with voltage-gated calcium channels (Catterall, 2000; Catterall and Few, 2008; Cens et al., 

2006; Dai et al., 2009). Therefore, alcohol’s site of action is difficult to determine in the 

present study, as it may directly act upon any combination of these signaling molecules. 

Nonetheless, the most likely scenario from the present work is that acute alcohol acts on 

CRF1s to produce downstream changes in PKA/PKC signaling that modulate P/Q-type 

voltage-gated calcium channel activity leading to action potential-independent GABA 

release.

Interestingly, we recently reported that acute alcohol also enhances action potential-

dependent GABA release in the CeA of naïve rats, but this effect occurs via an L-type 

voltage-gated calcium channel mechanism (Varodayan et al., 2017b). It is important to note 

that action potential-dependent neurotransmitter release results from neuronal activity across 

the entire synaptic network to produce classical neural communication, whereas the addition 

of the voltage-gated sodium channel blocker TTX (as in the current study) blocks action 

potential generation/propagation to reveal action potential-independent neurotransmitter 

release that can maintain homeostasis and mediate plasticity at mature synapses (Kavalali, 

2015). Critically, P/Q-type voltage-gated calcium channel blockade did not alter alcohol-

induced action potential-dependent GABA release in the naïve rat CeA (Varodayan et al., 

Varodayan et al. Page 9

Neuropharmacology. Author manuscript; available in PMC 2018 March 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2017b), while in the present study L-type voltage-gated calcium channel blockade did not 

alter alcohol-induced action potential-independent GABA release. Therefore, these two 

types of GABA release represent different forms of CeA neurotransmission that are 

regulated by alcohol via distinct voltage-gated calcium channel mechanisms. Action 

potential-dependent and -independent neurotransmission are also differently regulated by 

several other molecules/compounds (e.g. presynaptic metabotropic glutamate receptors 

(Glitsch, 2006), nitric oxide species (Pan et al., 1996), cholesterol (Wasser et al., 2007), 

antimalarial drugs (McArdle et al., 2006), γ-secretase (Pratt et al., 2011) and methyl CpG 

binding protein 2 (MeCP2) (Nelson et al., 2006, 2008)), leading to the growing consensus 

that different vesicle populations govern action potential-dependent and -independent 

neurotransmitter release, possibly via distinct vesicle fusion machinery, spatial segregation 

of the vesicle and/or retrograde signaling (Kavalali, 2015).

The CeA integrates emotionally salient sensory information about fearful and anxiety-

inducing stimuli to produce the appropriate behavioral and physiological responses (Gilpin 

et al., 2015). Its activity promotes alcohol drinking and anxiety-like behaviors, and its over-

activation is considered a hallmark of the transition to alcohol dependence (Gilpin et al., 

2015; Koob and Volkow, 2010). Collectively, our work highlights the diversity of acute 

alcohol’s actions on CeA voltage-gated calcium channels (P/Q-vs. L-type voltage-gated 

calcium channels), revealing its intricate control over different types of GABA release 

(action potential-independent vs. -dependent release). Moreover, acute alcohol interacts with 

the CRF/CRF1 system to produce action potential-independent CeA GABA release. This 

CRF1/P/Q-type voltage-gated calcium channel mechanism can still be engaged after chronic 

alcohol exposure, indicating that alcohol uses this molecular mechanism at CeA GABAergic 

synapses throughout the transition to dependence. Therefore, our data identify P/Q-type 

voltage-gated calcium channels, like CRF1s, as critical regulators of acute alcohol’s actions 

on CeA synaptic transmission, presenting a novel locus for therapeutic development to 

ameliorate alcohol use disorders.
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Abbreviations

5HT-2C 5-hydroxytryptomine-2C

aCSF artificial cerebrospinal fluid

AC adenylyl cyclase

AP-5 DL-2-amino-5-phosphonovalerate

BLA basolateral amygdala
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BAL blood alcohol level

BAPTA 1,2-Bis(2-Aminophenoxy) ethane-N,N,N′,N′-tetraacetic acid

Cav2.1 P/Q-type voltage-gated calcium channel

CB1 type 1 cannabinoid receptor

CeA central amygdala

CIE chronic intermittent ethanol vapor exposed

CRF corticotropin-releasing factor

CRF1 corticotropin-releasing factor type 1 receptor

DNQX 6,7-dinitroquinoxaline-2,3-dione

EtOH ethanol

GABA γ-aminobutyric acid

GPCR G-protein coupled receptor

mIPSC miniature GABAA–mediated inhibitory postsynaptic current

OD optical density

PKA protein kinase A

PKC protein kinase C

SEM standard error

TTX tetrodotoxin

VTA ventral tegmental area
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Fig. 1. 
Acute alcohol increased GABA release in the naïve rat CeA via P/Q-type voltage-gated 

calcium channel activity. A: (Left) Representative mIPSC traces from a naïve rat CeA 

neuron in baseline conditions and during acute alcohol (44 mM EtOH) superfusion. (Right) 
EtOH significantly increased the mIPSC frequency, but had no effect on the mIPSC 

amplitude or kinetics (14 cells from 10 rats). B: EtOH significantly increased the mIPSC 

frequency in CeA neurons that were pre-loaded with 10 mM BAPTA (9 cells from 3 rats). 

C: (Left) Representative mIPSCs in low (0.5 mM) and high (5 mM) Ca2+ aCSF and during 

subsequent EtOH superfusion. (Right) EtOH significantly increased the mIPSC frequency 

in CeA neurons exposed to high Ca2+ aCSF, but not low Ca2+ aCSF (normalized to pre-

alcohol baseline). For these extracellular calcium experiments, 6–7 cells from a minimum of 

5 rats were used for each experimental group. D: (Left) Representative mIPSCs in the P/Q-

type voltage-gated calcium channel blocker ω-Agatoxin TK (500 nM Aga) and during 

subsequent EtOH superfusion. (Right) EtOH’s enhancement of the mIPSC frequency was 

blocked in the presence of Aga (10 cells from 4 rats), but was unchanged by the L-type 

calcium channel blocker Nifedipine (10 μM Nif; 6 cells from 4 rats) or the N-type calcium 

channel blocker ω-Conotoxin GVIA (1 μM Cono; 6 cells from 5 rats).
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Fig. 2. 
CRF increased GABA release in the naïve rat CeA via P/Q-type voltage-gated calcium 

channel activity. A: (Left) Representative mIPSCs from a naïve rat CeA neuron in baseline 

conditions and during CRF (200 nM) superfusion. (Right) CRF significantly increased the 

mIPSC frequency, but had no effect on the mIPSC amplitude or kinetics (8 cells from 5 

rats). B: CRF significantly increased the mIPSC frequency in CeA neurons that were pre-

loaded with 10 mM BAPTA (6 cells from 3 rats). C: (Left) Representative mIPSCs in low 

(0.5 mM) and high (5 mM) Ca2+ aCSF and during subsequent CRF superfusion. (Right) 
CRF significantly increased the mIPSC frequency in CeA neurons exposed to high Ca2+ 

aCSF, but not low Ca2+ aCSF (normalized to pre-CRF baseline). For these extracellular 

calcium experiments, 6–7 cells from a minimum of 4 rats were used for each experimental 

group. D: (Left) Representative mIPSCs in the P/Q-type voltage-gated calcium channel 

blocker ω-Agatoxin TK (500 nM Aga) and during subsequent CRF superfusion. (Right) 
CRF’s enhancement of the mIPSC frequency was blocked in the presence of Aga (5 cells 

from 3 rats).
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Fig. 3. 
Acute alcohol interacts with the CRF/CRF1 system to enhance GABA release. A: (Left) 
Representative mIPSCs from a naïve rat CeA neuron in baseline conditions, during CRF 

(200 nM) superfusion and following acute alcohol (44 mM EtOH) co-application in the 

continued presence of CRF. (Right) CRF significantly increased the mIPSC frequency, and 

EtOH (in CRF) had no further effect (6 cells from 4 rats). B: (Left) Representative mIPSCs 

in baseline conditions, during EtOH superfusion and following CRF + EtOH co-application. 

(Right) EtOH significantly increased the mIPSC frequency, and CRF (in EtOH) had no 

further effect (9 cells from 4 rats). C: (Left) Representative mIPSCs in the CRF1 antagonist 

R121919 (1 μM) and during subsequent EtOH superfusion. (Right) EtOH’s enhancement of 

the mIPSC frequency was blocked in the presence R121919 (7 cells from 3 rats).
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Fig. 4. 
Alcohol dependence does not alter the effects of acute alcohol at CeA GABAergic synapses. 

A: (Left) Representative mIPSCs from a CIE rat CeA neuron in baseline conditions and 

during acute alcohol (44 mM EtOH) superfusion. (Right) EtOH significantly increased the 

mIPSC frequency, but had no effect on the mIPSC amplitude or kinetics (6 cells from 5 

rats). B: EtOH significantly increased the mIPSC frequency in CeA neurons that were pre-

loaded with 10 mM BAPTA (6 cells from 3 rats). C: (Left) Representative mIPSCs in low 

(0.5 mM) and high (5 mM) Ca2+ aCSF and during subsequent EtOH superfusion. (Right) 
EtOH significantly increased the mIPSC frequency in CIE CeA neurons exposed to high 

Ca2+ aCSF, but not low Ca2+ aCSF (normalized to pre-alcohol baseline). For these 

extracellular calcium experiments, 6 cells from a minimum of 4 rats were used for each 

experimental group. D: (Left) Representative mIPSCs in the P/Q-type voltage-gated calcium 

channel blocker ω-Agatoxin TK (500 nM Aga) and during subsequent EtOH superfusion. 

(Right) EtOH’s enhancement of the mIPSC frequency was blocked in the presence of Aga 

(5 cells from 3 rats). E: (Top) Representative western blot image of P/Q-type voltage-gated 

calcium channel (Cav2.1) membrane abundance from the CeA of naïve and CIE rats. 

(Bottom) Quantification revealed no difference in CeA Cav1.2 membrane expression in CIE 

vs. naïve rats (6 rats were used for each experimental group). F: (Left) Representative 
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mIPSCs in the CRF1 antagonist R121919 (1 μM) and during subsequent EtOH superfusion. 

(Right) EtOH’s enhancement of the mIPSC frequency was blocked in the presence of 

R121919 (6 cells from 3 rats).
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