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Summary

Genes encoding antigen-presenting molecules within the human major

histocompatibility complex (MHC) account for the highest component of

genetic risk for many neurological diseases, such as multiple sclerosis,

neuromyelitis optica, Parkinson’s disease, Alzheimer’s disease, schizophre-

nia, myasthenia gravis and amyotrophic lateral sclerosis. Myriad genetic,

immunological and environmental factors may contribute to an individ-

ual’s susceptibility to neurological disease. Here, we review and discuss

the decades long research on the influence of genetic variation at the

MHC locus and the role of immunogenetic killer cell immunoglobulin-like

receptor (KIR) loci in neurological diseases, including multiple sclerosis,

neuromyelitis optica, Parkinson’s disease, Alzheimer’s disease, schizophre-

nia, myasthenia gravis and amyotrophic lateral sclerosis. The findings of

immunogenetic association studies are consistent with a polygenic model

of inheritance in the heterogeneous and multifactorial nature of complex

traits in various neurological diseases. Future investigation is highly rec-

ommended to evaluate both coding and non-coding variation in immuno-

genetic loci using high-throughput high-resolution next-generation

sequencing technologies in diverse ethnic groups to fully appreciate their

role in neurological diseases.
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Introduction

Rare or common neurological diseases are associated with

an impaired central nervous system (CNS) and/or periph-

eral nervous system (PNS). Neurological disease impacts

approximately 1 billion individuals around the world,

comprising individuals of all age groups and races, in

diverse geographical locations and with diverse socio-eco-

nomic status.1 Together, neurological diseases represent

7�1% of the total global burden of disease, evaluated in

disability-adjusted life years, across all causes and ages.2

Despite significant progress in the management of

many neurological diseases, we are still lacking complete

and coherent models of pathogenesis, and as a result the

repertoire of available therapies is imperfect. Recent

advances in genomic sciences have set in place the foun-

dation for understanding and decoding the rules of inher-

itable risk for chronic neurological diseases, which may

translate into improved prognosis of outcomes and new

therapeutic options. The genetic signals associated with

susceptibility to the majority of neurological diseases

remains inadequately explained due to the heterogeneous

and multifactorial nature of these complex traits.3 Myriad

genetic, immunological and environmental factors may

contribute to an individual’s susceptibility to neurological

disease. However, the clear implication of genetic factors

in the causation of many neurological diseases has been

gleaned from heritability studies in families, twins and

adopted individuals.3 Familial studies have reported

increased incidence of several neurological diseases in off-

spring or siblings of affected individuals, twin studies

have reported higher disease concordance in monozygotic

than in dizygotic twins and studies in adopted individuals

have suggested a high disease concordance in monozy-

gotic twins raised in diverse environments.

Genes encoding antigen-presenting molecules within

the human major histocompatibility complex (MHC)

account for the highest component of the genetic risk for

many neurological diseases. Risk or protection for a vari-

ety of neurological diseases, including multiple sclerosis,

neuromyelitis optica, Parkinson’s disease, Alzheimer’s dis-

ease, schizophrenia, myasthenia gravis and amyotrophic

lateral sclerosis, has been mapped to this region (Fig. 1).

However, the precise mechanisms underpinning these
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effects in these neurological diseases remain elusive. Here,

we aim to review and discuss the decades long research

on the influence of genetic variation at immunogenetic

loci in neurological disease. We focus primarily on the

well-studied loci of the MHC, and later turn our atten-

tion to the killer immunoglobulin-like receptor (KIR)

complex, whose protein products functionally interact

with some loci of the MHC.

The human major histocompatibility complex
region and neurological disease

The balance of innate and adaptive immunity is now

appreciated as an important component in the determina-

tion of neurological disease outcome. The molecules

encoded by the major histocompatibility complex (MHC)

regions regulate the innate and adaptive arms of human

immune response through antigen presentation, inflam-

mation regulation and the complement system and the

impact of this region in various immune-mediated condi-

tions, including neurological diseases, has long been

recognized.4–9 The human MHC gene family maps to

chromosome 6. With a size of nearly 5 Mbp it encodes

approximately 165 protein-coding genes, many of them

immune-related,10 and comprises approximately 0�13% of

the human genome.9 After the first discovery of the mouse

MHC in 193611 the human equivalent, the human leuco-

cyte antigen (HLA), was subsequently mapped and exten-

sively studied for both gene content and allelic variation.

Thus, the HLA region became the most investigated

region in vertebrate genomes. This region is considered

the densest region of the human genome and with the

effort of the MHC sequencing consortium the complete

sequence and gene map of this region was first generated

in 1999.12

The HLA region is characterized by an extreme level of

polymorphism and extensive patterns of linkage disequi-

librium (LD), which varies among populations. The genes

of this region are divided into five subregions: (i) the

extended class I, (ii) class I, (iii) class III, (iv) class II and

(v) extended class II regions.9 The extended MHC region

comprises greater than 400 annotated genes and pseudo-

genes.10 The HLA class I region consists of three classical

loci, HLA-A, HLA-B and HLA-C, along with three non-

classical loci: HLA-G, HLA-E and HLA-F. The non-classi-

cal HLA class I molecules are characterized by a more

limited degree of polymorphism compared to the their

classical counterparts.9 HLA class I molecules are

expressed on all nucleated cells and their main function is

presentation of non-self antigens originated from intracel-

lular sources to cytotoxic (CD8+) T-cells for killing of the

antigen-presenting cells (APCs).13 Similarly, the class II

region of HLA comprises three classical loci, HLA-DP,

HLA-DQ and HLA-DR, along with two non-classical loci,

HLA-DO and HLA-DM.9 The genes of classical HLA class

II loci are expressed on the surface of professional APCs,

which generally present antigens of extracellular origin,14

such as those derived from food (metabolites) or bacteria

for the presentation to helper (CD4+) T-cells. The HLA

class III region consists of inflammatory regulatory genes,
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Figure 1. Genomic discovery in neurological disease mapped to the extended MHC region on chromosome 6.
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such as complement (C2, C4, CFB), cytokine genes (e.g.

TNF, LTA, LTB) and other genes with non-immune or

unknown functions.9

The CNS is considered an immune privileged site, and

it was long considered that typical neurons did not

express HLA class I. However, this notion was rejected

following the detection of HLA class I mRNA and/or pro-

tein expression in various neuronal populations, compris-

ing motor nuclei, substantia nigra pars compacta,15,16

dorsal root ganglia neurons,17 dopaminergic nigral cells,18

developing and adult hippocampal pyramidal cells,19,20

sensory neurons of the vomeronasal organ,21,22 brain-

stem,15,18 and spinal,15,23 motor neurons and cortical

pyramidal cells.16,20 More recently, a direct link has been

established for HLA class I in functional and structural

synapse pruning in the CNS.24,25 Further, the capacity of

microglia, the brain’s resident macrophage, to present

antigen through the class II MHC to T-cells permits these

typically quiescent cells to perform an important role in

determining the clinical outcome of various neurological

diseases. The roles of microglia in several neurological

diseases are well documented.26–28

Taken together, the HLA loci are vital for shaping cel-

lular adaptive immune responsiveness, and their impact

upon human health and disease has long been appreci-

ated. During the course of four decades, the impact of

variation in HLA has been studied with respect to neuro-

logical disease. A time-line of the crucial findings of

MHC and KIR loci in relevance to neurological diseases

are presented in Fig. 2. In the following sections, we

discuss the role of HLA class I and II molecules in these

diverse and often debilitating diseases (Table 1).

HLA and multiple sclerosis

The neurological disease most clearly and consistently

associated with variation in the HLA region is multiple

sclerosis (MS). The first evidence for the association of

HLA class I antigens with MS was published in 1972,29

with risk for MS initially reported to be associated with

HLA-A*03 and HLA-B*0729,30 on the basis of their sero-

logical specificity.29–32 It later became apparent that these

class I alleles were part of an extended class I and class II

haplotype, associated with the serological determinant

Dw2,33 later renamed DR2.34 The advancement in HLA

genotyping approaches and continuous investigation of

this region in MS ultimately revealed that the DR2 speci-

ficity has two distinctive molecular allotypes, DR*15 and

DR*16, and the correlation with MS was pinpointed to

DRB1*15:01,35 a subtype of DRB1*15.36 In illustration of

the strength and consistency of this association in indi-

viduals with European ancestry, a Human Genome Epi-

demiology (HuGE) report reviewing 72 published studies

from 1993 to 2004 observed a significantly increased fre-

quency of DRB1*15:01 among MS patients in the vast

majority.37 Reports of non-association of DRB1*15:01

with MS, in almost every instance, was performed in

cohorts of non-European ancestry. Recently, GWAS per-

formed in collaboration with the International Multiple

Sclerosis Genetics Consortium (IMSGC) and the
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Wellcome Trust Case Control Consortium 2 (WTCCC2)

project confirmed that the main susceptibility signal for

MS maps to the DRB1 in the class II region of the MHC,

and describes up to 10�5% of the genetic variance under-

lying risk.5 DRB1*15:01 revealed the strongest effect with

an average odds ratio (OR) of 3�08, and all additional

DRB1 associations emerge to describe less than 2% of the

residual variance.5

Similar to other autoimmune diseases, DRB1*15:01 in

MS susceptibility adheres to an additive model in a dose-

dependent manner with zero, one or two copies of the

causal allele accounting for increased risk, respec-

tively.38,39 Along with the augmented risks for

DRB1*15:01 homozygous genotypes, an epistatic effect for

MS risk has been reported for carriers of the

DRB1*15:01/*08:01 heterozygous genotype, with an aug-

mented risk compared to other heterozygous DRB1*15:01

genotypes,40 while DRB1*08:01 alone was not observed to

be a risk allele. However, a report in an Ashkenazi Jewish

cohort suggested an independent association of

DRB1*08:01 when considering clinical subgroups, with a

weak significant signal observed only in primary progres-

sive patients.41 Moreover, DRB1*15:01 is the most consis-

tently reported MS susceptibility marker of disease

severity. An effect of age and gender along with

DRB1*15:01 has also been reported, and it was suggested

that female MS patients carrying the DRB1*15:01 haplo-

type have an earlier age of disease onset.42,43 In an

attempt to correlate DRB1*15:01 with disease progression

or severity, this allele was associated with the existence of

oligoclonal bands and increased immunoglobulin (Ig)G

levels in the cerebrospinal fluid (CSF) of MS cases.44,45 In

contrast, there has been no consistent reporting of other

MS predisposing DRB1 alleles with respect to disease pro-

gression or severity.38,46

DRB1*15:01 is most often observed in European popu-

lations as a segment of an extended haplotype with

DQA1*01:02 and DQB1*06:02, and therefore it has been

considered challenging to discriminate the main casual

allele or locus. Imputation of classical HLA alleles from

single nucleotide polymorphism (SNP) data demonstrated

DRB1 as a primary risk locus in Europeans, and revealed

that the majority of the effect attributed to DQB1*06:02

can be elucidated primarily by association with

DRB1*15:01.47 As the HLA region displays varied patterns

of linkage disequilibrium between populations, cross-

population analysis can be explanatory in unravelling the

predisposing locus from a multilocus association. Exami-

nation of the African American MS cohort indicated risk

to be strongly attributable to DRB1*15.48 In the same

study, the evaluation of alternate DQB1*06:02 haplotypes

without DRB1*15 suggested no difference between cases

and controls, eliminating DQB1*06:02 as the primary

allele of the association signal.48 This observation has

been strengthened by a study in a population from Mar-

tinique with African ancestry.49

Non-European studies suggested a correlation of

DRB1*15 and DRB1*04:05 with MS in Japanese50 and

Asian populations, respectively.50,51 The same studies have

reported the association of DRB1*04:05 with a clinically

Table 1. Summary of HLA class I and II associated susceptible or protective alleles in neurological diseases

Neurological

diseases

MHC class II MHC class I

ReferencesPredisposing Protective Predisposing Protective

Multiple

sclerosis

DRB1*15:01, DRB1*15, DRB1*08:01,

DRB1*04:05, DRB1*03:01; DRB1*13:03;

DRB1*13�DQA1*05:01�DQB1*03:01

DRB1*14:01, DRB1*11,

DRB1*13-DQB1*06:03,

DQA1*01:01-DRB1*15:01,

DQB1*03:01- DQB1*03:02

A*03, *0301; B*07 A*02:01; B*44:02,

*44, *38:01, *55:01;

C*07, *05

5,29,30,

35–41,

50-55,57–64

Neuromyelitis

optica

DPB1*05:01, DPB1*03:01,

DRB1*12, DRB1*16:02, DRB1*03

DRB1*09:01 – – 66–76

Parkinson DRA, DRB5, DRB1, DRB1*04,

DRB1*04:03, DRB1*03, DRB1*03:01

DRB1*04:06, DRB1*04:04,

DQA1*03:01

B*07:02, *17, *18;

C*07:02

C*03:04 4,77,78,84,

86,87,89

Alzheimer’s DR1, DR2, DR3, DRB1*03,

DPB1, DRB5-DRB1, DRA

DR4, DR6 A*02 B*07:02, A*03:01 8,94–101,104

Schizophrenia DRB1*01:01, DRB1*03:01:01,

DRB1*03:01:02, DQA1

DRB1*03:01, DRB1*04,

DRB1*06

B*08:01, C*01:02 A*03, *011,

*02; B*27, *51

107,108,111,

114,117,118

Myasthenia

gravis

DQB1*05:02, DRB1*03, DRB1*04,

DQB1*02, DQB1*03, DRB1*09,

DRB1*15:01, DQB1*05:02, DRB1*16,

DQA1*03:02/DQB1*03:03:02

DRB1*08, DRB1*13:01,

DQA1*05:01

B*08, C*07:01 – 63,121–125,

130,132,

133,138

Amyotrophic

lateral

sclerosis

– – A*03, A*02, A*28;

B*40, B*35, C*04

A*09, HLA-F 7,140–142,

145,146
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diverse disease course described by earlier onset age,

decreased severity50 and a lack of brain lesions.51 Simi-

larly, in Europeans the detection of a correlation of

DRB1*04:05 with MS in Sardinian,52,53 Sicilian53 and

African American54 populations provided a coherent

model for DR4 with MS aetiology. Additionally, the cor-

relation of DRB1*03:01 and DRB1*13:03 was first detected

in Sardinian55 and Israeli Ashkenazi and non-Ashkenazi

Jewish MS41 patients, respectively, but this allele is extre-

mely common throughout Europe, Africa and Asia. In

contrast to DRB1*03:01, DRB1*13:03 has been rarely

found at population frequencies higher than 3% world-

wide, but the correlation with MS shows effect sizes.56 A

study in Canadian multiplex MS families found over-

transmission of the DRB1*13~DQA1*05:01~DQB1*03:01

haplotype;57 however, this study did not evaluate the

DRB1 locus at high resolution. This haplotype is almost

constantly linked with the DRB1*13:03 allele in Euro-

peans, whereas the other common subtypes of DRB1*13

allele, such as of DRB1*13:01 and DRB1*13:02, are usually

located on other DQA1~DQB1 haplotypes; these addi-

tional DR*13 haplotypes were not observed to be over-

transmitted in the Canadian study.

Protective effects for HLA have also been observed in

some studies. The protective effect of HLA class II alleles

was seen for DRB1*14:01 in the European MS cohort,39,40

while DRB1*11 was protective in both a Brazilian58 and a

Canadian MS cohort.59 Similarly, the

DRB1*13~DQB1*06:03 haplotype was protective in Fin-

nish60 and Canadian MS families.57 Another study con-

firmed interactions involving pairs of HLA class II alleles:

DQA1*01:01- DRB1*15:01 and DQB1*03:01- DQB1*03:02,

with a protective effect in MS.61 In the same study, HLA

class I-mediated protection has also been observed for

HLA-A*02:01, HLA-B*44:02, HLA-B*38:01 and HLA-

B*55:01.61 More recently, HLA-B*44-mediated protection

was also reported in MS.62 Similarly, an imputation study

revealed protection by the high-resolution HLA-B*44:02

genotype in MS.63 Finally, HLA-B*44:02 was observed in

LD with HLA-C*05, which independently demonstrated

protection for MS in the absence of DRB1 risk alleles;64

thus, it is challenging to discriminate whether these

observations reflect a single effect through strong LD.

HLA and neuromyelitis optica

Neuromyelitis optica (NMO) was initially considered a

variant of MS, but the identification of antibodies for aqua-

porin 4 (AQP4) or NMO IgG considerably transformed

clinical discernment of the disease as an independent

entity.65 This led investigators to evaluate the potential role

of the HLA region in the aetiology of NMO. Numerous

reports in Japanese populations, where the prevalence of

NMO is higher than in European populations, suggested

DPB1*05:01 as a predisposing allele and DRB1*09:01 with a

protective effect.66–68 These results were confirmed in a

replication study on a southern Han Chinese NMO

cohort.69 Later, additional HLA class II alleles were found

to be predisposing in NMO, including DPB1*03:01,70

DRB1*1271 and DRB1*16:02.68,69 Meanwhile, in contrast to

Asian populations,69 DPB1*05:01 revealed no association

with NMO in a French population, but DRB1*03 was

shown to be a susceptibility marker.66,67,72 Similarly,

DRB1*03 has been also observed with increased risks for

NMO among Brazilian mulattos,73 Afro-Caribbeans74 and

Mexican Mestizos,75 but not in Muslim Arabs.76 It is

important to consider that as DRB1*03 is comparatively

less frequent and DPB1*05:01 is more frequent in Asian

population, there may be inadequate power to detect the

risk for DRB1*03 in Asian populations and DPB1*05:01 in

European populations, yielding these varied results.

HLA and Parkinson’s disease

The association of HLA with Parkinson’s disease (PD)

was first reported more than 4 decades ago.77 This study

reported an increased risk for PD attributable to the

HLA-B*17 and -B*18 antigens.77 However, subsequent

studies failed to replicate the association of HLA class I

antigens with PD.4,78 Genomewide association studies

(GWAS) provided a new angle for investigating common

complex traits such as PD.4,78 Evaluation of more than a

million SNPs in large sample sizes considerably enhanced

the statistical power of the associations. Breakthrough dis-

coveries made by two GWAS recognized SNPs in the

HLA-DR region to be associated with PD, confirming the

immune component in pathogenesis of PD.4,78 Hamza

et al.4 suggested the association of rs3129882, a non-cod-

ing variant in HLA-DRA with PD in Americans of Euro-

pean ancestry, while a large-scale imputation-based

approach applied in a meta-analysis of five GWAS with

data generated from US and European cohorts identified

chr6: rs32588205 A/G SNP located in the intronic region

of HLA-DRB5 locus with augmented risk for PD under

an additive model.78 Because the HLA-DRA locus is

mostly monomorphic and less often identified in HLA

disease association studies, attempts to replicate this

observation have generated varied and conflicting

results.79–85 Similarly, the HLA-DRB5 locus is in strong

LD with HLA-DRB1 and only present in approximately

20% of the population, and thus this association has also

been challenging to decipher.

In an attempt to replicate the finding of a GWAS-

reported association of rs3129882 in HLA-DRA locus,

two studies in different populations used a candidate gene

approach and confirmed the association of rs3129882

variants with increased risks of PD. The first was con-

ducted in a small cohort of 284 Chinese Han cases and

258 controls from Mainland China,79 and the second in

520 Iranian cases and 520 controls.80 Meanwhile, a meta-
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analysis of five case–control studies with a total of 2230

PD cases and 2262 controls from Mainland China, Tai-

wan, Singapore and Malaysia reported no association of

HLA-DRA rs3129882 variants with PD.85 Subsequently, a

study performed in three different European-ancestry

cases and controls from the United States, Ireland and

Poland in a comparatively larger cohort of 1313 cases and

1305 controls observed no association of rs3129882 vari-

ants with PD under an additive or dominant model.81

However, the same study found a protective effect of GG

genotype in the Irish, Polish and combined cohorta under

a recessive model.81 Finally, no association with

rs3129882 was reported in two GWAS: the first con-

ducted in a relatively homogeneous Ashkenazi Jewish

(AJ) population from New York comprised of 2050 cases

and 1836 controls;82 and the second in the largest single

PD GWAS cohort of 3400 cases and 29 000 controls.83

A French case–control PD study revealed an association

of rs660895 within the HLA-DRB1 locus, which is signifi-

cantly more polymorphic than HLA-DRA and, unlike

HLA-DRB5, present in all individuals and is frequently

associated with disease.84This study used an imputation

approach to infer HLA alleles from SNP data, and sug-

gested a protective effect for DRB1*04.84 Another study

reported an association of DRB1*03 with increased risks to

PD in individuals with European ancestry.86 Subsequently,

these results were confirmed in another study performed

on 567 PD Han Chinese patients and 746 controls from

Guangdong province of the China, and suggested the

strongest association for PD causation with DRB1*03:01,

the most common subtype of DRB1*03 allele.87 Meanwhile,

the same study has also found a decreased frequency of

DRB1*04:06 in PD cases compared to controls, suggesting

a protective effect.87 Interestingly, the DRB1*04:06 allele, a

subtype of DRB1*04, is rare in European populations; how-

ever, it is common in Asian populations (http://www.allele-

frequencies.net).88 DRB1*04:03, another subtype of

DRB1*04, has been reported to be more frequent among

PD cases in Han Chinese.87 Whether DRB1*04:06 displays

a susceptible effect in European ancestry populations still

needs to be evaluated.

A more recent and large study implicated structural

and regulatory variants in the HLA region.89 This study

suggested that rs3129882 located in intron-1 and the clo-

sely linked rs9268515 and rs2395163 SNPs positioned in

intergenic region remained significant regardless of HLA

alleles.89 Further, this study used an imputation approach

and suggested an increased risk for B*07:02 ~ C*07:02 ~

DRB5*01 ~ DRB1*15:01 ~ DQA1*01:02 ~ DQB1*06:02

haplotype and a protective effect for C*03:04, DRB1*04:04

and DQA1*03:01 alleles.89 However, when they condi-

tioned on the associated SNPs, only C*03:04 and

DRB1*04:04 alleles remained significant.89 Finally, this

study concluded that rs3129882 and rs2395163 SNPs are

in expression quantitative trait loci (eQTLs) for HLA-DR

and HLA-DQ, and suggested that HLA gene expression

might impact PD.89

HLA and Alzheimer’s disease

Like MS and PD, the first report of a role for HLA in

Alzheimer’s disease (AD) was published in the 1970s.90

Since then, multiple studies have evaluated the role of

HLA class I91–94 and class II genes in AD.95–99 The early

findings of an association with HLA-A*02 in AD were

inconsistently replicated. While some studies confirmed a

role for this antigen,94,100 others failed to replicate any

association.91 Most of these studies suffered from small

sample sizes, but two most well-powered studies failed to

find any association of HLA-A*02 with AD.92,93 More

recently, a trend for association of SNPs in the HLA-A

locus with atrophy of brain structures has been reported,

although the corrected P-values in this study would be

considered marginal.94

The role of HLA class II antigens has also been investi-

gated in the pathophysiology of AD. Curran et al.95

showed that DR1, DR2 and DR3 antigens, in the absence

of apolipoprotein E (APOE) risk alleles, are associated

with an increased risk for developing late-onset AD,

whereas DR4 or DR6 antigens appear to be associated

with a decreased risk of AD. Aisen et al.96 suggested that

DR4 might exert a protective influence in AD via modu-

lation of glial activity. A later study also showed that risk

for AD in older late-onset cases is associated with

DRB1*03 in APOE4-negative individuals.97 However, as is

the case for HLA-A*02, these studies have suffered from

small sample sizes.

Large-scale GWAS have also provided evidence for the

involvement of HLA class II in AD. Analysis of genome-

wide copy number variation (CNV) suggested a suscepti-

ble association for DPB1 in AD.98 A subsequent GWAS

meta-analysis in 17 008 late-onset cases and 37 154 con-

trols with European ancestry identified a SNP from the

DRB5–DRB1 region to be associated with late-onset AD

risk.99 The association of this SNP was replicated in a

Chinese cohort,101 and further work showed that this

SNP is associated with cis-gene expression levels of

DRB1 in the temporal cortex and cerebellum.102 Nettik-

simmons et al.103 showed an association of the DRB5–
DRB1 clusters with cognitive decline at the gene-level,

and more recently methylation of DRB5 in the brain was

associated with pathological AD, with another peak of

association in DRA.104 Yokoyama et al.105 determined

that variants associated with autoimmune disease are

also associated with AD and found that a SNP close to

DRB5 is associated with AD and psoriasis. The authors

also showed that although DRB5 transcript expression is

not altered in AD brains, there is an increase in tran-

script expression for DRA in AD brains compared to

control brains.
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Finally, an HLA imputation-based analysis of 5919

European-ancestry AD Caucasian patients and 5771 con-

trols identified the extended haplotype

A*03:01~B*07:02~DRB1*15:01~DQA1*01:02~DQB1*06:02

as being associated with AD risk (P = 9�6 9 10�4,

OR = 1�21)8 in individuals who are negative for APOE

4.8 The authors also found an association of the class I

haplotype A*03:01~B*07:02, with higher CSF amyloid

levels and a dose-dependent association of the DR15 hap-

lotype with greater rates of cognitive decline and baseline

levels of chemokine CC-4.8

HLA and schizophrenia

The first evidence for a probable role of HLA in

schizophrenia (SCZ) was described in 1974.106 Thereafter,

multiple linkage studies provided some evidence for a

susceptibility locus on the short arm of chromosome

6.107,108 These studies correlated numerous class I and

class II alleles with SCZ.107,108 However, subsequent stud-

ies failed to replicate these initial findings.107,108

More recently, publication of the first GWAS and

meta-analysis in SCZ made possible the study of the HLA

region at higher resolution.6 A meta-analysis of three

GWAS identified several MHC region variants associated

with SCZ in individuals with European ancestry.6,108–110

Some of these were consistently replicated or found in

other populations.108,111–113 However, it is interesting to

note that most of the significant variants correlated with

SCZ in the meta-analysis were located in the extended

MHC regions, near a cluster of histone genes comprising

a position upstream of the class I region, along with a

few additional immune genes such as ribonuclease P21

(RPP21) located in class I region and neurogenic locus

notch homologue 4 (NOTCH4) located in the extended

class II region.109

Subsequently, GWAS analysis performed in SCZ cases

from Asia replicated the findings of the European GWAS,

and additionally recognized a few novel variants in Chi-

nese112 and Japanese populations.113 Similarly, the

rs9272219 and rs9272535 variants in the DQA1 gene

revealed a moderate association with SCZ.111 An HLA

imputation study showed an association of the risk allele

HLA-C*01:02 in addition to trends for association of the

protective alleles DRB1*03:01 and B*08:01.114 A GWAS in

Ashkenazi Jews showed supportive evidence for associa-

tion of the HLA region with SCZ in this population.115

Finally, an eQTL study strengthened these results by pro-

viding evidence that the TRIMP26, RNF5 and DRB3

genes, located within the MHC region, are regulated by

the top SNPs recognized by meta-analysis of GWAS

data.116 In addition to GWAS results, previous reports

suggested an increased frequency of DRB1*01:01 and a

decreased frequency of DRB1*04 among SCZ

patients.117,118 However, it is important to note that all

HLA association studies performed in SCZ to date have

either used low-resolution genotyping methods or

GWAS/SNP imputation approaches. The lack of consis-

tent findings suggest that high-resolution HLA genotyping

approaches will be required to fully appreciate the role of

HLA variants in SCZ.

More recently, a well-powered study associated SCZ

risk with complex variation in complement component 4

(C4) genes, also located within the MHC.119 This study

found that C4 alleles produced extensively varying levels

of C4A and C4B expression in the brain, with each com-

mon C4 allele correlating with SCZ in proportion to its

ability to produce higher expression of C4A.119 The find-

ings of this study highlight the role of complement genes

in pathophysiology of SCZ, and these observations open

new frontiers for future investigations of genetic variation

in complement genes with SCZ in other ethnic groups in

the quest to find a coherent model for SCZ.

HLA and myasthenia gravis

The first report of an HLA association with myasthenia

gravis (MG) was published in 1976.120 Thereafter, several

studies have reported evidence of association of HLA

antigens/alleles with MG. An Italian study identified

DQB1*05:02 as being associated with MG,121 while a

Tunisian study identified the DRB1*03, DRB1*04,

DQB1*02 and DQB1*03 alleles as possible predisposing

factors for MG.122 DRB1*03 was then subsequently found

to be associated with MG in a Portuguese study.123

Meanwhile, in a northern Han Chinese population,

DRB1*09 was associated with risk of MG, while DRB1*08

was protective.124 A GWAS published in 2012 on North

Europeans identified the class I SNP rs7750641 as the

strongest signal in MG, and further imputation analysis

identified HLA-B*08 as being the major risk allele.125

Similarly, an imputation study observed a risk association

for HLA-C*07:01 with MG.63 There is strong LD between

HLA-C*07:01 and HLA-B*08, but the latter revealed a

marginally weaker association than HLA-C*07:01 in the

same study.63

Examinations of age of onset effects of HLA in MG

have yielded mixed results. Although multiple studies

have reported the extended HLA haplotype, namely A1-

B8-DR3-DQ2, as being associated specifically with early

onset of MG (EOMG) in individuals with European

ancestry, it is unclear whether the signal maps in class I

or class II genes.126–128 Interestingly, the A allele of the

SNP rs1800629 at position 308 nucleotides upstream

from the transcription initiation site of tumour necrosis

factor-alpha (TNF-a) has been linked to higher expres-

sion level and higher serum levels of TNF-a in MG by

several studies, and this SNP is known to be in LD with

the HLA A1-B8–DR3 haplotype.129 Confounding interpre-

tation of these results, DRB1*13:01 was found to be
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protective for EOMG in a Norwegian population,130 while

a GWAS performed in a European population by Renton

et al.131 found a peak of association for EOMG at DQA1.

The Norwegian study identified DRB1*15:01 as being

associated with the risk of late onset of MG (LOMG),

while DRB1*13:01 was also found to be protective in

LOMG.130 In an Italian cohort, DQB1*05:02 and

DRB1*16 have been reported as being associated with

LOMG.132 Renton et al.131 found a peak of association

for LOMG at HLA-DQA1, which was distinct from that

observed in the same GWAS in EOMG. Another GWAS

showed three distinct and largely independent association

peaks for LOMG corresponding to MHC class II, HLA-A

and MHC class III SNPs, while imputation of HLA alleles

showed a protective effect of DQA1*05:01.133

Additional studies have sought to elucidate an associa-

tion of HLA with specific subtypes of MG. Four studies

found an association of DQ5 with the specific subgroup

of muscle-specific kinase (MuSK) antibody-positive (Ab+)

MG patients.134–137 A Turkish study also found that

DRB1*14 and DRB1*16 were associated with this specific

subgroup,136 whereas in a Serbian cohort, DRB1*13 seems

to be completely absent in this specific patient popula-

tion.137 It has been hypothesized that childhood-onset

ocular MG in southern Han Chinese may present a par-

ticular subgroup of distinct genetic background, correlat-

ing with the haplotype DQA1*03:02/DQB1*03:03:02.138

Later, the haplotype HLA-B*46:01-DRB1*09:01 was found

to be associated with juvenile ocular MG in the same

population.139 However, it is important to note that all

studies involved cohorts of, at most, a few hundred indi-

viduals, making it difficult to fully elucidate the role of

HLA in MG.

HLA and amyotrophic lateral sclerosis

A very limited number of genetic association studies have

evaluated the HLA region in amyotrophic lateral sclerosis

(ALS). During the 1980s, a few studies with low-resolu-

tion genotyping sought to examine HLA in ALS.140–142

Initial studies found no correlation between HLA antigens

and ALS in patients from California143 and Guam.144

Later, a significantly increased frequency of HLA-A*03

was reported in an ALS cohort from the greater Boston

area140 and Israel.141 Similarly, HLA-A*02 and -A*28 have

been shown to be more frequent in ALS cases recruited

from Glasgow and Scotland,145 while an increased fre-

quency of HLA-B*40 was found in an ALS cohort from

Finland.142 A study from the greater New York area

observed HLA-Bw35 and -Cw4 more frequently in ALS

cases, and a trend towards decreased frequency was also

found for HLA-A*09.146 These initial findings were

marked by substantial inconsistency in identification of a

link between a particular HLA antigen and ALS across

study populations, suggesting perhaps that HLA

determinants may not play a major role in susceptibility

to this diseases.

Thereafter, almost three decades passed without HLA

association studies conducted in ALS. However, a recent

study demonstrating that overexpression of a single non-

classical HLA class I molecule, HLA-F, resulted in protec-

tion of human motor neurons from ALS astrocyte-

mediated toxicity, coupled with a role for the killer cell

immunoglobulin-like receptor KIR3DL2,7 clearly indicated

an immune component in ALS pathogenesis. Finally, an

association study published in 2017 in a Chinese Han

population indicated a role for HLA class II in ALS.147

While inconclusive, these more recent investigations sug-

gest an immunogenetic component to ALS, warranting

further study.

The killer-immunoglobulin-like receptor (KIR)
complex: a new horizon in the immunogenetics
of neurological disease

The KIR complex was first defined in 1986,148 and was

initially recognized as KIR inhibitory receptors. The fam-

ily of the KIR proteins are mainly expressed on natural

killer (NK) cells149 and a small percentage of T-cells.150

The KIR complex maps on the long arm of human chro-

mosome 19q13�4, and is considered as a crucial compo-

nent of innate and adaptive immunity. Although KIR and

HLA are members of two different gene families, the

interaction of KIR with their cognate HLA class I ligands

serves as a functional bridge in the regulation of NK cell

functions and maintenance of immune homeostasis. KIR

are inhibitory and stimulatory surface receptors that regu-

late NK cell function and responsiveness.151 All these

receptors consist of either two (2D) or three (3D) extra-

cellular immunoglobulin domains (D). The transmem-

brane and cytoplasmic domains govern the functional

characteristics of these receptors. The inhibitory receptors

consist of long (L) cytoplasmic tails comprising

immunoreceptor tyrosine-based inhibitory motifs

(ITIMs), whereas stimulating receptors possess short (S)

cytoplasmic tails and link to the stimulating adaptor

DAP12 through a charged residue in the transmembrane

domain. However, KIR2DL4 is an exception, and despite

having a long cytoplasmic tail with an ITIM transmits a

positive signal through its interaction with the stimulating

adaptor FceR1c.
152,153 Specific KIR molecules recognize

one or more of four epitopes of HLA class I molecules.

In contrast to the T-cell receptor, KIR bind to the upper

face of the HLA class I molecule, creating contact with

the N-terminal part of the a1 helix, the C-terminal part

of the a1 helix, and the bound peptide.154 Genetic varia-

tion in the class I a1 helix governs the three major epi-

topes perceived by KIR, HLA-C1, -C2 and -Bw4. The

inhibitory KIR2DL1 and KIR2DL2/3 and the stimulating

KIR2DS1, KIR2DS2 and KIR2DS4 interact divergently
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with the reciprocally unique C1 or C2 epitopes carried by

all HLA-C allotypes and a small subset of HLA-B

molecules.155–157 KIR3DL2, KIR2DS2 and KIR2DS4 recog-

nize a subset of HLA-A allotypes transmitting the A*03/

A*11 epitope (e.g. A*11:01).56 Finally, KIR3DL1/S1 binds

subsets of HLA-A and -B allotypes that carry the Bw4 epi-

tope (e.g. A*24:02).56 In contrast, HLA-B alleles with the

Bw6 epitope do not bind with any KIRs. Adding further

complexity, these receptor interactions are further tuned

by allelic variations of KIR and HLA class I and by the

sequence of the bound peptide.158–161

The KIR gene complex exhibits extensive heterogeneity

in gene content at both intra- and interpopulation levels.

KIR haplotypes comprise from four to 14 genes and,

based on their genomic structure, are divided into two

groups, termed A and B.162 The group A haplotype is

characterized by a single configuration of seven genes that

express predominantly inhibitory KIR, and all remaining

configurations are termed B haplotypes. As an indication

of probable functional differences between them, B haplo-

types typically express more activating KIR than A haplo-

types.163–165 The haplotypes are formed from

combinations of unique centromeric and telomeric gene-

content motifs, which also belong to the A or B groups.

Although a huge number of unique haplotypes are

described, a few comparatively common haplotypes

repeatedly account for greater than 90% of the KIR hap-

lotypic variation detected within a specific population,

and are observed throughout major ethnic groups.166,167

Our recent work and that of others has shown that the

prevalence of KIR haplotypes and specific combinations

of cognate KIR and HLA allotypes are associated in

autoimmune162,168–170 and infectious diseases such as

human immunodeficiency virus (HIV) and hepatitis

C,171–174 cancer,175,176 and are critical to the success of

solid organ and haematopoietic stem cell transplant

(HCT)177–180 and pregnancy.181–185

Although the correlation of HLA variation with neuro-

logical disease has been well documented, there is a pau-

city of studies aiming to evaluate the impact of NK cells

or their receptors, including KIR in these diseases. As

HLA class I molecules function as the primary ligand for

several KIRs, it is possible that the class I association sig-

nals perceived for various diseases is, in fact, related to

KIR function. In various neurological diseases, such as

MS,29,30,63,186 myasthenia gravis,126–128 schizophre-

nia,107,108,114 Parkinson’s disease,77,89 Alzheimer’s dis-

ease8,94,100 and amyotrophic lateral sclerosis,140,141,145,146

the alleles of HLA-A, -B and -C that are recognized to

function as cognate ligands for their respective KIR genes

have been linked with disease (Table 2). Here, it is

important to note that the majority of the identified HLA

class I association with various neurological diseases

described used an imputation approach from data

obtained through GWAS rather than direct assay.

Meanwhile, a direct link of KIR allele variations with neu-

rological diseases has not been observed in GWAS, very

possibly because of a limited number of markers in the

KIR region on all common available GWAS platforms.

An insufficiency of appropriate reference alignments has

traditionally impeded incorporation of KIR exclusive

SNPs on the available GWAS platforms, and the large

diversification of gene-content in KIR haplotypes is char-

acteristically discordant with standard quality thresholds.

Finally, the Immunochip, which is exclusively enriched

for markers in the KIR chromosomal region, predomi-

nantly recognizes non-coding variants on the common

group A haplotype that mainly comprises inhibitory

KIRs.187 To date, therefore, the majority of described KIR

correlations with immune diseases,188 including multiple

sclerosis189–191 and schizophrenia,192 used approaches

which determine only KIR gene content variation. KIR

genotyping approaches that determine gene content are

usually impotent to discriminate copy number, but rather

assess only presence/absence. As copy number has reper-

cussions on the immune reactions,193 this further hinders

the capacity to detect any locus level associations with

disease. Additionally, strong LD within gene content hap-

lotypes166,194 creates another hurdle in the determination

of the causative locus.

A limited number of studies has examined the associa-

tion of KIR gene content variation to date with

neurological diseases, the majority of them in multiple

sclerosis189–191 and one in schizophrenia.192 A study con-

ducted on a relatively small sample size of 200 schizophre-

nia patients and 561 controls in European Polish

populations have found no correlation of either KIR gene

frequency or KIR gene ligands with disease.192 There could

be two probable reasons for the non-association of KIR

variation with SCZ. First, the genotyping method for KIR

varied considerably, and the differential accuracy of geno-

typing approaches due to the strong homology between

KIR gene or possible amplification biases contingent upon

sample quality makes it difficult to calculate KIR gene fre-

quencies precisely. The second limitation is that this study

genotyped only for epitopes HLA-ABw4+, HLA-B Bw4Ile,

Bw4Thr, HLA-C1 and -C2 but did not genotype for partic-

ular HLA-A, -B and -C alleles, limiting the ability to anal-

yse the interaction of KIR with specific HLA allotypes.

Numerous reports of KIR gene content studies in MS

from European populations have suggested a role for KIR

loci in disease predisposition. Lack of the inhibitory

KIR2DL3 has been suggested in MS susceptibility,195

implicating either KIR2DL2 (which segregates as the alter-

nate allele of the same locus) or the closely associated

KIR2DS2 in disease. Subsequently, a study has observed

the increased incidence of KIR2DL5 and KIR3DS1 in MS

cases compared to controls.196 Finally, two other reports

in Portuguese and Italian MS cohorts determined a

diverse telomeric locus, KIR2DS1, as protective.197,198
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Similarly, our study in an African American MS cohort

revealed a strong protective effect for KIR3DL1 in combi-

nation with HLA-A and -B alleles bearing the Bw4

motif.191 Finally, the up-regulated expression of KIR2-

DL5A was observed in early Alzheimer’s disease.199

Although these initial observations are encouraging, an

extensive assessment of KIR allele-level variation in a set

of established and well-characterized cohorts encompass-

ing a wide range of neurological diseases in several differ-

ent ethnicities, and their correlation with KIR expression,

is needed to fully appreciate the role of these critical

immune receptors in disease susceptibility and prognosis.

Notably, both immunoregulatory dysfunction and acti-

vated inflammatory mediator pathways have been sug-

gested in the pathophysiology of neurological diseases,

particularly PD,200,201 MS202 and MG,203 as well as many

other neurological diseases.204 The reported disease asso-

ciation of HLA variations bolsters this notion. KIR,

through the NK cell, regulates the production of cytokine

and chemokines.205 As cytokine and chemokines regulate

neuroinflammation,206 it remains a plausible hypothesis

that KIR allelic variation may influence the course of var-

ious neurological diseases through neuroinflammatory

pathways.

Accumulating evidence suggests a role for NK cells in

various neurological diseases, such as MS,207–209 NMO,210

PD,211,212 AD,213 SCZ,214 myasthenia gravis215 and

ALS,216 strengthening the notion that KIR variation may

be important in disease predisposition and/or develop-

ment. NK cells are a key component of innate immunity

and act as a first line of defence in resisting infections,

but may also be involved in the induction of neurological

diseases, and accumulate in specific neuronal cells or tis-

sues in some diseases.215–219 In the MS murine model,

experimental autoimmune encephalomyelitis (EAE), stud-

ies suggested a role for NK cells in down-regulation of

disease progression.207–209 In the meantime, enhanced

predisposition and disease severity in EAE has been

linked with NK cells in concurrence with individual cyto-

kines.218,219 Studies in humans suggested an immunoreg-

ulatory role for NK cells in MS, causing an abatement of

the inflammatory pathways.220,221 In contrast, in-vitro

studies demonstrated that NK cells can straightforwardly

lyse neural tissue, and may consequently contribute to tis-

sue injury in MS.222,223 While the immunobiology of NK

cells in certain neurological diseases such as MS has been

explored, comparatively less is known about the specific

role of NK cells in other neurological diseases, such as

NMO, PD, AD, SCZ, MG and ALS. The results of NK

cell studies in MS continue to be controversial, and fail

to point to a coherent model. Thus, understanding the

precise role of KIR variation in immunopathogenesis of

neurological diseases may open new horizons for identifi-

cation of biomarkers or could pave the way for new ther-

apeutic approaches.

Consideration of HLA and KIR regulatory region
variation in neurological disease

The emergence of next-generation sequencing enhanced

our ability to determine the HLA and KIR sequences at a

very high-resolution level. This provides the opportunity

to determine the role of both coding and non-coding

HLA and KIR region variations in a variety of neurological

diseases, given that the non-coding regions of the human

genome including HLA and KIR regions contain regula-

tory elements, such as promoters, enhancers and untrans-

lated regions (UTRs); these are the strong candidate

regions for pathogenic variation and participate directly in

the determination of the abundance of expressed genes. In

current laboratory practice almost all the reported HLA

alleles, either in the disease association studies or in the

databases, have used genotyping approaches that only

sequenced through exons 2 (class I and class II) and 3

(class I), and this limits our ability to analyse HLA non-

coding variations. HLA non-coding variations such as

SNPs or small insertion/deletions (indels), as well as lar-

ger-scale copy number variants (CNV) present in regula-

tory regions, could impact the course of neurological

diseases through alteration of gene expression. Non-cod-

ing variation in HLA has already been associated clearly

with disease. For example, variation in the 30UTR of HLA-

Table 2. HLA class I associations and putative KIR receptor involvement in neurological diseases

Neurological disease HLA class I associations Potential KIR receptors References

Multiple sclerosis HLA-B*07, *44, *44:02, *37:01, *38:01;

HLA-C*07, *05; HLA-A*02:01, *03, *0301

KIR3DL1S1; KIR2DL1, KIR2DL2/3, KIR2DS1,

KIR2DS2, KIR2DS4, KIR3DL2

29,30,60–64

Parkinson’s disease HLA-B *17, *07:02, HLA-C*07:02, *03:04 KIR3DL1S1, KIR2DL2/3, KIR2DS2, KIR2DS4, KIR3DL2 77,89

Alzheimer’s disease HLA-B*07:02, HLA-A*03:01, *02 KIR3DL2, KIR2DS4 8,94,100

Schizophrenia HLA-B*27, *51; HLA-C*01:02,

HLA-A*03, *011, *02

KIR3DL1S1; KIR2DL2/3, KIR2DS2, KIR2DS4; KIR3DL2 107,108,114

Myasthenia gravis HLA-B*08; HLA-C*07:01 KIR2DL2/3, KIR2DS2, KIR2DS4 63,125

Amyotrophic lateral

sclerosis

HLA-A*09, *02, *03, HLA-C*04, HLA-F KIR3DL1S1, KIR2DL1, KIR2DS1, KIR2DS4, KIR3DL2 7,140,141,145,146
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DPB1 is linked with spontaneous clearance of hepatitis B

virus in both Japanese and US populations.224,225 The pro-

posed mechanism for enabling viral clearance might be

linked to the rs9277534 A/G SNP, which describes HLA-

DP cell-surface expression.225 Similarly, rs2281389 is a

non-coding region variant in HLA-DP linked with acute

graft-versus-host disease (GVHD).226 However, rs2281389

variants are not detectable through standard genotyping

approaches. Finally, a promoter region SNP of HLA-C has

been reported to be linked with control of HIV infection,

and cell surface expression of the HLA molecule was iden-

tified to be in LD with a 30UTR variant that regulates

binding of micro-RNA, the putative source of the expres-

sion variation.227 Distorted patterns of gene expression are

a characteristic of many neurological diseases, such as MS,

Alzheimer’s disease and schizophrenia, and in various

cases these altered gene expressions can be correlated

straightforwardly to genomic/pathogenic variations.228–230

These findings support the hypothesis of a robust associa-

tion between anomalous gene expression and neurological

diseases, suggesting that variants in non-coding regulatory

elements are outstanding candidates for some of the

observed missing heritability in neurological diseases. The

identification of many null or expression variants of com-

mon HLA alleles will improve our understanding of their

role in immune functions. Recently, a variant of the mul-

tiple sclerosis-linked allele HLA-B*44:02 has been deter-

mined that produces only a soluble, rather than cell

surface, molecule; a point mutation at the end of intron 4

alters the exon 5 splice site.231 Meanwhile, this variant is

not appreciable through standard genotyping approaches,

and hence these alleles are usually genotyped as B*44:02;

similarly, the actual population-level frequency of the

marginal allele is not recognized. Moreover, if the non-

surface-expressed variant of this allele is common, this

might elucidate the link to disease. Taken together, these

data recommend that the genotyping of regulatory regions

variants may improve our understanding about the role of

HLA and KIR in neurological disease.

Concluding remarks and future perspective

Taken together, the findings of HLA and KIR association

studies are consistent with a polygenic model of inheri-

tance in the heterogeneous and multifactorial nature of

complex traits in various neurological diseases. The

majority of the neurological diseases, such as MS, NMO,

PD, AD, SCZ, MG and ALS, are considerably more com-

mon among individuals transmitting specific HLA alleles.

This further strengthens the decades-long contention of a

strong immune component in the determination of clini-

cal outcomes of neurological diseases.

Looking to the future of immunogenetics in neurologi-

cal diseases, we recommend focus upon high-resolution

genotyping for both HLA and KIR. Investigating both

coding and non-coding region variation in these

immunogenetic loci using high throughput high-resolu-

tion technologies in groups with diverse ancestries will

almost certainly be required to fully appreciate their role

in neurological diseases. There are only limited examina-

tions of HLA and KIR variations at transcriptomics and

proteomics levels; therefore, the functional assessment of

both allelic and regulatory regional variation is highly

desirable. The impact of micro-RNA on diverse HLA and

KIR alleles in regulatory regions also needs to be evalu-

ated in neurological diseases in order to recognize the sig-

nificance of epigenetic factors in disease pathophysiology.

Finally, our recent observation, that certain human

metabolites occupy the P4 pocket of MS-susceptible

DRB1*15:01 haplotype in most populations and could be

implicated in autoimmunity,232 suggest that similar inves-

tigations of both HLA class I and class II molecules in an

allele-specific manner could be undertaken. This approach

might be advantageous to weight or group together vari-

ous HLA genes and alleles that are involved in predisposi-

tion across diseases. The functional assessment of binding

of human metabolites with HLA class I and class II mole-

cules, and investigation of their impact upon T-cell pro-

liferation and responsiveness, could pave the way for

designing novel therapies, leading to a step closer to

reaching the goal of personalized medicine.
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