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arterial saturation values following a similar protocol, with 
sensors place on the flank, quadriceps muscle, and calf 
muscle. With informed consent, 25 subjects successfully 
completed the cerebral validation study. The bias and pre-
cision (1 SD) of cerebral StO2 compared to REF CXB was 
−0.14 ± 3.07%. With informed consent, 24 subjects suc-
cessfully completed the somatic validation study. The bias 
and precision of somatic StO2 compared to REF CXS was 
0.04 ± 4.22% from the average of flank, quadriceps, and 
calf StO2 measurements to best represent the global whole 
body REF CXS. The NIRS validation methods presented 
potentially provide a reliable means to test NIRS monitors 
and qualify them for clinical use.

Keywords  Tissue oximetry · Cerebral oximetry · Near 
Infrared Spectroscopy · NIRS · Tissue oxygen · Saturation · 
FDA

1  Introduction

The history of validations for tissue oxygen saturation 
(StO2) measurements of the brain dates back to 1991. 
McCormick et  al. [1], first described the comparison of a 
Near-Infrared Spectroscopy (NIRS) monitor (INVOS® 
2910, Somanetics Corp. acquired by Medtronic, Dublin, 
Ireland) to a mixed bed of arterial, venous, and capillary 
blood in the brain, using a weighted blood reference con-
sisting of both arterial and venous blood. Pollard et al. [2] 
validated the first US FDA cleared commercial NIRS cere-
bral oximeter (INVOS® 3100, Somanetics Inc., acquired by 
Medtronic, Dublin, Ireland) with a weighted blood co-oxi-
metry reference of 0.75 × jugular bulb oxygen saturation 
(SjbO2) and 0.25 × arterial oxygen saturation (SaO2) [3, 4]. 
Henson et al. [5] and Shah et al. [6] followed with similar 
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comparison studies with the INVOS 3100 monitor. Sev-
eral years later, the first-generation FORE-SIGHT cerebral 
oximeter was validated against a cerebral blood weighted 
reference of 0.70 × SjbO2 and 0.30 × SaO2, [7–10], which 
was supported by PET studies by Ito, et  al. [11] Other 
NIRS cerebral oximeter validations on both adult and pedi-
atric subjects adopted the weighted 70:30 SjbO2:SaO2 ref-
erence [12–14].

For tissue oxygen saturation (StO2) measurements of 
somatic (non-cerebral) locations, the reference used for 
NIRS monitor StO2 comparative and validation studies 
has been more varied and has included in-vitro compari-
sons. Research NIRS devices monitoring skeletal muscle 
were compared to a local venous oxygen saturation value 
from a blood draw during exercise [15–17]. The Hutchin-
son InSpectra™ (Hutchinson Technology Inc., Hutchinson, 
MN USA) was validated by comparing sensor measure-
ments to blood saturation values in an in-vitro setup [18]. 
The ViOptix ODISsey™ (ViOptix, Inc, Fremont, CA USA) 
and Invos 3100 monitors were compared to co-oximetry 
measurements of blood draws on isolated animal limbs [19, 
20]. For pediatrics, NIRS human somatic measurements 
were compared to central venous blood saturation values 
[21, 22]. Later, FORE-SIGHT pediatric somatic StO2 val-
ues were validated by comparing to a weighted blood co-
oximetry weighted blood co-oximetry reference of 0.70 × 
central venous oxygen saturation (ScvO2) and 0.30 × arte-
rial oxygen saturation (SaO2) [23], which was supported by 
Pang et al. [24] from estimating whole body venous volume 
ratio.

The purpose of this paper is to describe one methodol-
ogy of validating NIRS based tissue oximeters accepted by 
the US FDA for adult clinical clearance. For other world 
regulatory bodies such as the European Union Medi-
cal Device Directive (93/42/EEC) [25], there are similar 
requirements for clinical clearance of medical devices. 
This methodology of validating NIRS based tissue oxi-
meters was used to obtain clinical clearance in the Euro-
pean Union, Canada, Australia, China, Japan, and Russia. 
Although industry methods of validation and FDA require-
ments have generally converged in the last two decades, 
there is no universally accepted reference to compare tissue 
oximeters against. The US FDA currently prefers oximeter 
validations, whether pulse oximeters, or tissue oximeters 
to be compared to a blood reference. The US FDA 510(K) 
medical device clearance method requires a reference to 
one or more similar function predicate devices that are 
validated similarly to the new medical device being evalu-
ated. We present the methodology behind the validation 
of the second-generation FORE-SIGHT® tissue oximeter 
(FORE-SIGHT ELITE®, CAS Medical Systems, Bran-
ford, CT USA) for both cerebral and somatic tissue oxy-
gen saturation (StO2) monitoring, with rationale behind the 

assumptions made, selection of a comparative reference, 
statistical methods used, subject recruitment requirements, 
particularly in terms of diverse skin tones, and regulatory 
requirements for clinical use. This NIRS validation meth-
odology evolved from a history of NIRS-based tissue oxi-
meter validation publications and FDA correspondence 
recommending use of Deming regression and bootstrap 
resampling techniques for analysis of comparative data to 
a reference. We will demonstrate how Deming regression 
and bootstrapping techniques are used to validate NIRS 
based tissue oximeters, and the potential advantages. Boot-
strapping validation allows pooling of all subject data to a 
best fit model used to set algorithm parameters and then 
performing model validation. Previous NIRS validations 
relied on methods involving splitting the subjects to two 
groups, calibration set and test set, and/or using Bland–Alt-
man in various forms.

2 � Methods

2.1 � Technical and physiological background

The methodology of NIRS based tissue oximeters are well 
explained elsewhere [26–36]. In short, tissue oxygen satu-
ration (StO2) measurements are based on the fact that oxy-
hemoglobin (HbO2) and deoxyhemoglobin (Hb) have dif-
ferent light absorption spectra. For brain, NIR light easily 
passes through skull bone and the absorption of NIR light 
by brain tissue is dependent upon chromophores (light 
absorbing tissue) within the path of the transmitted light in 
a highly optical scattering medium. HbO2 and Hb are the 
primary chromophores that absorb light, but background 
tissue light absorption can have a high impact on the meas-
urement. Because biological tissue highly scatters light as 
well, reflectance type NIRS sensors can be used to target 
large organs such as the brain.

The first-generation FORE-SIGHT (CAS Medical 
Systems, Branford, CT USA) monitor was the second 
FDA cleared cerebral and somatic tissue oximeter to be 
widely available for clinical use in the USA, following the 
INVOS® (Somanetics/Covidien, Boulder CO, USA) series 
of monitors. The first-generation FORE-SIGHT monitor 
used a laser light source with four discrete wavelengths 
(690, 780, 805, 850  nm) compared to INVOS using two 
LED light source wavelengths (730 and 810 nm). Besides 
accounting for HbO2 and Hb, the extra wavelengths used 
in FORE-SIGHT allowed for compensation for tissue back-
ground optical properties such as skin pigmentation and 
deep tissue optical characteristics, which can be highly 
variable among different human subjects. The next gen-
eration FORE-SIGHT ELITE® tissue oximeter features a 
five wavelength LED light source (685, 730, 770, 805, & 
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870 nm). The purpose of the extra fifth wavelength was to 
further improve compensation for tissue background optical 
properties, as well as reduce measurement error due to the 
LED’s inherent wider spectral bandwidth. The algorithms 
used are based on a form of the Modified Beer–Lambert 
Law and are described elsewhere [7, 36, 37].

The monitor’s adult Large sensors have two detectors 
(near and far), where the far detector is 5.0  cm and near 
detector is 1.5 cm from the light source. The 5 cm far detec-
tor optode separation was selected as a tradeoff of having 
sufficient signal to noise ratio of detected light and sam-
pling a higher percentage of brain tissue both in depth and 
in volume compared to smaller optode separations [38–43]. 
The 1.5 cm near detector optode separation was selected to 
sample extracerebral tissues, while minimizing brain tissue 
sampling [39]. The signals from the near detector are effec-
tively subtracted from the far detector to minimize effects 
of extracerebral interference from blood and skin pigmen-
tation, as well as to compensate for light source variabil-
ity in the calculation of StO2 by a variant of the commonly 
used NIRS spatially resolved spectroscopy (SRS) method 
[44–48]. However, under extreme manipulations to separate 
brain and extracerebral compartments, full extracerebral 
interference elimination is not achieved [49–51]. Skin pig-
mentation and deep tissue optical characteristics still need 
to be further compensated by the aforementioned addition 
of extra wavelengths. Because human scalp and skull thick-
nesses can vary considerably [52–55], the 5 cm far detector 
optode spacing better accommodates anatomical variations 
with the increased interrogation depth over smaller optode 
separations [39, 40, 56].

Because NIRS technology mainly interrogates the 
microvasculature of tissue, which includes arterioles, ven-
ules, and capillaries, and does not involve the pulsatile 
signal component, a NIRS tissue oxygen saturation (StO2) 
measurement is made on a mixture of both venous and 
arterial blood. The general assumption used in our analy-
sis is that mean ratio of this mixture for brain is estimated 
to be a ratio of 70% venous to 30% arterial blood by vol-
ume [11]. Whole body tissues are also estimated to contain 
the same mean ratio of 70% venous to 30% arterial blood 
by volume [24]. Therefore, to validate NIRS, oxygenation 
measurements of both venous and arterial blood need to be 
weighted from the venous output and arterial inputs of a 
target organ. For the brain, arterial blood supply is primar-
ily from the carotid arteries and the primary venous drain-
age is by the internal jugular vein/jugular bulb. For somatic 
tissue, arterial blood supply is primarily from the descend-
ing aorta and the primary venous drainage is the vena cava 
leading to the right atrium. Because arterial blood oxygena-
tion is similar in the larger blood vessels in the absence of 
congenital defects, blood was drawn from a catheter placed 
in the radial artery.

2.2 � Study protocol

The goal of this study was to evaluate the performance of 
the FORE-SIGHT ELITE in healthy volunteers during a 
controlled hypoxia sequence at steady-state ETCO2 levels 
to measure cerebral and somatic StO2 with the adult Large 
sensors. Subjects were healthy adult volunteers who were 
compensated for their study participation. Written informed 
consent was obtained from each subject prior to the initia-
tion of any pre-study examination. Subjects were enrolled 
in either the cerebral or somatic cohort as venous catheter 
placement could only be in one location. For cerebral, a 
catheter was placed in the right jugular bulb for blood sam-
pling, with location verified by X-ray. For somatic, a cathe-
ter was placed for blood sampling in the superior vena cava 
outside of the right atrium.

For cerebral StO2 validation, a Large sensor was placed 
on the left or right forehead close to the hairline, with 
placement alternated by even or odd subject number. The 
monitor’s values were compared to the calculated cerebral 
oxygen saturation (derived from co-oximeter measured 
arterial and jugular bulb venous oxygen saturations) during 
the sequential desaturation study.

For somatic StO2 validation, three Large sensors were 
placed on the flank, quadriceps, and calf muscles preferably 
at a high muscle density location. Sensor placements were 
alternated on the left or right side by even or odd subject 
number. The monitor’s values were compared to the calcu-
lated somatic oxygen saturation (derived from co-oximeter 
measured arterial and central venous oxygen saturations) 
during the sequential desaturation study.

The level of oxygen within the blood was reduced in a 
controlled manner by altering the inspired oxygen concen-
tration (FiO2) to achieve arterial oxygen saturation plateaus 
between 100 and 70% as measured by a finger pulse oxime-
ter on the finger. An attending anesthesiologist was present 
for each individual study. The anesthesiologist continu-
ously monitored subject’s safety and managed the conduct 
of the study protocol. The subject’s tolerance of the study 
procedures was continually assessed and, if necessary, the 
study was prematurely terminated by subject request or 
clinical discretion.

First, the controlled hypoxia evaluation was conducted. 
The level of oxygen within the blood was reduced in a 
controlled manner by the RespirAct® (Thornhill Research, 
Toronto, Canada) sequential gas delivery system (consist-
ing of gas tanks, gas blender, facemask and control laptop 
with continuously displayed O2 and CO2) which permit-
ted independent control of the both the ETO2 and ETCO2 
to reach target values. ETCO2 was regulated to a target of 
40 mmHg (±2) to normalize cerebral vasoreactivity to CO2 
among subjects, to minimize changes in the venous and 
arterial blood volumes in cerebral tissue. The measured 
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ETO2 and ETCO2 were used to closely match the target 
arterial O2 and CO2 (PaO2 and PaCO2), respectively. The 
PaO2 in turn determined the resultant SpO2. One (1) room 
air and eight (8) ETO2 plateaus were targeted, with result-
ing eight SpO2 plateaus between 70–100% (Fig. 1). At each 
plateau a set of paired arterial and jugular venous blood gas 
samples were drawn in heparinized syringes approximately 
5 min after the FiO2 step, when the SpO2 and StO2 values 
stabilized. Blood samples were processed by a co-oximeter 
(ABL 90, Radiometer, Copenhagen, Denmark) to meas-
ure the arterial (SaO2) and jugular venous (SjvO2) oxygen 
saturations. Tissue oximetry measurements and blood sam-
ples were time-synchronized at each plateau. ECG, pulse, 
blood pressure, SpO2, ETCO2, and ETO2 were monitored 
throughout the study.

Institutional Review Boards (IRB) and Ethics Commit-
tees will only allow healthy volunteers to participate in low 
risk studies. The placement of the IJV bulb catheter rep-
resents a potential risk to healthy volunteers, though the 
precise risk of complications is difficult to quantify. Jugular 
bulb catheters have been used not only in healthy volunteers 
for oximeter validation studies but also for high altitude 
[57] and breath hold diving studies [58] without reported 
complications. In neuro-intensive care and neurosurgical 
patients several studies [59–63] have reported the safe use 
of jugular bulb catheters for clinical monitoring purposes. 
In the study by Coplin et  al. [64], the authors reported a 
40% incidence of thrombus at or near the site of line place-
ment following line removal from 44 neuro-intensive care 

patients. Of particular note, the median duration of jugular 
line monitoring was 3 days and all the thrombi were con-
sidered subclinical with no patient experiencing symptoms. 
Therefore, we consider that the placement of IJV bulb cath-
eters in healthy volunteers by experienced medical person-
nel using ultrasound guidance and for short periods of data 
collection (typically less than 4 h) to be appropriate and to 
constitute a low risk to study participants. There are pub-
lished studies conducted under similar conditions to those 
defined for this study that demonstrate that healthy subjects 
tolerate the mild hypoxia and jugular bulb catheterization 
well without adverse outcomes [1, 2, 9, 10, 12].

Standard clinical procedure should be followed when 
performing jugular bulb catheterization to minimize risks 
[65, 66]. This study employs methods similar to the stand-
ard protocols recommended by the FDA and ISO Standards 
for testing pulse oximeters with mild hypoxia steps and 
blood drawn from arterial catheters (ISO 80601-2-61:2011) 
[67].

2.3 � Data analysis & statistical considerations

The monitor’s forehead cerebral StO2 measurements 
were compared to the weighted co-oximetry reference 
(REF CXB) based on the assumed 70:30 brain tissue 
venous:arterial (V:A) blood volume ratio [11] from the fol-
lowing equation [7]:

REF CX
B
= (0.7 × SjvO2

) + (0.3 × SaO2
)

Fig. 1   Stepped Hypoxia 
Plateau Sequence Protocol with 
targeted pulse oximetry SpO2 
values and estimated ETO2 
values previously derived exper-
imentally from SpO2. For the 
NIRS cerebral StO2 validation 
portion of the protocol, jugular 
venous and arterial blood sam-
ples are drawn for co-oximetry 
analysis when the cerebral StO2 
value stabilizes for each step. 
Likewise for NIRS somatic 
StO2 validation portion of the 
protocol, central venous and 
arterial blood samples are 
drawn for co-oximetry analysis 
when the somatic StO2 values 
from flank, quadriceps, and calf 
muscle stabilize for each step
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where SjvO2 and SaO2 are the functional oxygen saturations 
from the blood samples drawn simultaneously from the 
internal jugular venous (jugular bulb) and systemic arterial 
catheters, respectively, and measured using a co-oximeter.

The monitor’s somatic StO2 readings were compared to 
the weighted co-oximetry reference (REF CXS) based on 
the assumed 70:30 somatic tissue V:A blood volume ratio 
[24] from the following equation:

where ScvO2 and SaO2 are the functional oxygen satura-
tions from the blood samples drawn simultaneously from 
the vena cava (near the right atrium), and systemic arte-
rial catheters, respectively, and then measured using a 
co-oximeter.

We performed the Bland–Altman analysis [68] to eval-
uate the agreement between the measured StO2 and the 
REF CX, overall and within subgroups (e.g., light, moder-
ate, and dark skin tones). Bias and precision (1 SD) were 
reported. Since the study design included repeated meas-
urements within the same patient, a modified Bland–Alt-
man analysis taking into account the repeated measures 
was performed using the MethComp package in R (http://
BendixCarstensen.com/MethComp). We categorized Cau-
casian (White) subjects as having light skin tone, Asian and 
Hispanic subjects as having moderate skin tone, and Afri-
can American (Black) subjects as having dark skin tone. 
For accuracy determinations, multiple subject data points 
were not binned like the alternative method of Ikeda, et al. 
[10]. We used both the random coefficients model and the 
Deming regression to estimate the intercept and slope (with 
95% confidence intervals) of the measured StO2 against 
REF CX, following that of past FDA accepted 510  K 
clearances. The FDA favors the use of Deming regression 
[69], because it accounts for errors in observations on both 
the x-axis (REF CX reference) and the y- axis (measured 
StO2). The advanced regression methods add value by dem-
onstrating the robustness of the validation. Results between 
the Deming regression and the traditional linear regres-
sion allow visual comparison to demonstrate consistency 
and similarity of the two methods to compensate for any 
possible weaknesses of each method. Also presented is the 
concordance correlation coefficient (CCC) [70], which is 
similar to the Pearson’s correlation coefficient but consists 
of a measure of precision multiplied by a measure of accu-
racy. Historically, successful cerebral oximeter FDA 510 K 
applications using a similar healthy adult hypoxia protocol 
have been based upon data from 17 to 23 subjects [71–73]. 
Power analysis shows that under the assumption that the 
true precision is 3%, there is an 80% chance that an experi-
ment with 24 subjects will reliably detect an observed pre-
cision of 3.8% or less.

REF CX
S
= (0.7 × ScvO2

) + (0.3 × SaO2
)

2.4 � Dependent data considerations

Because each subject had 9 data points each, the data are 
not independent. Therefore, a more complex analysis is 
detailed as follows. Deming regression assumes the refer-
ence (REF CX) is subject to measurement error. A Deming 
regression line will be fitted for each subject resulting in 
25 regression lines with slope and intercept for the 25 sub-
jects. Initial Q statistic analysis showed that the estimated 
standard errors for the regression coefficients are not homo-
geneous as some subjects have larger variation than others 
due to subject effect (not pure instrumental random error). 
This factor is taken into account when the estimates of 
intercepts and slopes are “pooled” together as part of a two-
step process. Specifically, in Step 1, the Deming regression 
coefficients are determined for each subject, and then their 
standard errors are determined using the Jackknife method 
[74, 75]. In Step 2, the “Meta Analysis” technique is used 
to pool these estimates together to generate a weighted 
average intercept and a weighted average slope [76]. The 
pooled analysis considers that subjects are random samples 
from a general population.

Random Coefficients Model is a traditional method of 
linear regression and an alternate technique for analysis of 
subject dependent data. It assumes that each subject has 
his/her trajectory or inherent trend of the repeated measure-
ments. The inherent trajectories are “high” or “low” with 
different steepness across subjects, suggesting that the sub-
ject-specific intercept and slope [77]. The concordance cor-
relation coefficient (CCC) was used to demonstrate agree-
ment for continuous data in this model. It can be used in 
the context of multiple repeated measurements per subject, 
and thus is valid for this study. [78].

2.5 � Bootstrap model validation

Bootstrapping is a statistical method for estimating the 
sampling distribution of an estimator by sampling with 
replacement from the original sample, with the purpose of 
deriving robust estimates of standard errors and confidence 
intervals of a population parameter such as regression cor-
relation coefficient and confidence intervals. The regres-
sion methods (Deming regression and Random Coefficients 
Model) and CCC calculation were validated by two boot-
strapping methods, Bootstrap I and Bootstrap II. The Boot-
strap 95% confidence interval (CI) method was computed 
two different ways: “Normal”—normal approximation; and 
“Bias Corr”—bias-corrected percentile method. For Boot-
strap I, individual subject data was bootstrapped without 
doing any moving block bootstrapping for repeated meas-
urements within subjects. Sherman and le Cessie [79] pre-
sent an ‘all block bootstrap’ by resampling blocks of indi-
vidual subjects. They argued that, by bootstrapping these 

http://BendixCarstensen.com/MethComp
http://BendixCarstensen.com/MethComp
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blocks, the correlation structure within each block could be 
maintained and the bootstrap intervals could be produced 
in an automatic way so that the correlation structure can 
be left unspecified. For Bootstrap II, we performed a sec-
ond bootstrap method which does double bootstrapping for 
panel data (i.e., bootstrap for both subject and time series 
data) based on Davison and Hinkley [80]. For this method, 
we bootstrapped individual subjects first and then boot-
strapped observations within individual subjects using the 
moving block method with block size 3 and overlap size 
2. This is determined from the dataset, where there were 
9 observations per subject where the desire block size is 
n**(1/3) which is 9**(1/3) ~ 2 or 3.

2.6 � Uncertainty analysis

Because it is likely that the assumed 70:30 brain tissue V:A 
volume ratio varies between subjects and with physiologi-
cal conditions [81], weighted cerebral co-oximetry refer-
ence (REF CXB) based on the StO2 values were also com-
pared to other brain tissue V:A volume ratios from 60:40 to 
80:20 to quantify potential errors due to varying V:A vol-
ume ratios.

3 � Results

3.1 � Cerebral validation study

With informed consent, 25 subjects successfully com-
pleted the cerebral validation study with the following 
demographics: 15 White, 5 Black, 4 Asian, and 1 Hispanic 
subject, with 12 Males and 13 Females. Weight range was 
44.6–108.9 kg; and age range was: 19.4–41.7 years.

Nine data points were obtained per subject from each 
FiO2 step along with REF CXB for a total of 225 paired 
data points.

The bias and precision (1 SD) of the monitor’s cerebral 
StO2 measurement vs REF CXB for the three skin tone 
groups (light, moderate, and dark skin tones) are shown in 

Table 1. Figure 2 shows a scatterplot of the individual data 
points for the three skin tone types.

The monitor’s StO2 measurements from the right fore-
head sensor demonstrated an overall bias ± precision (1 
SD) of 0.03 ± 3.02% (12 subjects), while the left forehead 
sensor demonstrated an overall bias ± precision (1 SD) of 
−0.30 ± 3.13% (13 subjects). Cerebral StO2 accuracy of 
both cerebral hemispheres was similar, even though jugular 
bulb catheterization was always on the right side.

The cerebral StO2 versus REF CXB Deming regression 
was y = 0.966x + 2.447 and Random Coefficients model 
was y = 0.977x + 1.728 demonstrating the similarity of the 
results using subject dependent data regression techniques. 
The Concordance Correlation Coefficient (CCC) was 
0.948. Using the rigorous Bootstrap techniques (Bootstrap I 
and Bootstrap II) for model validation, the Deming regres-
sion, Random Coefficients model, and CCC parameters 
were very similar to the observed values. The confidence 
intervals increase slightly when using the Bootstrap meth-
ods (Table 2).

The cerebral StO2 values were compared to various 
weighted cerebral co-oximetry reference (REF CXB) in the 
uncertainty analysis. For brain tissue V:A volume ratios of 
60:40, 65:35, 70:30, 75:25, and 80:20, the bias and pre-
cision (1 SD) of StO2 was 2.87 ± 2.82%, 1.37 ± 2.92%, 
−0.14 ± 3.05%, −1.65 ± 3.20%, and −3.16 ± 3.37%, respec-
tively. The bias of StO2 versus REF CXB changes about 
0.30% per one point shift in the V:A volume ratio result-
ing in bias changes of ±3.0% for ratios of 60:40 or 80:20 
the compared to the selected V:A ratio of 70:30. The mean 
SaO2–SjvO2 difference for all values was 30.15 ± 6.17 (1 
SD).

3.2 � Somatic validation study

With informed consent, 24 subjects successfully completed 
the somatic validation study with the following demograph-
ics: 8 White, 14 Black, and 2 Asian, with 15 Male and 9 
Female subjects. Weight range was 51.0–96.5 kg; and age 
range was: 19–40 years. Nine somatic StO2 measurements 
from the flank, quad, and calf (27 measurements total) were 

Table 1   Accuracy performance 
indicated by (Bias ± precision, 
1 SD) of the monitor’s cerebral 
StO2 measurements versus REF 
CXB for the three skin tone 
groups (light, moderate, and 
dark skin tones)

Comparison of Light versus Moderate tone and Light versus Dark tone were not statistically significant 
(P > 0.05, t-test for means)
*Precision reported using Modified Bland–Altman for dependent data, with the more commonly reported 
standard Bland–Altman precision shown in parentheses

Skin tone Subject
(N)

Data points
(N)

Deming regression equation Cerebral StO2
(Bias ± 1SD)*

All 25 225 StO2 = 2.45 + 0.97 REF −0.14 ± 3.07 (3.05)
Light 15 135 StO2 = 0.30 + 0.99 REF −0.09 ± 3.27 (3.23)
Moderate 5 45 StO2 = 2.54 + 0.95 REF 0.52 ± 2.59 (2.53)
Dark 5 45 StO2 = 6.96 + 0.92 REF −0.96 ± 2.90 (2.86)
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obtained per subject from the three sensors along with REF 
CXS.

Figure  3 shows a scatterplot of StO2 versus REF CXS 
for flank, quad, and calf overlaid. The bias and precision (1 
SD) of separated flank, quad, and calf somatic StO2 versus 
REF CXS are shown in Table 3. Figure 4 shows a scatter-
plot of StO2 versus REF CXS for averaged flank, quad, and 
calf StO2 values at each blood draw time for the three skin 
tone groups (light, moderate, and dark skin tones). The bias 
and precision (1 SD) of StO2 average of flank, quad, and 
calf values for the three skin tone groups versus REF CXS 
are shown in Table 3.

The averaged (flank, quad, & calf) somatic StO2 ver-
sus REF CXS Deming regression was y = 0.867x + 9.514 
and Random Coefficients model was y = 0.846x + 10.929 
demonstrating the similarity of the results using subject 
dependent data regression techniques. The differences 
between the flank, quad, and calf in terms of individual 
Deming regression equations (Table 3) where quad and calf 
slopes are lower than flank, as well as bias & precision may 
have an influence on the overall regression slope and inter-
cept when the data points are averaged. The Concordance 
Correlation Coefficient (CCC) was 0.821. Using the rigor-
ous Bootstrap techniques (Bootstrap I and Bootstrap II) for 
model validation, the Deming regression, Random Coeffi-
cients model, and CCC parameters were very similar to the 
observed values. The confidence intervals increase slightly 
when using the Bootstrap methods. The averaged somatic 

site StO2 compared to the global REF CXS accuracy was 
better than the individual somatic site StO2 measurements, 
and accuracy decreased as the somatic measurement body 
location was made farther away from the central venous 
REF CXS blood draw location (Table  4). Also cerebral 
StO2 accuracy vs REF CXB was better than somatic StO2 
vs REF CXS.

4 � Discussion

The validation methodology of tissue oximeters to invasive 
blood reference values assumes a fixed venous to arterial 
(V:A) blood volume ratio that can be applied to all sub-
jects. The V:A blood volume ratio likely varies, with differ-
ent analyses suggesting cerebral V:A blood volume ratios 
ranging from 54:46 to 84:16 [7, 82]. Because 70:30 is near 
the midpoint of the estimated V:A range [7] and imaging 
techniques also suggest the mean cerebral V:A blood vol-
ume ratio is approximately 70:30 among different subjects 
in steady state healthy conditions [11], we believe that 
an V:A ratio of 70:30 is a reasonable assumption for the 
brain. Our data indicates that if the actual V:A ratio varied 
60:40–80:20 between subjects, the bias of StO2 versus REF 
CXB would change ±3.0% compared to the selected V:A 
ratio of 70:30. The high precision of the FORE-SIGHT 
ELITE (3.07% 1 SD) for cerebral StO2 against the fixed 
70:30 reference weighting across the StO2 50–90% satura-
tion range therefore suggests that for healthy subjects under 
controlled PaCO2 conditions, the inter- and intra-subject 
subject variability of V:A ratio is likely less than ±10%. As 
an indirect comparison, pulse oximetry precision for adults 
derived from a controlled hypoxia study is ~2% (1 SD) 
when compared to arterial blood oxygen saturation [83]. It 
is unlikely that in-vivo validated NIRS tissue oximetry sys-
tems will reach pulse oximeter precision, in part because 
NIRS tissue oximeters need both arterial and venous blood 
oxygen saturation co-oximeter measurements, which adds 
more variability to the REF CX reference measurement, 
and also because NIRS tissue oximetry interrogates deeper 
into tissues to make a StO2 measurement. Note that an 
NIRS monitor cannot measure the actual V:A blood volume 
ratio in tissue and does not distinguish venous and arterial 
contributions, a common point of confusion of NIRS moni-
tors. The V:A ratio is only used to derive a reference from 
blood samples during validation of the NIRS monitor.

An interpretation of this data is that the inter-subject var-
iability of cerebral vasoreactivity during controlled PaCO2 
conditions is likely low within healthy adult subjects. 
The mean V:A ratio will then be likely less variable com-
pared to other patient populations with morbidities or dur-
ing uncontrolled PaCO2 states. Therefore, validation with 
healthy adult subjects with controlled PaCO2 may serve as 

Fig. 2   Scatter plot comparison of cerebral StO2 measurements to co-
oximetry reference (REF CXB) with data points marked by skin tone 
(dark, moderate, and light)
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a control. Measured precision and regression parameters 
would then be indicators on how the tissue oximeter per-
forms under near-ideal conditions. A tissue oximeter that 
shows more variability when compared to a reference under 
near-ideal conditions, will likely demonstrate more vari-
ability when used as a clinical monitor. A controlled tissue 
oximetry validation cannot be performed for pediatric and 
neonatal subjects for ethical reasons and so non-healthy 
pediatric subjects undergoing cath-lab procedures are com-
monly used [13, 23, 84, 85]. As a result, precision and 
regression parameters from pediatric tissue oximetry vali-
dation exhibit more variability compared to a control study 
[13, 85]. Because tissue oximetry general sensor and algo-
rithm designs are usually similar for a particular model tis-
sue oximeter among different subject populations, the adult 
validation may indirectly serve as a reference for pediatric 
tissue oximetry performance as well.

It is understood that the cerebral venous to arterial 
blood volume ratio varies physiologically in the tis-
sue vasculature that is interrogated by a NIRS sensor 
[7, 86–88] as PaCO2 normally varies among human and 
other mammalian subjects. Since CO2 is a potent vaso-
dilator to the cerebral vasculature, PaCO2 levels in blood 
can shift the V:A ratio where high PaCO2 levels (hyper-
capnia) would drive arterial blood volume ratio to be 
greater than 30% while low PaCO2 levels (hypocapnia) 
would drive arterial blood volume ratio to be less than 
30% [89, 90]. Because hypocapnia results in vasocon-
striction of cerebral arterial blood vessels, resulting in 
reduced flow, cerebral tissue ischemia can result [91–95]. 
In addition to the effects of lower perfusion, a NIRS sen-
sor would also interrogate less arterial blood volume rela-
tive to venous blood volume in the tissue. This compound 
effect will result in a decrease of StO2, which would 
alert the clinician and warrant a check in PaCO2 levels 

Table 2   Comparison of cerebral StO2 measurements to co-oximetry reference (REF CXB): Deming and Random Coefficients Model Regres-
sion, CCC, and Bootstrap I and Bootstrap II Validation

Bootstrap I: Single Bootstrapping for dependent data—bootstrap individuals only and then sample entire block for each selected subject
Bootstrap II: Double Bootstrapping for dependent data—bootstrap individuals and then bootstrap observations within individuals using the mov-
ing block method with block size 3 and overlap size 2
Bootstrap CI method: bias-corrected percentile method
Bootstrap sample = 500

Method Original or bootstrap (bias–cor-
rected) statistic

Standard error Lower 95% confidence 
limit

Upper 95% 
confidence 
limit

Deming regression
 Intercept
  Observed 2.447 1.849 −1.176 6.071
  Bootstrap I 2.511 2.626 −2.093 7.937
  Bootstrap II 3.029 2.967 −2.921 8.368

 Slope
  Observed 0.966 0.0287 0.909 1.022
  Bootstrap I 0.964 0.040 0.882 1.041
  Bootstrap II 0.958 0.046 0.878 1.054

Random coefficients model
 Intercept
  Observed 1.728 2.450 −3.328 6.784
  Bootstrap I 1.800 2.464 −2.766 6.654
  Bootstrap II 1.783 2.603 −3.773 6.763

 Slope
  Observed 0.977 0.0390 0.897 1.058
  Bootstrap I 0.976 0.039 0.900 1.055
  Bootstrap II 0.976 0.041 0.898 1.062

Concordance correlation coefficient
 (CCC)
  Observed 0.948 0.015 0.877 0.960
  Bootstrap I 0.954 0.023 0.891 0.975
  Bootstrap II 0.916 0.008 0.929 0.929
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[96–98]. Reduced minute ventilation to increase CO2 
levels is often used as an intervention to increase cere-
bral blood flow and resultant perfusion [99–103]. In this 
case, a NIRS sensor would detect an increase of arterial 
blood volume relative to venous blood volume as well as 
an increase in flow resulting in an increase of StO2, the 

desired effect. Therefore, we believe that a cerebral tis-
sue oximeter validated using a controlled fixed V:A blood 
volume ratio REF CXB reliably provides clinicians real 
time information of the effect of both adverse and ben-
eficial changes in cerebral vasoreactivity and V:A blood 
volume ratio shifts.

For the somatic co-oximeter reference REF CXS, the 
mean V:A non-cerebral tissue blood volume ratio was also 
assumed to be 70:30 among different subjects in steady 
state healthy conditions. This assumption was based on the 
findings of Pang et al. [24] where the venous system of the 
whole body contains 70% of total blood volume. However, 
somatic tissue blood volume V:A ratios can vary greatly 
under normal and abnormal physiological conditions. For 
example, muscle exercise may dynamically change V:A 
ratio between contraction and relaxation. Body position, 
such as standing upright, may result in pooling venous 
blood volume in the lower extremities compared to the 
supine position. Therefore, for somatic validation, the sub-
jects were in the supine position and relaxed, with negligi-
ble muscle activation resulting in resting state metabolism 
for the somatic sensor measurement sites. This controlled 
resting state appeared to effectively limit the variation 
in V:A blood volume ratio as evidenced by somatic StO2 
accuracy measurements within 6% (1 SD) compared to a 
fixed 70:30 blood volume ratio REF CXS.

The results showed that the somatic StO2 measure-
ment precision and individual Deming regression slope 
decreased as the body location moved farther away from 

Fig. 3   Scatter plot comparison of individual somatic StO2 measure-
ments (flank, quad, and calf) versus Co-Oximetry Reference (REF 
CXS)

Table 3   Accuracy performance indicated by (Bias ± precision, 1 SD) of Somatic StO2 versus REF CXS for the individual three body locations 
monitored (Flank, Quad, and Calf)

*Precision reported using Modified Bland–Altman for dependent data, with the more commonly reported standard Bland–Altman precision 
shown in parentheses for the All Skin Tone group

Skin tone Body location Subject
(N)

Data points
(N)

Deming regression equation Somatic StO2
(Bias ± 1 SD)*

All Flank 24 216 StO2 = 4.78 + 0.95 REF −1.12 ± 4.45 (4.42)
Quadriceps 24 216 StO2 = 7.54 + 0.88 REF 1.11 ± 5.41 (5.37)
Calf 23 201 StO2 = 15.13 + 0.79 REF 0.03 ± 5.91 (5.88)
Average of Flank/Quad/Calf 24 216 StO2 = 9.51+0.87 REF 0.04 ± 4.22 (4.20)

Light Flank 8 72 StO2 = 1.17 + 1.00 REF −0.66 ± 4.41
Quadriceps 8 72 StO2 = 6.18 + 0.90 REF 1.58 ± 5.19
Calf 8 72 StO2 = 20.84 + 0.71 REF 0.90 ± 4.63
Average of Flank/Quad/Calf 8 72 StO2 = 9.26 + 0.87 REF 0.62 ± 3.77

Moderate Flank 2 18 StO2 = 11.77 + 1.19 REF −2.06 ± 3.61
Quadriceps 2 18 StO2 = −9.39 + 1.11 REF 1.11 ± 5.12
Calf 2 18 StO2 = −3.10 + 1.07 REF −2.32 ± 4.31
Average of Flank/Quad/Calf 2 18 StO2 = −7.21 + 1.11 REF −1.09 ± 3.95

Dark Flank 14 126 StO2 = 8.96 + 0.89 REF −1.24 ± 4.64
Quadriceps 14 126 StO2 = 10.43 + 0.84 REF −0.84 ± 5.69
Calf 13 117 StO2 = 16.25 + 0.77 REF 0.14 ± 6.74
Average of Flank/Quad/Calf 14 126 StO2 = 11.59 + 0.84 REF −0.13 ± 4.54
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the heart compared to REF CXS. The Flank StO2 measure-
ments showed the highest precision (4.45%), followed by 
Quad StO2 measurements (5.41%), then Calf StO2 meas-
urements (5.91%). Because the blood in the vena cava rep-
resent the global venous blood return of the body, multiple 
somatic StO2 measurements are averaged to better reflect 
the global SvcO2 co-oximetry measurement as part of REF 
CXS, with a precision of 4.22% compared to the next best 
4.45% of the Flank StO2 measurements alone. Due to het-
erogeneity in tissue oxygenation demand and metabolism, 
it is likely that somatic StO2 would have some variability at 
different body locations. An alternative validation method 
for limb muscle StO2 is to use blood from the venous return 
of the limb that is close to the muscle of interest [104] as 
opposed to the global vena cava venous return done in 
this study. Somatic StO2 measurements are best made on 
the larger muscles of the body, where NIRS light can dif-
fuse and scatter unimpeded by the tissue geometry. Bony 
areas of the body such as ankles, wrists, and parts of the 
hands and feet, may alter the NIRS photon path to the sen-
sor detectors, resulting in unreliable StO2 measurements, 
particularly with larger light source to detector configured 
sensors.

When validating tissue oximetry data to an inter-
nal blood reference, two different data analysis methods 
accepted by the U.S. FDA can be chosen. The first method 
involves splitting the subjects to two groups, calibration set 
and test set [12]. The second method involves pooling all 
subjects to a best fit model used to set algorithm parameters 

and then doing model validation using statistical techniques 
such as bootstrapping, which was done here. To determine 
which validation method to use, the following considera-
tions need to be examined. For clinical validity and gener-
alizability, the enrolled subject group should reflect those 
of the general population in terms of demographics such 
as weight, gender, and skin pigmentation. In a recent FDA 
guidance for pulse oximetry, the FDA recommends use of 
a minimum of 200 paired data points from at least 10 sub-
jects where at least 2 subjects or 15% of subjects are darkly 
pigmented, whichever is larger [83]. Besides skin pigmen-
tation, inter-subject variability of deeper tissue background 
optical properties can have an impact on tissue oximeter 
accuracy when compared to a blood reference. Such inter-
subject differences have been observed to result in physi-
ologically anomalous readings or variable agreement to 
invasive blood references [12]. Deep tissue optical charac-
teristics may include the optical effects of tissue, muscle, 
and bone density, heterogeneous tissue pigmentation, hair 
follicles, and scarring from prior injuries, contusions, con-
cussions, or facial surgeries. Furthermore, anatomical vari-
ations influence the distribution and characteristics of the 
various tissue contributions. Since the background deep tis-
sue optical characteristics cannot be determined by visually 
examining subjects and are independent of race, an effec-
tive sample size needs to have a high probability to include 
a wide range of subjects with different deep tissue optical 
characteristics.

Two follow-up first generation FORE-SIGHT studies 
with comparison to the invasive reference REF CXB [105, 
106] showed consistency in precision following validation 
using the modeling and statistical validation method with 
17 subjects [71]. The validation of another tissue oximeter 
using the calibration and test method splitting 23 subjects 
in two groups (11 calibration subjects and 12 test subjects) 
[12] gave an unexpected result where the test accuracy 
measurement was better than the calibration value, which 
may indicate that the test group subjects had less back-
ground tissue optical heterogeneity than the calibration 
group. For this reason, the approach described herein using 
the full data set for the best fit modeling and advanced sta-
tistical validation techniques was chosen for the FORE-
SIGHT ELITE. By using a larger data set and accounting 
for sampling variability, this method may be more reliable 
in predicting clinical monitor performance over a wider 
range of subjects with different background optical charac-
teristics. For validations done using the split subject data-
sets to two groups (calibration set and test set) to match the 
effective sample size that includes a wide range of subjects 
with different deep tissue optical characteristics, the overall 
effective subject sample size would need to be doubled.

When considering accuracy of NIRS tissue oximeters 
to other oximetry systems, the semi-invasive optical based 

Fig. 4   Scatter plot comparison of the average of flank, quad, and calf 
StO2 measurements to the global Co-Oximetry Reference (REF CXS), 
with data points marked by skin tone (dark, moderate, and light)
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SvO2 catheters may be the best for comparison. These 
catheters measure SvO2 in venous blood vessels around 
the heart (central venous) and internal jugular vein/jugu-
lar bulb, part of the brain venous drainage system. SvO2 
catheters measure SvO2 directly with an optical interface 
to blood where light does not pass through tissues first 
like tissue oximetry. For three SvO2 catheter oximeter sys-
tems, in-vivo comparison with co-oximetry of blood sam-
ples demonstrated a precision of 4.3–7.1% (1 SD) [107]. 
For the Edward Lifesciences (Irvine, CA) Vigileo™ SvO2 
catheter system, the in-vivo comparison with co-oximetry 
of blood samples demonstrated a precision of 4.1% (1 SD) 
[108, 109]. The precision of FORE-SIGHT ELITE StO2 for 
cerebral (3.07% 1 SD) and somatic (4.22% 1 SD) are very 
comparable to optical SvO2 catheter oximetry systems.

An alternative method in validating NIRS tissue oxime-
ters under development involves in-vitro tests on a liquid 
optical phantom [110–114]. The liquid phantom contains a 

predetermined solution of saline, human blood hemoglobin, 
Intralipid®, sodium bicarbonate, glucose, and baker’s yeast 
to desaturate the hemoglobin [110, 111]. An issue that 
needs to be resolved is that different NIRS devices measure 
different StO2 values from sensors placed on the phantom 
and in-vivo validated NIRS monitors produce different val-
ues than those independently measured on the blood inside 
the phantom [110, 111]. This is in part due to the different 
algorithms of the monitors, the sensor optical configura-
tion, how the monitors compensate for skin pigmentation 
and background optical properties other than hemoglobin, 
and the validation methodology of the monitor. Phantoms 
generally absorb and scatter light differently compared to 
that of tissue oximeter sensors placed on human subjects 
as evidenced by the attenuation of light from each sensor’s 
light source wavelengths (personal observation). If the opti-
cal properties of phantoms and biological tissue are not 
well matched, a tissue oximeter StO2 algorithm may behave 

Table 4   Comparison of average of flank, quad, and calf StO2 values to the global co-oximetry Reference (REF CXS): Deming and random coef-
ficients model regression, CCC, and Bootstrap I and Bootstrap II Validation

Bootstrap I: Single Bootstrapping for dependent data—bootstrap individuals only and then sample entire block for each selected subject
Bootstrap II: Double Bootstrapping for dependent data—bootstrap individuals and then bootstrap observations within individuals using the mov-
ing block method with block size 3 and overlap size 2
Bootstrap CI method: bias-corrected percentile method
Bootstrap sample = 500

Method Original or bootstrap (bias–cor-
rected) statistic

Standard error Lower 95% confidence 
limit

Upper 95% 
confidence 
limit

Deming regression
 Intercept
  Observed 9.514 3.209 3.224 15.803
  Bootstrap I 9.453 3.455 2.388 15.722
  Bootstrap II 9.865 4.255 1.387 18.243

 Slope
  Observed 0.867 0.043 0.783 0.952
  Bootstrap I 0.868 0.046 0.784 0.958
  Bootstrap II 0.863 0.057 0.748 0.976

Random coefficients model
 Intercept
   Observed 10.929 3.405 3.885 17.974
  Bootstrap I 10.929 3.280 4.428 17.522
  Bootstrap II 10.724 3.835 3.542 18.310
  Slope
  Observed 0.846 0.046 0.751 0.940
  Bootstrap I 0.845 0.044 0.760 0.936
  Bootstrap II 0.847 0.052 0.746 0.949

Concordance Correlation Coefficient
 (CCC)
  Observed 0.821 0.047 0.706 0.894
  Bootstrap I 0.840 0.067 0.677 0.917
  Bootstrap II 0.680 0.014 0.880 0.880
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differently, where the value and rate of change of StO2 
compared to a phantom blood saturation reference will 
have a bias and different regression slope. One improve-
ment in phantom design may include better optical spectral 
matching with human tissues for light attenuating compo-
nents other than hemoglobin. Skin pigmentation and deeper 
tissue optical characteristics, which attenuate light more in 
the lower wavelengths <750  nm [115] could be added to 
the phantoms, perhaps as a red dye, to better model these 
tissue optical characteristics. An ideal phantom would give 
the same quantitative value for the tissue oximeter param-
eter of interest (such as StO2) when measured by different 
manufacturer model monitors, corresponding to the same 
quantitative parameter value measured on human subjects. 
In the future, an in-vivo blood co-oximetry validated moni-
tor “A” could be used to calibrate the ideal NIRS phantom, 
then this phantom can be used to calibrate and/or test moni-
tors “B”, “C” etc.

Tissue oximeter validation should be standardized so 
that in clinical use, StO2 measurements between tissue oxi-
metry models are more consistent. Areas of standardization 
may include using a fixed mean blood volume ratio based 
on best available information for which we suggest using a 
blood volume V:A ratio of 70:30, use of highly accurate co-
oximeter models especially at lower oxygen saturation val-
ues for the reference measurements, and for adult subjects, 
use of a hypoxia protocol with good distribution of FiO2 
levels while controlling PaCO2 levels to a limited range. A 
good distribution of skin tones from the different races are 
needed [83] as well as obtaining randomly a good distribu-
tion of subject background optical characteristics by having 
an effective sample size. If a liquid or other optical phan-
tom can model all these parameters, then an alternative 
NIRS validation method may be available in the future.

For direct comparisons of NIRS tissue oximeter mod-
els, caution is advised in interpreting the results when no 
comparative co-oximetry blood oxygen saturation refer-
ence (such as REF CX) is used as a control. One cannot 
determine which monitor is more accurate or has the more 
appropriate StO2 value or rate of change [116] during an 
hypoxic or ischemia event without an appropriate compara-
tive reference. Likewise, caution is advised in interpreting 
comparisons of different NIRS tissue oximeter models to 
blood oxygen saturation references different from that of 
the original NIRS tissue oximeter’s validation reference 
such as cerebral StO2 vs central or mixed venous SvO2 
[117–119]. Furthermore, results may not be comparable 
when the inappropriate sensor is applied outside the manu-
facturer’s indications for use such as an adult validated sen-
sor to an infant subject [120]. Both the StO2 value and the 
rate of change of StO2 to a physiological event will likely 
be inaccurate as the assumptions behind the sensor design 
and algorithm used will be different.

Ultimately, demonstrated clinical utility of NIRS tis-
sue oximeters is important to gain acceptance for use in 
patient monitoring in healthcare systems. Relationships 
between StO2 and both physiological parameters and 
outcomes variables have been discussed elsewhere [121, 
122]. Low StO2 values has been associated with post-op 
complications in aortic surgery [123], single lung venti-
lation [124, 125], beach chair shoulder procedures [126], 
and in cardiac surgery [100, 101, 127]. StO2 values pro-
vide guidance of setting ventilation controls particularly 
end tidal CO2 [103], setting safe ablation and entrain-
ment mapping periods in ventricular tachycardia treat-
ment [128], targeting oxygen saturation ranges to reduce 
risk of retinopathy in neonates [129], and catastrophic 
avoidance such as detection of misplaced cannulas and 
incorrect ventilation settings in surgery [130–132]. More 
interventional studies are needed to see if goal directed 
therapy based on StO2 can improve outcomes [121]. 
Standardized validation of tissue oximeters allows for 
better cross analysis of data between different manufac-
turer monitor models increase the potential of finding 
clinical correlations with disease states, corresponding 
outcomes, and determining possible interventions to 
improve outcomes.

In conclusion, we present the validation of the FORE-
SIGHT ELITE tissue oximeter and the rationale behind 
the assumptions made in the protocol based on our expe-
rience with these monitors. We assumed that the cer-
ebral and somatic invasive blood reference consisting of 
weighted tissue mean blood volume ratio (V:A) is 70:30 
at PaCO2 of 37–40  mmHg based on prior publications, 
and that this ratio is generally constant for healthy human 
subjects because of the high level of precision of tissue 
oximeter StO2 when compared to this invasive reference. 
We acknowledge that the V:A blood volume ratio nor-
mally varies in physiology and believe that monitoring 
StO2 is clinically important in part to show how the V:A 
ratio changes due to CO2 or other agents affecting tissue 
oxygenation. We believe that use of advanced statistical 
techniques such as Deming regression and bootstrap resa-
mpling to validate the best fit full data set model provides 
a more reliable representation of clinical performance 
over a wider range of subjects with different skin tones 
and background optical characteristics for a given sample 
size. Finally, we suggest standardization of tissue oxime-
try validation, whether in-vivo as presented, and/or in-
vitro with an ideal NIRS phantom when perfected, so that 
tissue oximeters used in the clinic make more reliable 
measurements, with more consistency between different 
manufacturer tissue oximetry models, and therefore max-
imize overall utility of tissue oximetry in the clinic.
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