
Seeing the Forest Beyond the Trees: Predicting Survival in Burn 
Patients with Machine Learning

Adrienne N. Cobb, M.Da,b, Witawat Daungjaiboon, M.S.c, Sarah A. Brownlee, B.A.b, Anthony 
J. Baldea, M.D.a, Arthur P. Sanford, M.D.a, Michael M. Mosier, M.D., FACSa, and Paul C. Kuo, 
M.D.a,b

aLoyola University Medical Center, Department of Surgery, 2160 S. 1st Avenue Maywood, IL 
60153, USA

bOne:MAP Section of Surgical Analytics, Department of Surgery, Loyola University, Chicago, 
2160 S. 1st Avenue Maywood, IL 60153, USA

cDePaul University,College of Computing and Digital Media, Department of Predictive Analytics, 
Chicago, IL, 243 South Wabash Avenue Chicago, IL 60604

Abstract

Background—This study aims to identify predictors of survival for burn patients at the patient 

and hospital level using machine learning techniques.

Methods—The HCUP SID for California, Florida and New York were used to identify patients 

admitted with a burn diagnosis and merged with hospital data from the AHA Annual Survey. 

Random forest and stochastic gradient boosting (SGB) were used to identify predictors of survival 

at the patient and hospital level from the top performing model.

Results—We analyzed 31,350 patients from 670 hospitals. SGB (AUC .93) and random forest 

(AUC .82) best identified patient factors such as age and absence of renal failure (p<0.001) and 

hospital factors such as full time residents (p<0.001) and nurses (p=0.004) to be associated with 

increased survival.

Conclusions—Patient and hospital factors are predictive of survival in burn patients. It is 

difficult to control patient factors, but hospital factors can inform decisions about where burn 

patients should be treated.
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INTRODUCTION

Burn patients require complex care involving a delicate balance among resuscitation, 

stabilization and rehabilitation. Their injuries can range from superficial burns only 

requiring local wound care to more severe burns that may require surgery and are potentially 

complicated by respiratory failure or sepsis. The predictors of outcome in burn patients are 

well established, correlating well with the Baux index of age and percent surface area burned 

as well as the revised Baux index which also takes into account inhalation injury.1–4 

Therefore, multiple factors must be considered when caring for these patients. Traditionally, 

the focus has been on preventing mortality by controlling or treating as many patient specific 

or disease specific factors as possible. Scoring tools such as the Baux Score or the 

Abbreviated Burn Severity Index (ABSI) have been designed to predict morbidity and 

mortality based on total body surface area (TBSA) age, sex and the presence of inhalation 

injury.5 While patient characteristics are key, there are other factors that contribute to patient 

outcomes.

Studies suggest that system characteristics within institutions such as staffing and 

technology can impact the ability of hospitals to provide optimal care for patients. 6–7 Since 

many studies examining the prediction of survival in burn patients are completed in a single 

center, there is little data surrounding what systems characteristics may have contributed to 

the survival of burn patients. The use of a large all payer, administrative database linked to 

hospital level data provides a different perspective. Additionally, the use of machine learning 

allows us to uncover patterns or associations not otherwise elucidated with traditional linear 

statistical techniques. A study utilizing artificial neural networks to predict survival in burn 

patients found non-linear techniques better suited to address complex questions regarding 

prognosis due to their ability to “observe” the real events or facts then evaluate the relative 

influence of variables on each other and the whole case.8

The present study addresses two understudied topics: factors that predict the survival of burn 

patients beyond traditional burn specifications and the contribution of systems infrastructure 

by examining hospital characteristics that predict survival. We identified a heterogeneous 

group of burn patients, created various models to predict survival based on patient and 

hospital characteristics, and chose the model that performed best with the goal of informing 

clinical decision-making.

METHODS

Data Source and Patient Selection

The Healthcare Cost and Utilization Project (HCUP) State Inpatient Database (SID) for 

California 2006–2011, Florida 2009–2013 and New York 2009–2013 was used to identify 

adult patients admitted to the hospital with a burn diagnosis. Burns of varying severity and 
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location were included. The SID is an administrative, all-payer data set aggregated by the 

Agency for Healthcare Research and Quality (AHRQ) to inform health related decisions.9 

The diagnosis codes were identified by International Classification of Disease, 9th Revision, 
Clinical Modification, (ICD9) codes for burn injury (941.20–59, 942.20–35, 942.39–45, 

942.49–59, 943.20–26, 943.29–36, 943.39–46, 943.49–56, 943.59, 944.20–28, 944.30–38, 

944.40–48, 944.50–58, 945.20–26, 945.29–36, 945.39–46, 945.49–56, 945.59, 946.2–5, 

947.0–4, 947.8–9). These data were then merged with the 2011 American Hospital 

Association (AHA) Annual Survey to provide hospital level data associated with the selected 

burn patients. This nationwide database contains information categorizing an institution’s 

organizational structure, facility and service lines, operation expenses, and staffing. 10 The 

Institutional Review Board at our institution deemed the study exempt from review as the 

data are de-identified, protected and publically available.

Data Pre-Processing

Patient level data were pre-processed to provide uniform variable formats across states using 

the dplyr package in R. It provides a flexible grammar of data manipulation and focuses on 

tools for working with data frames. Variables selected for analysis included various 

comorbidities, age, mortality, hospital state, insurance type, procedure codes, race, 

admission type, and median income quartile. Several variables were generated in the 

hospital level AHA dataset including Joint Commission designation, Commission on 

Cancer, Council of Teaching Hospitals, Level 1 Trauma Center, Nurse to Bed Ratio, surgical 

volume, GI intensity, radiology intensity, and ICU beds.

Missing values for both groups were replaced with column means for numerical variables 

and Random forest algorithm was used to impute categorical variables using the caret 

package. Data were split into training (66%) and test (34%) sets. Our target variable DIED 

(mortality=1, survival=0) was extremely imbalanced in both datasets. To avoid not detecting 

the minority class, we used Synthetic Minority Over-sampling Technique (SMOTE) to 

balance both groups by up-sampling the minorities (DIED=1) and down sampling majorities 

(DIED=0).

Statistical Analysis

Descriptive statistics of the study population were calculated using arithmetic means with 

standard deviations or median with interquartile range for continuous variables and 

proportions for categorical variables. Population unadjusted mortality was obtained using a 

simple proportion of number of inpatient mortalities by the total population. Age categories 

by 7-year intervals were created and plotted against mortality rates as seen in Figure I. 

Additionally, mortality rates were calculated by age range and burn type (Table II) as seen in 

Figure II. Multiple models were built to determine the model best suited to predict variables 

that impact survival in burn patients. Accuracy, sensitivity and specificity were used to 

evaluate the models for completeness. We also used receiver operator curve (ROC) for 

model comparison. The ROC demonstrates how well models separate both classes while the 

area under the curve (AUC) can be interpreted as the accuracy of the models. The AUC 

ranges from poor class separation at 0.51 to perfect class separation at 1.
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We used tree-based ensemble models, such as stochastic gradient boosting (SGB) and 

random forest (RF), as we are able to use a variable importance measure to determine those 

factors that affect patient survival. The variable importance measure was used to indicate 

how well each variable split our target class. The stochastic gradient boosting algorithm was 

run with 650 trees, an interaction depth of 9, shrinkage of 0.1 and a minimum of ten 

observations per node. Random forest models were run with a weight class of 1:3. All 

analysis were completed using various packages in RStudio including randomForest, party, 

caret, and pROC and as mentioned above.

Gradient Boosting Machine (GBM) uses a boosting method to build ensemble trees by 

iteratively adding a weak classifier one at a time (in this case tree stump). In each iteration, a 

new tree tries to correct errors in the model from the previous iteration. New trees are added 

until we reach the goal of prediction. Unlike the GBM, the random forest algorithm uses 

bootstrap aggregation, also known as bagging, to construct a model by creating trees from 

sampling data from a training set with replacement and subsequently combines the trees 

together.

RESULTS

We analyzed 31,350 patients from 670 hospitals across the three states included. The mean 

patient age was 40.5 years. The study population was largely male, Caucasian, and had 

Medicaid insurance. Hypertension was the most common comorbidity with 24.6% of the 

study population affected. Baseline patient and hospital characteristics are summarized in 

Table I. The age distribution varied in the study population. The overall mortality rate was 

2.86%, and the rate of mortality increased with age (Figure I). Patients with burns from 

multiple specified sites (ICD-9 946) had the highest mortality rate among burn patients, 

while unspecified sites and burns to the eyes carried no mortality (Figure II).

At the patient level, we found that the stochastic gradient boosting model performed slightly 

better than the random forest algorithm with an area under the ROC curve of .93 and .90 

respectively. Although, the weighted random forest model tended to pick up the minority 

class better than the SGB as evidenced by its superior specificity value (0.74 v. 0.71). The 

top five patient characteristics, as evidenced by their variable importance score, predicting 

survival in burn patients according to the SBG model were younger age, absence of 

electrolyte imbalance or coagulopathy, admission on a weekend, and absence of renal failure 

(Figure III). The top five patient characteristics that predicted survival in the random forest 

model were absence of electrolyte imbalance or coagulopathy, younger age, absence of 

congestive heart failure, and presence of weight loss. All were predicted with p<0.001.

At the hospital level, the random forest algorithm far outperformed SGB with an AUC of 

0.82 compared to AUC 0.62. With a specificity of 0.61, the random forest model is able to 

predict survival correctly for more than 60% of the test set, while SGB only predicts survival 

correctly for 1% of the observations with a specificity of 0.006. Given its poor performance, 

the variables deemed important by the SGB model were not included here. The top five 

hospital characteristics predicting survival in burn patients per the RF model, were the 

presence of full-time residents (p<0.001) and nursing staff (p=0.004), availability of 
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inpatient MRI, high surgical volume (p=0.022), and increased number of medical/surgical 

intensive care unit beds (p=0.0002). Their variable importance is graphically represented in 

Figure IV.

DISCUSSION

Due to steady improvements in the management of burn patients, mortality after burn injury 

has decreased over time, even for those with severe burn injuries. Predictors of morality such 

as the extent of the burn, increasing age, and more recently the presence of inhalation injury 

are well studied.11–13 However, in this era of quality improvement and patient centered 

outcomes, there is pressure for hospitals to find novel methods to improve healthcare quality.

Patient Level

This study demonstrated that patient characteristics such as age, admission on a weekend, 

absence of coagulopathy, electrolyte imbalance, and renal failure predict survival in burn 

patients using stochastic gradient boosting modeling. Age is a well know predictor of 

mortality, with increasing age leading to increased mortality. However, age likely does not 

tell the whole story. Moving forward, as the assessment of frailty becomes commonplace, 

we may see the absence of frailty emerge as a predictor of survival. Romanowski et al 

conducted a study on elderly burn patients and found that a low frailty score was an 

independent predictor of survival.14 It was surprising to note that admission on a weekend 

would lead to survival as the “weekend effect” has been well established.15–17 Avoiding 

coagulopathy and correcting electrolyte imbalances in burn patients is a constant battle. The 

results of this study provide further evidence of the need for protocol driven treatment plans 

not only in the realm of wound care, physical therapy, and nutrition, but also in the 

fundamental critical care areas like fluid balance and temperature regulation.

Hospital Level

The random forest algorithm performed best at determining hospital characteristics such as 

the presence of full time residents and registered nurses, access to MRI, number of medical/

surgical ICU beds and overall surgical volume predicted survival in burn patients. 

Components of hospital infrastructure can play an important role in improving the outcomes 

of burns patients beyond that which is accomplished by optimizing patient level factors. 

There is literature to support the impact of resource availability, adequate staffing and 

surgical volume on patient outcomes, independent of patient factors.18–21

A strength of our study is the use of predictive modeling to identify factors associated with 

survival in burn patients. These models allow for the evaluation of other factors that 

contribute to whether patients survive or die, i.e. the systems characteristics that we 

elucidate. Traditional scoring systems tend to focus on a few distinct patient level factors 

(age, %TBSA, inhalation injury) that likely don’t completely account for a patient’s 

subsequent outcome. Additionally, predictive models are derived using techniques that 

account for non-linear effects that may not have been revealed using traditional linear 

statistical techniques.
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Limitations and Future Work

This study has several limitations, including use of an administrative dataset and the lack of 

granular information regarding burn severity. While there is information within ICD9 codes 

to determine TBSA, the information is often inconsistent across hospitals and states as 

coding practices vary greatly. However, we purposely did not narrow our study population to 

a particular TBSA because we wanted to have a diverse population of burn patients. The 

administrative database used here does not contain reliable information regarding burn 

depth, inhalation injury or other predictors of mortality such as the modified Baux score. 

Additionally, there is always a degree of selection bias in these types of studies, but we 

account for this by using rigorous model validation through training and test sets. Despite 

this, we assert that our results would likely persist even with the stratification of patients by 

burn severity and inhalation injury, particularly for those patients with burns of greater 

severity. Many of the patient factors are likely to remain the same, though it is certainly 

reasonable to think that both %TBSA as well as inhalation injury would have been selected 

by the model with high variable importance as previous research has cited these factors as 

contributing to increased mortality in burn patients. Furthermore, the use of randomly 

sampled training and testing sets provides a platform for the model to identify strong 

predictors in the data as is, regardless of stratification. Lastly, the AHA Annual survey does 

not have the ability to designate hospitals as certified burn centers. Knowing this designation 

would have been useful to include in the model as we know that these centers have a set of 

characteristics that make them unique to addressing burn injuries.

Going forward, this study should be repeated with a particular subset in mind, such as 

patients with burns greater than 20% TBSA as this tends to be the inflection point at which 

mortality increases. It would also be prudent to use another dataset, such as the ABA 

National Burn Repository that contains more burn specific information, although that may 

limit our ability to investigate the hospital characteristics that we believe also play an 

important role in predicting the survival of burn patients.

CONCLUSION

Our findings demonstrate that there are patient level, but more importantly hospital level 

factors that predict survival in patients with varying burn severity. While advances in critical 

care have improved outcomes for burn patients thus far, focusing on hospital resources and 

quality improvement may be what is needed to overcome the current plateau in burn patient 

survival.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Summary sentences

This study aims to identify predictors of survival at the patient and hospital level using 

advanced machine learning techniques. We found that both patient and hospital factors 

are predictive of survival in the burn population such as age, absence of electrolyte 

imbalance, coagulopathy, or number of residents, full time nursing and surgical volume 

respectively. It is often difficult to control patient level factors, hospital factors can inform 

decisions about where burn patients should be treated.

Cobb et al. Page 9

Am J Surg. Author manuscript; available in PMC 2019 March 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Highlights

• Patient factors predicting survival included age, absence of renal failure, 

electrolyte abnormalities, coagulopathy and weekend admission.

• Hospital factors predicting survival included having full-time residents and 

nursing staff, access to advanced imaging, number of intensive care unit beds 

and overall surgical volume.

• Hospital factors in addition to patient clinical factors can be used to inform 

decisions on where burn patients should be treated.
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Figure I. 
Violin plot with age distribution and mortality by age ranges with LD50. The shape of the 

violin plot shows each age range distribution. LD50=39 indicating patients at age more than 

39 have 50% change of death.

*Figure to be used in color in online version and grayscale in print.
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Figure II. 
Mortality rates by age ranges and burn type. As age increases mortality from burn injury 

increases. Moralities per burn type are listed vertically.

*Figure to be used in color in online version and grayscale in print.
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Figure III. 
Variable importance for (A) stochastic gradient boosting and (B) random forest algorithms at 

the patient level. Variable importance is without units, but is normalized to a scale of 1 to 

100, with the larger number indicating increased importance.

*Figure to be used in color in online version and grayscale in print.
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Figure IV. 
Random forest variable importance at the hospital level. Variable importance is without 

units, but is normalized to a scale of 1 to 100, with the larger number indicating increased 

importance.

*Figure to be used in color in online version and grayscale in print.
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Table 1

Baseline Patient and Hospital Characteristics

Characteristic Frequency(%),Mean (SD)

PATIENT CHARACTERISTICS (n=31,350)

Age (mean) 40.52 (22.9)

Sex

Male 20,667 (65.9%)

Female 10,683 (34.1%)

Race

White 17,085 (54.5%)

Black 4,239 (13.5%)

Hispanic 6,591 (21.1%)

Other 3,435 (10.9%)

Insurance

Medicare 5,943 (19%)

Medicaid 8,447 (26.9%)

Private Insurance 7,594 (24.2%)

Self-Pay 3,342 (10.7%)

Other 5,736 (10.7%)

Comorbidities

Diabetes 3,106 (9.9%)

Hypertension 7,719 (24.6%)

Alcohol Dependence 2,245 (7.2%)

Congestive Heart Failure 945 (3.0%)

Obesity 1,329 (4.2%)

Overall Mortality 896 (2.86%)

Length of Stay (median) 5 (2–11)

HOSPITAL CHARACTERISTICS (n=670)

Total Admissions 36,768.9 (28892)

Inpatient Surgeries 10,464 (8875.2)

Full time residents 416 (484.9)

Full time nurses 1,536 (1355.8)

ICU beds 48.1 (39.2)
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Table II

Burn type by ICD9 Code

ICD9 Code Burn Type

940 Burn confined to eye and adnexa

941 Burn of face head and neck

942 Burn of trunk

943 Burn of upper limb except wrist and hand

944 Burn of wrist(s) and hand(s)

945 Burn of lower limb(s)

946 Burns of multiple specified sites

947 Burn of internal organs

948 Burns classified according to extent of body surface involved

949 Burn unspecified site
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