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Abstract

Over the last two decades, berries and berry bioactives, particularly anthocyanins and their 

aglycones anthocyanidins (Anthos) have demonstrated excellent anti-oxidant, anti-proliferative, 

apoptotic and anti-inflammatory properties. However, their physicochemical and pharmacokinetic 

limitations such as, low permeability, and poor oral bioavailability are considered as unfavorable 

properties for development as drugs. Therefore there is a need to develop systems for efficient 

systemic delivery and robust bioavailability. In this study we prepared nano-formulation of 

bilberry-derived Anthos using exosomes harvested from raw bovine milk. Exosomal formulation 

of Anthos enhanced antiproliferative and anti-inflammatory effects compared with the free Anthos 

against various cancer cells in vitro. Our data also showed significantly enhanced therapeutic 

response of exosomal-Anthos formulation compared with the free Anthos against lung cancer 

tumor xenograft in nude mice. The Anthos showed no signs of gross or systemic toxicity in wild-

type mice. Thus, exosomes provide an effective alternative for oral delivery of Anthos that is 

efficacious, cost-effective, and safe, and this regimen can be developed as a non-toxic, widely 

applicable therapeutic agent.

Keywords

Milk exosomes; Anthocyanidins; Drug delivery; Anti-cancer; Anti-inflammatory

Introduction

Many plant bioactives suffer from notoriously poor bioavailability and instability [1–4] and 

therefore have failed to shine their full potential despite high doses. Several strategies have 
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been investigated in order to achieve clinical efficacy of drugs with poor bioavailability and 

stability. Lately, new concepts from the field of nanotechnology have been utilized to 

overcome the challenge of poor absorption especially for oral delivery and enhancing the 

outcome of chemopreventives which is often referred to as ‘nano-chemoprevention’ [5,6]. 

Nano-formulations of agents such as curcumin [7,8], EGCG [9,10] and resveratrol [11,12] 

have been explored as polymeric micelles, liposome/phospholipid, nano-/micro-emulsions, 

nanogels, solid lipid nanoparticles, polymer conjugates, etc. Although, some successful 

liposomal formulations of drugs. [e.g., doxorubicin (DoxilR)] have made to clinic, others 

have suffered from limitations of reproducibility and/or toxicity [13]. Unmodified liposomes 

are unstable in vivo with short blood circulation time, and lack of target selectivity [14]. 

Other limitations of liposomal system include opsonization, change of pharmacokinetics in 

multiple-dosing regimen, etc. [15]. Polymer-based delivery systems offer advantages of 

linking various ligands, but its cost-effective production is nowhere in the vicinity. 

Moreover, there are serious toxicity concerns with the long-term use of polymeric 

nanoparticles [16]. Exosomes as nano-carriers have the potential to overcome these 

limitations [17,18]. We have exploited exosomes from bovine milk as biological 

nanoparticles to deliver agents of both hydrophilic and hydrophobic nature [19]. 

Additionally, milk exosomes as drug delivery vehicle has positive attributes of being in 

abundance, cost-effective, scalable and biocompatible.

Berries and berry bioactives, particularly the colored pigments, anthocyanins and their 

aglycones anthocyanidins (Anthos), are well known for their anti-oxidant, anti-proliferative, 

apoptotic and anti-inflammatory properties [20–27]. Anthocyanins are pigments responsible 

for red and blue hues of many fruits (e.g., berries), vegetables (e.g., purple potatoes), flowers 

(hibiscus) and grains (purple rice). Blueberry, blackberry, bilberry, raspberry, strawberry are 

especially rich sources of dietary anthocyanins [28]. Over 600 structurally distinct 

anthocyanins have been identified in nature [29,30]. The diversity of anthocyanins comes 

from the number and the position of: (i) hydroxyl (OH) and methoxyl (OCH3) groups ii) 

type of sugars, and (iii) type of aliphatic or aromatic acids attached to the sugar. There are 

approximately 17 Anthos of which 6 occur widely, namely, cyanidin (Cy), delphinidin (Dp), 

petunidin (Pt), peonidin (Pe), pelargonidin (Pg), and malvidin (Mv) [28].

Accumulating evidence from our laboratory [20–24] and other researchers [25–27] strongly 

indicate its preventive and therapeutic activity against various cancer types [31,32]. There 

have been few attempts towards translation of berry bioactives in clinical trials using berry 

powder [33–35]. However, the amount of berry powder that needs to be consumed daily for 

therapeutic response is not readily translatable/practical; in addition nearly 60% berry 

powder is composed of sugars, which further limit target patient population. Berry extracts 

[36] and anthocyanins on other hand address these concerns with some positive effects on 

preneoplastic lesions or cancers of the oral cavity, esophagus and colon, however, it still 

faces the challenge of poor oral bioavailability and stability [2,36–39].

Anthocyanins are highly water-soluble molecules. Glycosylation confers increased stability 

and water solubility and acylation of the sugar residues further improves anthocyanin 

stability [30]. However, these attributes make anthocyanins poorly bioavailable with limited 

absorption by passive diffusion. The absorption of anthocyanins across the intestine wall 
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requires either a specific active transport mechanism or needs to be hydrolyzed to their 

aglycones form by the action of specific enzymes such as β-glucosidase, β-glucuronidase, 

and α-rhamnosidase by the gut intestinal microflora [40]. In contrast, aglycones lacking 

sugar moieties are relatively more hydrophobic in nature which facilitates their passively 

diffusion across the mucosal epithelium [41]. However, at the same time they exhibit 

considerable chemical instability. Presence of conjugated Anthos (Cy and Pe mono-

glucuronides) in the plasma as glucuronides has been reported in dietary berry-treated 

animals, suggesting that anthocyanins may, in part, be hydrolyzed to Anthos [42,43]. Other 

flavonoids have also been indicated to undergo similar hydrolysis by intestinal β-

glucosidases [44], resulting in the release of their aglycone form. These observations suggest 

the aglycons of anthocyanins might have a role in biological activity and contribute to 

protective effects rendered by berry intake.

Our earlier work comparing anti-proliferative effects with purified extracts at anthocyanin 

and Anthos levels revealed significantly greater activity of anthos over anthocyanins [21,45]. 

Data from Mukhtar and colleagues, and other laboratories have shown different 

pharmacological properties of anthocyanidins [46–48]. In addition, we discovered that a 

mixture of individual Anthos (Dp, Cy, Pe, Pt and Mv) produced synergistic antiproliferative, 

anti-tumor and anti-inflammatory effects compared to the individual moieties [21]. We 

propose that nano-formulation of Anthos will not only increase its stability and 

bioavailability resulting in enhanced therapeutic effects but will also facilitate clinical 

translation by overcoming limitations associated with the use of whole berries, berry powder 

and berry extracts. In this study, we investigated if exosomal formulation of Anthos 

(ExoAnthos) will enhance therapeutic efficacy compared with the free Anthos against 

multiple cancer cell lines.

Materials and methods

Isolation of exosomes

Exosomes were isolated from pooled raw milk from dozens of mid-lactation, pasture-raised 

Jersey cows, procured from a local dairy as described previously [19,49]. Briefly, exosomes 

were isolated by a sequential centrifugation process. Milk was first centrifuged at 13,000 × g 

for 30 min to remove fat, cells and casein debris. Whey thus obtained was centrifuged at 

100,000 × g for 60 min to remove larger microvesicles. Finally, the resulting supernatant 

was centrifuged at 135,000 × g for 90 min to obtain exosomal pellet and suspended in PBS. 

The protein concentration was determined using BCA kit (Thermo Scientific, Rockford, IL); 

exosome solutions were stored in aliquots of ≤6 mg exosomal proteins/ml at −80 °C until 

use. As indicated in our previous publication [19], exosomes isolated from several batches of 

milk isolated at different times resulted in similar yields and exosomal markers.

Isolation of berry Anthos

Native mixture of Anthos was isolated from standardized anthocyanin-enriched extract of 

bilberry (Indena, S.p.A., Milan, Italy) by extraction of anthocyanins in 1% HCl, conversion 

of anthocyanins to Anthos in the presence of 3 N HCl at 90 °C for 1 h, followed by 

extraction in 1-pentanol and precipitation of the Anthos with petroleum ether [50]. The 
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isolated Anthos were finally purified by C18 Sep-Pak column which provided over 94% 

purity as analyzed by UPLC. The relative percentages of the individual anthocyanidins, as 

determined by UPLC against reference compounds, in the isolated Anthos and the original 

bilberry extract were similar. The relative anthocyanidin mixture contains Dp, Cy, Mv, Pe 

and Pt in the ratio of 33:28:16:16:7 respectively.

Stock solution of the Anthos was prepared based on average molecular weight of the 

individual anthocyanidins present in the bilberry extract used. The average molecular weight 

was calculated based on the molecular weight of individual anthocyanidins and their 

proportions present in the mixture. The profile of bilberry Anthos has been previously 

shown [21].

Preparation of Anthos-loaded exosomes

To prepare exosomal formulation of Anthos (ExoAnthos), first Anthos were dissolved in a 

mixture of acetonitrile: ethanol (1:1 v/v). Anthos solution was then added to the exosomes 

suspended in PBS at 6 mg/ml protein concentration by simple mixing. The solvent 

concentration was maintained at ≤10% of the total reaction mixture. The selection of the 

solvent volume was based on our previous observation in which this concentration did not 

significantly affect the quality attributes of the exosomes [19]. After mixing the Anthos 

solution with exosomes, the mixture was kept at room temperature for approximately 15 

min, followed by low-speed centrifugation at 10,000 × g for 10 min to remove any unbound 

Anthos. Anthos-loaded exosomes were collected by centrifugation at 135,000 × g for 90 

min. The ExoAnthos pellet thus obtained was suspended in PBS, centrifuged (10,000 × g for 

10 min) to remove any residual unbound agent and passed through 0.22 μm syringe filter to 

remove any microbial contamination. The formulation was stored in aliquots at −80 °C until 

use.

Formulation characterization

Particle size and poly dispersity index (PDI) analysis—Exosome and ExoAnthos 

formulations were diluted (1 mg/ml) in PBS and analyzed for particle size and PDI using a 

Zetasizer (Malvern Instruments Ltd, Malvern, Worcestershire, UK).

Drug loading analysis—The practical load of Anthos in the ExoAnthos formulation was 

determined by measuring the protein and Anthos concentrations. Briefly, 50 μl of the 

ExoAnthos formulation was mixed with 0.95 ml acetonitrile to extract the Anthos and 

precipitate exosomal proteins. The precipitated proteins were separated by centrifugation 

(10,000 × g for 10 min), and supernatant containing the Anthos was analyzed by UPLC. The 

pellet was suspended in PBS and exosomal proteins were analyzed by BCA method.

UPLC analysis—Samples (15 μl) containing Anthos were analyzed by UPLC using a 

Shimadzu Premier C18 reverse-phase column (250 × 4.6 mm i.d., 5 μm). Mobile phase A, 

water: formic acid: acetonitrile (87:10:3) and B, water: formic acid: acetonitrile 40:10:50 

were used at a flow rate of 0.6 ml/min. The gradient condition was 0–5 min, 5% B; 5–15 

min, 15% B; 15–20 min, 25% B; 20–30 min, 35% B; 30–40 min, 45% B, 40–45 min, 100% 

B, 45–50 min, 5% B. Anthos were detected at 520 nm by PDA-UV and total Anthos 
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concentration was calculated against a standard curve. Reference anthocyanidins used were 

purchased from Chromadex (Irvine, CA).

Atomic force microscopy (AFM) for morphology analysis—The morphology of the 

exosomes and ExoAnthos were determined by AFM. Exosomes and ExoAnthos were 

diluted to 10 μg/ml using deionized water and then 2 μl of the respective samples was placed 

on a silica wafer and air dried for 30 min. AFM (Asylum MF-3D, Oxford Instruments, 

Goleta, CA) images were captured in tapping mode using aluminum-coated silicon probes. 

Topographic height, amplitude and phase retraces were imaged with a fixed force (<1 nN) at 

a scanning rate of 1 Hz. The images were processed using IGOR software (WaveMetrics, 

Inc., Portland, OR).

Storage stability

Stability of the exosomes and ExoAnthos stored at −80 °C was examined. For ExoAnthos 

twelve days after the storage, triplicate samples were thawed and the aliquots were divided 

in two parts: one part was used for particle size and PDI measurement after appropriate 

dilution as described in Section Formulation characterization while the other part was 

analyzed for Anthos content by UPLC.

In vitro studies

Cell culture—Human lung cancer (A549 and H1299), breast cancer (MDA-MB-231 and 

MCF7), pancreatic (PANC1 and Mia PaCa2), Prostate (PC3 and DU145), colon (HCT116) 

and ovarian (OVCA432) cell lines were obtained from American Type Cell Culture (ATCC, 

Manassas, VA) or provided by colleagues at the University of Louisville Health Sciences, 

Louisville, KY. All cancer cell lines were supplemented with 10% fetal bovine serum and 

1% antibiotics (Penicillin/Streptomycin). The A549 and PC3 cells were grown in F-12 K 

media. The MCF7, Panc1 and Mia PaCa2 received Dulbecco’s Modified Eagle’s Medium 

(DMEM). Media for MCF7 cells was also supplemented with 0.2 units/ml insulin. MDA-

MB-231 cells were grown in L-15 media. The H1299 and OVCA432 received RPMI media, 

DU145 were maintained in Eagle’s Minimum Essential Medium (EMEM) and HCT116 

received McCoy’s Medium. All cell lines were maintained at 37 °C in a humidified chamber 

at 5% CO2 except MDA-MB-231 which were grown in absence of CO2.

Antiproliferative activity—The antiproliferative activity of the Anthos, ExoAnthos and 

exosomes alone against various cancer cells was assessed by MTT assay, as described 

elsewhere [51]. Briefly, cells were seeded in a 96-well plate and treated with either Anthos, 

ExoAnthos or exosomes alone at various concentrations for 72 h. At the end of treatment 

period the medium was replaced with media containing MTT (0.5 mg/ml) and incubated for 

2 h, followed by solubilization of formazan crystals with DMSO and spectrophotometric 

measurement at 570 nm. IC50 values were calculated using CalcuSyn software Version 2.0 

(Biosoft, Cambridge, UK).

Electrophoretic mobility shift assay (EMSA)—DNA binding of NF-κB was measured 

by EMSA as described [52]. Briefly, the H1299 and MCF7 cells pretreated with the Anthos 

or ExoAnthos at various concentrations (25–200 μM) at 37 °C for 24 h and then challenged 
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with tumor necrosis factor-α (TNF-α) (10 ng/ml) [19]. Nuclear extracts were prepared and 

20 μg protein was incubated at room temperature for 45 min with 0.2 μg of 32P-end-labeled 

double-stranded oligonucleotide (5′-AGT TGA GGG GAC TTT CCC AGG C-3′) 

containing the NF-κB binding motif (Promega, Madison, WI, USA) and 1 μg of poly (dI-

dC) as an inhibitor of nonspecific binding, in binding buffer (20 mM N-2-

hydroxyethylpiperazine-N′-2 ethanesulfonic acid (HEPES; pH 7.4), 60 mM KCl, 5 mM 

MgCl2, 0.2 mM EDTA, 0.5 mM dithiothreitol, 0.5 mM phenylmehylsulfonyl fluoride, 1% 

Nonidet P-40 and 8% glycerol). In a cold-competition experiment, un-labeled 

oligonucleotide was incubated with extracts for 30 min at room temperature prior to the 

addition of the radiolabeled probe. The reaction mixtures were electrophoresed through 

7.5% native polyacrylamide gels and DNA-protein complexes were detected and quantified 

by Packard InstantImager (Downers Grove, IL).

In vivo studies

Antitumor efficacy—Female athymic nude (nu/nu) mice (5–6-week old) were procured 

from Harlan laboratories (Indianapolis, IN), maintained according to the Institutional 

Animal Care and Use Committee guidelines. Lung tumor xenografts were produced by 

subcutaneously injecting human lung A549 cells (2.5 × 106), in the left flank of the mice. 

Cells were suspended in serum-free media mixed with matrigel matrix (Becton Dickinson, 

Bedford, MA) at 1:1 ratio. Animals were provided purified AIN93M diet and water ad 
libitum. Once the tumor volume reached about 80 mm3, animals were randomized into three 

groups: vehicle (PBS), Anthos (10 mg/kg b. wt.) and ExoAnthos (5 mg Anthos and 50 mg 

Exo protein/kg b.wt.). The agents were administered three times a week (Mondays, 

Wednesdays and Fridays) by oral gavage. Diet consumption, body weight and tumor volume 

were measured weekly until termination of the study. The animals were euthanized by CO2 

asphyxiation.

Toxicity studies—Wild-type female C57BL/6 mice (5–6 week old) were procured from 

Harlan laboratories and were randomized into two groups and treated daily with the vehicle 

(PBS) (n = 4) or Anthos (8 mg/kg b. wt.) (n = 7) by oral gavage daily, 5 times (Monday 

through Friday) a week. After three weeks, animals were euthanized by CO2 asphyxiation 

and blood was collected. Blood was analyzed for hematological parameters by using Cell 

Dyn 3500 hematology analyzer (Abbott laboratories, Santa Clara, CA) and liver and kidney 

function enzymes. Electrolyte analysis was done by using ion-selective electrode while other 

biochemical parameters were analyzed spectrophotometrically by using AU640 Chemistry 

Immuno Analyzer (Beckman Coulter, Inc., Brea, CA).

Statistical analysis

Statistical analysis was performed with Graph Pad Prism statistical software (version 4.03; 

La Jolla, CA). Two-way ANOVA followed by Bonferroni post-test was used for xenograft 

study. Data in the xenograft studies is expressed as mean ± standard error of mean (SEM) (n 

= 8–10).
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Results

Characteristics of Anthos-loaded exosomes

Exosomes isolated from bovine milk had average size of 79 ± 5.2. Exosomes loaded with 

Anthos exhibited insignificant increase with particle size of 83 ± 1.7 nm as measured by 

zetasizer; the PDI of Exo and ExoAnthos was found to be 0.39 and 0.23, respectively (Fig. 

1A). The practical drug loading was found to be ~20% in ExoAnthos formulation. Surface 

morphology determination by AFM (Fig. 1B) revealed that the spherical shape of exosome 

particles remained unaltered after Anthos loading in ExoAnthos formulations. The size of 

the exosomes and ExoAnthos determined by AFM analysis was, in fact, somewhat smaller 

(50–60 nm and 80–90 nm, respectively) compared with the size measured with zetasizer. 

Analysis of exosomes stored as frozen aliquots at −80 °C were found to essentially retain the 

Anthos stability as evident by the unaltered HLPC profiles (Fig. 2). There was no effect of 

storage on particle size and PDI as well.

Anti-proliferative effects of exosomes alone on cancer cells

We first determined the anti-proliferative effects of milk exosomes per se (in the absence of 

any drug) on cancer cell lines of lung, prostate, colon, breast, pancreatic and ovarian by 

MTT assay. The treatment of these cell lines with 50 μg/ml exosomal proteins for 72 h 

resulted in 8–47% cell growth inhibition (Fig. 3). Survival of lung cancer cells A549 and 

H1299 was reduced to 66% and 76%; breast cancer cells MCF7 and MDA-MB-231 showed 

cell survival of 55% and 76%, respectively; both pancreatic cancer cells Panc1 and Mia 

Paca2 showed nearly 65% cell survival; prostate cancer cell line DU145 was the most 

sensitive with 53% and PC3 cell were least affected with 92% survival; while survival of 

ovarian cancer cells OVCA432 and colon cancer cells HCT116 was reduced to nearly 68% 

in each case. These findings indicate intrinsic anti-cancer activity of milk exosomes, which 

might be of additional benefit when exosomes are employed as vehicles to deliver anti-

cancer drugs. We earlier reported exosomes alone had no cytotoxic effects on normal 

bronchial epithelial cells at 50 μg/ml exosomal protein concentration [19]. These protective 

effects are presumably related to some endogenous factors, e,g., therapeutic activity of 

complex of human milk-derived α-lactalbumin and oleic acid (HAMLET) [53] and bovine 

milk-derived α-lactalbumin and oleic acid (BAMLET) [53–55] trigger tumor cell death.

Anti-proliferative effects of Anthos and ExoAnthos on cancer cells

Next we assessed the anti-proliferative effects of Anthos alone and in exosomal formulation 

on various cancer cell lines. The findings indicate that irrespective of the cancer cell type 

ExoAnthos had significantly higher anti-proliferative effects (~4–60 fold decrease in IC50 

Values) compared with the free Anthos (Fig. 4). ExoAnthos also exhibited better dose-

dependent anti-proliferative effects than Anthos alone. The IC50 values shown in Table 1 

were derived from a range of concentrations up to 500 μM for Anthos and 100 μM for 

ExoAnthos depending on cancer cell type. The observed enhanced in vitro anti-proliferative 

effects could be attributed to increased stability of the Anthos in media when loaded on to 

exosomes and higher cell uptake; part of the anti-proliferative effects presumably resulted 

from the intrinsic activity of exosomes.
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Anti-inflammatory effects of Anthos and ExoAnthos

The nuclear factor-kappa B is a classic pro-inflammatory signaling molecule, as it plays a 

key role in the expression of pro-inflammatory genes such as cytokines, chemokines, and 

adhesion molecules [56]. We have earlier reported anti-inflammatory activity of Anthos 

[21]. Here we evaluated the effect of Anthos alone and in exosomal formulation against 

TNFα-induced NF-κB activity in lung (H1299) and breast (MCF7) cancer cells. The TNFα 
treatment resulted in nearly 6-fold increase in the levels of NF-κB. Although Anthos 

exhibited ability to inhibit TNFα-induced NF-κB activity this effect was markedly enhanced 

when Anthos were delivered in exosomal formulation (Fig. 5). In case of the H1299 cells 

although, Anthos alone at 200 μM completely knocked out TNFα-induced NF-κB levels, 

lower doses of Anthos had no effect on cells. When H1266 cells were treated with 

ExoAnthos there was dose-dependent inhibition of NF-κB. On other hand, the MCF7 cells 

also showed inhibition of NF-κB activity; however, this effect was not concentration-

dependent. Overall, ExoAnthos exhibited greater dose-dependent inhibition of NF-κB 

activity compared to the free Anthos.

In vivo antitumor efficacy of Anthos and ExoAnthos

We determined the antitumor efficacy of Anthos and ExoAnthos using athymic nude mice 

bearing subcutaneous lung cancer A549 xenografts and compared with exosomes alone. We 

did not observe any gross toxicity due to Anthos or ExoAnthos, as no significant change was 

observed in the body weight, diet consumption and the animal movement compared with the 

vehicle treatment. We have earlier shown modest anti-tumor effects when animals were 

treated with exosomes alone in comparison with vehicle (PBS) treatment [19]. In the current 

study compared to treatment with vehicle (PBS), Anthos (10 mg/kg) showed a slight but 

insignificant inhibition of the tumor growth. However, ExoAnthos (5 mg/kg Anthos and 50 

mg exosomal proteins/kg) showed a significant growth inhibition (Fig. 6). Noteworthy is 

that the Anthos concentration in ExoAnthos formulation at one half of the free Anthos was 

effective, while the free Anthos was ineffective. The growth inhibition became obvious after 

four weeks of ExoAnthos treatment with significant higher (p < 0.01) inhibition in 

subsequent weeks.

Toxicity study

Systemic toxicity of Anthos was evaluated using wild-type mice which received the Anthos 

(oral gavage; 8 mg/kg, 5 times a week or 40 mg/kg weekly dose). Here we purposely used 

somewhat higher dose in comparison with anti-tumor study (weekly dose of 30 mg/kg as 

free Anthos or 15 mg/kg in exosomal formulation). We have recently demonstrated non-

toxicity of milk exosomes [19] hence comparisons were made to vehicle (PBS) control 

group. No signs of gross toxicity due to the Anthos were observed, as there was no 

significant change in the body weight, diet consumption and the animal movement compared 

with the vehicle treatment (data not shown). The effect of the Anthos on the hematological 

and serum biochemical parameters of liver and kidney functions were examined after three 

weeks of the treatment. As shown in Supplementary Fig. 1, no difference in leukocytes, 

erythrocyte counts as well as liver and kidney function enzymes was observed in Anthos-
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treated animals and their levels were well within the normal physiological range of age-

matched control animals.

Discussion

Accumulating evidence indicate therapeutic effects of phytochemicals especially for the 

colored pigments from berries that exist as glycoside of anthocyanidins. Several studies 

examined the in vitro and in vivo efficacy and suggested various underlying molecular 

mechanisms for the health benefits [28,38,41]. However their physicochemical and 

pharmacokinetic limitations such as, low permeability, and poor oral bioavailability 

[2,3,39,40] is widely accepted. There are mixed views in the literature on absorption and 

bioavailability of anthocyanins and Anthos. Glycosylation and acylation are considered the 

two structural features that dramatically affect anthocyanin absorption and influences 

bioavailability [30]. Some studies demonstrated that anthocyanins are mostly absorbed in 

their intact glycoside forms, while other studies indicated that they are first metabolized by 

the gut microflora, and held in their aglycone anthocyanidins forms [40,43]. A search for 

clinical trials conducted with anthocyanins/anthocyanidins at ClinicalTrials.gov show at 

least 72 completed and ongoing studies that have made attempts to understand the 

bioavailability, pharmacokinetics and health effects. These studies indicate a serious interest 

for clinical translation of anthocyanins as a viable therapeutic agent. However, their 

propensity to undergo extensive metabolism and instability are considered unfavorable 

properties that limit its suitability for development as potential drugs.

Despite well-accepted poor bioavailability of anthocyanins and Anthos, only limited 

attempts have been made to develop formulations to address this issue. Previously Stoner 

and Mallery groups developed freeze-dried black raspberry (FBR) aqueous gel for topical 

application on premalignant oral lesions. Although the treatment resulted in histopathologic 

regression of lesions, the chemopreventive benefit was not observed in all trial participants 

[36]. In another attempt, these groups formulated millicylindrical injectable implants of FBR 

ethanol extract using poly (DL-lactic-co-glycolic acid) (PLGA) and poly (DL-lactic acid) 

(PLA) for sustained delivery of chemopreventive FBR anthocyanins [37,57]. Although 

implantable vehicles alleviate concerns with multiple dosing schedules associated with gel 

formulations, this is not patient friendly. Oral delivery of drug is the most patient friendly 

with highest compliance. Recently, alginate-based in situ gastroretentive gelling [58] and 

microencapsulation with maltodextrin, whey protein isolate and beet pectin [59–61] systems 

are explored to increase stability, modulate the release and increase the retention time of 

anthocyanins.

Based on our published [21,45] and unpublished findings indicating Anthos to have higher 

therapeutic effect both in vitro and in vivo compared to anthocyanins, we believe that 

Anthos may be the biologically-active moieties and a superior candidate to anthocyanins for 

drug development. Anthos have been investigated only in limited studies compared to 

anthocyanins due to unavailability of pure compounds in large quantities. We have 

developed simple solvent–solvent extraction-based method for the isolation of pure Anthos 

from enriched berry extracts [50]. Our experimental evidence also demonstrate synergistic 

activity of the native mixture of the five Anthos in bilberry, namely, Dp, Cy, Pu, Pe, Mv 
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compared to individual entities [21]. Anthos are considered to be much prone to avid 

chemical decomposition than the glycoside counterparts. Therefore, they make a suitable 

candidate for nanoencapsulation to improve treatment efficacy.

Exosomes are biological nanoparticles that are drawing great attention as drug delivery 

vehicle due to their cell-based origins [62–65]. Attempts have been made in the recent past 

to isolate exosomes from both non-cancerous and cancer cells in culture and fruit juices for 

delivering the chemotherapeutic drugs, doxorubicin [66,67], paclitaxel [68,69] and natural 

agents such as curcumin [70], withaferin A [19] and celastrol [49]. Bulk isolation and safety 

concerns are the major limitations of such approaches. Our laboratory has recently shown 

that bovine milk-derived exosomes as a safe alternative source and demonstrated 

incorporation of both plant bioactives and chemotherapeutic drugs [19] for enhanced 

therapeutic activity, and improved oral bioavailability. In this report, we prepared Anthos-

loaded exosomes. No significant change in physical attributes such as size and PDI was 

observed between Anthos-loaded and naked exosomes. We postulate that the lipid and 

protein nature might, in part, play a role in drug loading on exosome; however passive 

diffusion of the drug in to the lumen of the exosomes cannot be ruled out.

Several studies, including our own, have reported anti-cancer effects of Anthos both in vitro 
and in vivo. In agreement with earlier reports we demonstrated in vitro anti-proliferative 

activity of the Anthos against six different cancer cell types. The observed anti-proliferative 

effect of the Anthos was further enhanced with exosomal formulation by a nearly 4–60-fold 

reduction in the IC50 values. Naked exosomes also exhibited intrinsic mild to modest anti-

proliferative effects in all cancer cell lines tested; these findings were in-line with our 

previous observations [19]. However exosomes alone were relatively safe with no cytotoxic 

effects observed against normal cells [19]. This difference in response to milk exosomes by 

cancer and normal cells may be due to differential uptake, retention and response to internal 

payload of exosomes.

The activation NF-κB signaling pathway by inflammatory mediators like interleukins and 

cytokines has been reported in many cancers [56]. Anti-inflammatory effects of Anthos have 

been documented earlier by us [21]. Similarly, treatment with Anthos and ExoAnthos caused 

inhibition the TNFα-induced activation of NF-κB in cancer cells. ExoAnthos manifested 

significantly greater inhibition of NF-κB activation than the free Anthos. Oral delivery of 

ExoAnthos also resulted in enhanced anti-tumor activity against lung cancer in nude mice. 

In view of experimental evidence suggesting improved stability of Anthos in exosomal 

formulation, we postulate that the enhanced anticancer effects of ExoAnthos is likely due to 

higher stability, higher uptake and/or slow release of Anthos from the exosomes. In addition, 

other principles such as passive targeting by enhanced permeability and retention effect 

could also contribute to explain these results. Nevertheless, in-depth analysis of stability and 

release kinetics under various physiological conditions need to be performed rigorously to 

confirm the above findings.

Information on the toxicity of the Anthos of wild-type mice with a weekly dose of 40 mg/kg 

had no effect on the hematological and serum biochemical parameters of liver and kidney 

functions indicating that the Anthos were well tolerated. In addition we have established and 
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reported safety of milk exosomes in our earlier studies [19]. Although oral exosomal 

formulation of Anthos needs to be examined for tolerance and toxicity under chronic 

conditions, in view of the safety profile of Anthos and exosomes alone in our prior studies 

there is little concern that ExoAnthos would raise undesired effects.

In summary, our report demonstrates improved stability and anti-cancer effects of exosomal 

formulation of the Anthos against multiple cancer types. The greater efficacy exhibited by 

exosomal formulation of Anthos, in part, comes from the intrinsic activity of naked 

exosomes, which is a ‘bonus’ effect not common to traditional drug delivery vehicles. 

Encapsulation of Anthos onto/into milk exosomes can achieve higher drug efficacy with no 

toxic side effects. Thus, exosomes provide an effective alternative for oral delivery of 

Anthos that is efficacious, cost-effective and safe for the treatment of multiple cancers.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Abbreviations

miRNA microRNA

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide

AFM atomic force microscopy

Anthos anthocyanidins

ExoAnthos Exosomal formulation of Anthos

Cy cyaniding

Dp delphinidin

Pt petunidin

Pe peonidin

Pg pelargonidin

Mv malvidin
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EMSA Electrophoretic Mobility Shift Assay (EMSA)

UPLC ultra high-performance liquid chromatography

TNF-α tumor necrosis factor-α

PDI poly dispersity index
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Fig. 1. Size and morphology of milk exosomes
Bovine milk-derived exosomes (Exo) and ExoAnthos formulation were analyzed for size by 

zetasizer (A). Diluted Exo and ExoAnthos suspensions were used for imaging by AFM. 

Topographic and amplitude images were captured concurrently with a fixed force (<1 nN) 

with a scanning rate of 1 Hz (B).
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Fig. 2. Stability of Anthos in ExoAnthos
UPLC profile of Anthos extracted from exosomal formulation at day 0 and 12 days. The 

relative ration of delphinidin (Dp), cyanidin (Cy), petunidin (Pt), peonidin (Pe) and malvidin 

(Mv) was 40.1: 25.4: 15.8: 5.4: 12.8 (anthocyanidins reference), 37.6: 25.4: 16.9: 6.2: 13.8 

(formulation at day 0) and 37.5: 25.3: 17.1: 6.0: 14.0 (formulation at day 12).
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Fig. 3. Intrinsic activity of bovine milk-derived exosomes to inhibit growth of various human 
cancer cell types
Cancer cell lines of lung, breast, ovarian, colon, pancreas and prostate were treated with 50 

μg/ml exosomal proteins for 72 h and effect on cell growth inhibition was assessed by MTT 

assay and compared with untreated cells. Statistical analysis was performed using Student t-

test to compare exosomes alone with vehicle treatment. *p ≤ 0.05; **p ≤ 0.01 and ***p ≤ 

0.001.
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Fig. 4. Anti-proliferative activity of Anthos-loaded exosomes (ExoAnthos) against various cancer 
cell types
Cancer cell lines of lung, breast, ovarian, colon, pancreas and prostate were treated with 

various concentrations of bilberry-derived Anthos or ExoAnthos for 72 h and effect on cell 

growth inhibition was assessed by MTT assay.
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Fig. 5. Anti-inflammatory activity of Anthos-loaded exosomes (ExoAnthos) against cancer cells
Lung and breast cancer cells were with indicated concentrations of Anthos or ExoAnthos for 

24 h and effect on NFκB activity was assessed by EMSA. Panels on the bottom represent 

quantification of the band and expressed as fold change. Statistical analysis was performed 

using Student t-test to compare TNF-α + Anthos and TNF-α + ExoAnthos vs TNF-α alone 

group. **p ≤ 0.01 and ***p ≤ 0.001.
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Fig. 6. Anti-tumor activity of Anthos-loaded exosomes (ExoAnthos) against lung tumors
Following inoculation with A549 cells, nude mice were treated oral gavage three times a 

week with Exo-Anthos (5 mg Anthos and 50 mg Exo protein/kg bw). Three other groups 

were treated i.p. with Exo alone (50 mg/kg) or Anthos (10 mg/kg). Data represent average ± 

SE of means (n = 7–8). Significance of ExoAnthos vs. Exo alone group is shown.
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Table 1

IC50 values of Anthos and ExoAnthos of various cancer cell lines.

Cancer type Cell line IC50 (μM) Fold difference

Anthos ExoAnthos

Breast MCF7 398 18 22

MDA-MB-231 304 68 4

Lung H1299 59 2 30

A549 71 9 8

Colon HCT116 69 18 4

Pancreatic Panc1 578 65 9

Mia PaCa2 960 16 60

Prostate DU145 357 10 36

PC3 111 9 12

Ovarian Ovca432 112 7 16
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