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Abstract
The rapidly growing field of functional, molecular and 
structural bio-imaging is providing an extraordinary 
new opportunity to overcome the limits of invasive liver 
biopsy and introduce a “digital biopsy” for in vivo  study 
of liver pathophysiology. To foster the application of 
bio-imaging in clinical and translational research, there 
is a need to standardize the methods of both acquisition 
and the storage of the bio-images of the liver. It can 
be hoped that the combination of digital, liquid and 
histologic liver biopsies will provide an innovative 
synergistic tri-dimensional approach to identifying new 
aetiologies, diagnostic and prognostic biomarkers and 
therapeutic targets for the optimization of personalized 
therapy of liver diseases and liver cancer. A group of 
experts of different disciplines (Special Interest Group 
for Personalized Hepatology of the Italian Association 
for the Study of the Liver, Institute for Biostructures 
and Bio-imaging of the National Research Council and 
Bio-banking and Biomolecular Resources Research 
Infrastructure) discussed criteria, methods and 
guidelines for facilitating the requisite application of 
data collection. This manuscript provides a multi-Author 
review of the issue with special focus on fatty liver. 
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Core tip: The manuscript provides an extended expert 
review on the issue of bio-imaging of the liver with special 
focus on fatty liver and the need for a new integrated 
approach to bio-banking.
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INTRODUCTION
Autopsy, from the Greek autopsía, namely seeing with our 
own eyes or direct examination after death, gave birth to 
modern pathology during the Italian Renaissance when 
autopsies were performed by such artists as Leonardo 
da Vinci to paint and sculpt the human body and by 
such medical doctors as Benivieni to understand the 
causes of death. Two and half centuries later, the father 
of anatomical pathology Morgagni executed hundreds 
of autopsies and released the monumental five-volume 
On the Seats and Causes of Disease[1]. The first liver 
aspiration biopsy on a living patient was performed in 
1883 by Paul Ehrlich, but the breakthrough that allowed 
the spread of liver biopsy as a diagnostic tool in clinical 
practice was the simple and effective technique invented 
by Menghini in 1958[2]. The combination of liver histology 
from conventional biopsy and circulating biomarkers 
(liquid biopsy) helps in generating an understanding 
of the interplay between genes and epigenetic factors 
in physio-pathogenic processes, providing a bimodal 
approach for the study and understanding of liver 
physio-pathology. The liver biopsy specimen however, 
provides a random sampling of just 1/150000th of the 
liver, and as such is subject to considerable sampling 
errors in cases with an inhomogeneous distribution of 
the pathologic lesion[3]. Moreover, it is obtained by an 
invasive procedure, unsuitable for the repeated sampling 
necessary to follow the in vivo dynamics of many physio-
pathologic mechanisms. In addition, in the process of 
fixation and staining, the melting of intracellular fat 
results in artifactual ghost droplets. In short, histology 
provides a dead, isolated frame from a living film 
that runs throughout the liver, and this has deeply 
limited the advancement of knowledge regarding the 
physiopathology of fatty liver. 

Modern biomedical imaging techniques offer an 
attractive non-invasive option for the in vivo study of 
liver physiopathology and have the capacity to provide 
detailed anatomical and biochemical information on the 
whole organ, thereby overcoming the limit of sampling 
error. The combination of image-based digital liver 
biopsy with liver histology and liquid biopsy could yield a 
new multimodal approach to the study of the fatty liver 
in clinical pathology. To foster this approach in clinical 
and translational research there is a need to standardize 
the methods of both acquisition and storage of bio-
images of the liver. 

ACQUISITION OF HEPATIC BIO-IMAGES
Biomedical tomographic images are rich in information 
that is increasingly subject to quantitative radiological 
assessment. A major development in computer-aided 
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research and diagnosis in recent years is based on 
computing multiple image features from volumes of 
interest (VOIs) or regions of interest (ROIs) of an organ 
and/or pathological tissue, and linking them to clinical 
or physio-pathological features, namely radiomics[4-6]. 
Automatic and semiautomatic image algorithms are 
mandatory for computing large numbers of image fea-
tures from standardized VOIs and or ROIs for 2D/3D[7-12]. 
After computation, the image features can be used in 
correlation studies with physio-pathological and clinical 
characteristics and to build predictive models[13,14]. 
Because many of the computed features are correlated, 
appropriate machine learning methods are useful for 
establishing sustainable pattern recognition analysis[15-17]. 

In parallel to these developments, a great deal of 
new knowledge about the physiopathology of fatty 
liver disease has been accumulated in recent years, 
revealing the complexity of the mechanisms involved 
in non-alcoholic fatty liver disease (NAFLD) and non-
alcoholic steatohepatitis (NASH) and the severity of 
ultrasonographic findings in nonalcoholic fatty liver 
disease reflects the metabolic syndrome and visceral 
fat accumulation[18-20]. The most recent guidelines and 
expert opinions for the management of NAFLD patients 
call for a new, systems medicine approach to the 
study of the interplays between the major physiology 
systems that control the vital relations of the liver with 
the environment, brain and nervous system, endocrine 
system, digestive system (gut and microbiota) and 
immune system[19]. New concepts for patient stratification 
are needed to identify different clinically significant 
profiles within the generic context of metabolic-syn-
drome[18]. This is especially important given that NAFLD 
affects almost one third of the general population, is 
an emerging cause of liver related mortality, and no 
reliable predictors of disease progression and response to 
therapy are yet available that can be applied on a large 
scale.

In keeping with this premise, we propose the 
digital liver biopsy as a new paradigm for full exploiting 
the information contained in multi-modality or multi-
contrast conventional and molecular liver imaging, with 
the aim of establishing a comprehensive platform of 
liver radiomics, capable of capturing the heterogeneity 
of liver pathology associated with intra-hepatic fat 
accumulation. Central to our vision is that digital liver 
biopsies be archived together with stored specimens 
from both liquid and histologic biopsies in a national 
bio-imaging repository network including reference 
hepatology units and an accredited biobank hub[21]. This 
will foster the advancement of liver radiomics analysis, 
incorporating multiple texture and intensity-based 
features to identify those consistent with morphological 
transformations and highly correlated with clinic-
pathologic characteristics. These imaging biomarkers 
will increase the potential of translational and clinical 
research and properly address several unmet needs for 
precision medicine[22-25]. The approach also encourages 
studies combining new imaging techniques with liver 

and blood metabolomics, as well as the analysis of the 
interplay between specific genes and the epigenetic 
factors conditioning their expression; opening a very 
interesting new way to target the dynamics of the 
pathogenic processes involved in NAFLD/NASH. While 
we hope that these new studies will identify different 
aetiologies, new diagnostic and prognostic biomarkers, 
and therapy targets; the underlying aim is to establish 
a basis for better patient stratification in respect to both 
prevention and outcome prediction that can support 
personalized treatment of NAFLD. The starting points for 
such work are the imaging technologies that are already 
well-established in clinical routine or well-advanced as 
imaging biomarkers. From current translational research 
and clinical practice there are several relevant PET/TC 
developments, as well as offshoots of ultrasound (US) 
and magnetic resonance (MR) imaging techniques[24-27]. 

LIVER ELASTOGRAPHY FOR 
ASSESSMENT OF FIBROSIS
Liver stiffness has been measured using magnetic 
resonance elastography (MRE), ultrasound-based 
transient elastography (TE, Fibroscan), and acoustic 
radiation force impulse imaging techniques in order 
to assess fibrosis for defining different degrees of the 
disease and predicting clinical outcomes[28-32]. Despite 
their many advances, these techniques have several 
limitations that must be taken into account[33-36]. TE for 
instance, is hampered by the presence of significant 
fat and/or fluid between the chest wall and the liver. 
These result in unreliable TE measurements in about 
a quarter of obese patients: A figure that likely can be 
reduced using a larger probe, at least in non-severely 
obese individuals[35,36]. Lee et al[37] compared the 
diagnostic performance of transient elastography (TE) 
with acoustic radiation force impulse imaging (ARFI) 
for staging fibrosis in nonalcoholic fatty liver disease 
(NAFLD). Liver stiffness correlated with fibrosis stage 
(P < 0.05) and the area under the ROC curve of TE 
(kPa) was slightly better than ARFI (m/s), namely 0.757 
vs 0.657. MRE is more accurate than TE, especially 
for detection of initial stages of liver fibrosis, but it is 
influenced by iron overload and requires additional 
hardware[38]. Other limitations of MR elastography are 
technical, such as ensuring coupling of the driver to 
the abdomen, and ensuring that wave interference and 
attenuation do not compromise the stiffness values in 
some parts of the liver. Despite these obstacles and the 
limited clinical use seen at present due to expense and 
restricted availability, it is expected that MRE will come 
to represent the “gold standard” for tissue stiffness 
measurement[39,40]. 

The most important limitation of liver stiffness mea-
sures is that they are surrogates of liver fibrosis rather 
than a metric of fibrosis itself. Moreover, fibrosis is just 
one of the three major pathophysiological vectors, that 
determine liver stiffness; the others being congestion 
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for in vivo use, however, the scope for MRS is greatly 
limited. Nonetheless, in expert hands, it is considered 
a gold standard technique for ex vivo evaluation of 
tissue fat content and commonly used as an in vivo 
reference standard[45-47]. In terms of analysis, MRS is 
straightforward. One simply integrates the area under 
the water and the individual fat component peaks of the 
hydrogen spectrum, and then calculates the ratio of fat 
signal to the total hydrogen signal. 

Although the acquistion of the hydrogen spectrum 
is relatively fast, there are a number of difficulties with 
this technique. Firstly, it measures only in a small region 
of the liver, and so lacks information on heterogeneity 
within the liver. Second, the positioning of the volume 
is subject to uncertainty due to patient respiration – in 
particular differences in breath-hold position between 
planning and acquistion can produce large errors in 
the fat fraction estimation[48]. Third, the presence 
of iron accumulation can affect the reliability of the 
measurement. One approach for overcoming the limit of 
a single sampling volume is to perform MRS in multiple 
voxels simultaneously so that an image can be formed 
(chemical shift or spectroscopic imaging)[47]. Relative to 
conventional MRS however, spectroscopic imaging is time 
consuming, and requires specialized pulse sequences 
that are not uniformly available across centres. More 
importantly, the resolution of the images remains 
rather poor, and contamination errors due to blurring 
reduce the accuracy of fat fraction measurements. In 
fact, at least one report has suggested that neither 
MR spectroscopy nor chemical shift imaging provide 
adequate accuracy for clinical decision-making[46].

PROTON-DENSITY FAT FRACTION 
MEASUREMENT
When observed in weak magnetic fields (≤ 1T), the 
MR spectrum of fat is largely reduced in its primary 
peak associated with hydrogen bound to carbon along 
the backbone of the fat molecule (triglycerides). This 
observation has given rise to a widely used method of 
creating water and fat images in MRI that was initially 
proposed by Dixon[48]. Because of their different resonant 
frequencies, the water and the primary fat peak cycle in 
and out of phase after excitation. The difference between 
an image formed when the peaks are in-phase and one 
formed when they are out-of-phase is proportional to the 
quantity of fat present and one can readily calculate a fat 
fraction. A significant limitation of this “two-point” Dixon 
(or in-phase: out-phase) technique is ambiguity as to 
which (i.e., water or fat) is the dominant component. 
Uncorrected, the assumption that water dominates 
leads to significant errors when the fat fraction exceeds 
50%[45]. In the liver, a further complication of the two-
point Dixon technique is associated with the presence 
of iron, which can be increased several hundredfold in 
patients with iron overload[44]. At elevated iron contents, 
the MR signal decays significantly between the in and 
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and inflammation[33,34]. The impact of congestion can 
easily be ruled out in patients without right heart failure 
through examination under standard fasting conditions, 
but there remains a need for additional clinical and 
pathological information and/or biomarkers to precisely 
characterize the different and relative contributions of 
inflammatory and/or fibrotic processes to liver stiffness 
in the single patient[34]. 

MAGNETIC RESONANCE RELAXOMETRY 
FOR ASSESSMENT OF FIBROSIS
Contrast in MR images is the product of exponential 
relaxation processes, the time constants of which (T1, 
T2, and T2*) are determined by the physico-chemical 
environment of the tissues. While T2 values are 
typically dominated by tissue water content, the use of 
T2 measurements for characterizing liver inflammation 
is complicated by iron sequestration and storage in 
hepatocytes. In fact, the use of T2 shortening (seen with 
spin-echo sequences) is well established for estimating 
high levels of iron overload, while T2* shortening 
(evident with gradient echo sequences) being more 
iron-sensitive is used in characterizing low levels of iron 
content. Similarly, several studies[24,41,42] have reported 
that liver T1 varies with degree of fibrosis. A number 
of fast imaging approaches have been developed that 
permit whole-liver T1 and T2 mapping within a small 
number of breath-holds, raising the potential for their 
clinical use. As yet however, these techniques are not 
widely available and need to be validated for use as 
surrogate endpoints in clinical trials[43].

Building on these components, a multi-parametric 
MR strategy has recently been established[26] that 
includes T1 mapping for the in vivo characterization of 
fibrosis/inflammation, T2* mapping for liver iron quantifi-
cation, and proton magnetic resonance spectroscopy 
(1H-MRS) for liver fat quantification (see below) without 
the intravenous injection of contrast agents. A good 
agreement with histology was shown in a cohort of 
patients with chronic liver disease of different etiologies[26]. 
Excitingly, other emerging MR biomarkers, including 
magnetization and saturation transfer, intra-voxel inco-
herent motion imaging, and perfusion mapping, most of 
which are well established in neurological imaging, offer 
potential to further characterize fibrosis, but remain to be 
optimized and adapted to liver imaging. 

MAGNETIC RESONANCE SPECTROSCOPY 
FOR ASSESSMENT OF STEATOSIS
Sensitivity to the subtle differences in magnetic fields 
affecting atoms of a given species due to their different 
positions within a molecule or in different molecules 
has rendered magnetic resonance spectroscopy (MRS) 
one of the most powerful tools in biochemistry. In 
the face of the complex chemical environment of the 
liver, and in the modest static magnetic fields available 
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out of phase echoes, creating an artificial elevation of 
the fat fraction (or reduction if the out of phase echo is 
acquired first).

At higher magnetic field strengths, and in the pre-
sence of good magnetic field shimming, the hydrogen 
spectrum becomes more complex as the different 
physical-chemical environments occupied by hydrogen 
within fats contribute additional frequencies (chemical 
shifts) relative to water. As not all of the peaks are 
in-phase (nor out-of-phase) at any given time, the 
additional peaks produce variability in the fat fraction 
estimates when using the two-point Dixon technique[48]. 
To deal with the errors due to the contributions from 
the minor fat peaks in the hydrogen spectrum, Yu et 
al[49] proposed the use of multi-component model fitting 
to multi-echo MRI data to produce proton density fat 
fraction (PDFF) measurements. After a rapid evolution 
to further account (up to certain limits) for ambiguities 
in water or fat dominance, T2* effects associated with 
iron content, and the possibility to perform quantification 
with or without phase information[50-54], PDFF has 
emerged as the preferred MR imaging strategy for fat 
quantification[55].

Although PDFF measurements[56] have been reported 
to better correlate with biochemical analysis (Folch 
method[57]) than with the conventional histopathology 
grading of fat content, there is a relatively good con-
cordance between MRI-PDFF and liver histology[58,59]. 
Relative to the conventional Dixon technique, PDFF 
measurements offer increased accuracy and repeatability, 
and can be used to assess the full range of fat values 
with less risk of inversion between water and fat values. 
The fact that the entire liver can be examined with 
PDFF scans provides a considerable advantage over 
MR spectroscopy for measurement stability as a high 
number of voxels contribute to estimates of fat fraction 
in the liver as a whole or in individual lobes thereof. 
Achieving this improved performance however, requires 
care in the choice of imaging parameters acquisition, 
and software specifically adapted to the fitting process. 

There are now numerous PDFF software solutions 
that offer varying degrees of support, cost and avail-
ability for clinical and research use. Most free-ware 

solutions for example, do not offer support either in 
use of the software, or for the optimization of imaging 
parameters and data preparation. The maturity, cost 
and support for commercially available software is 
varied, and their reliability and accuracy are still being 
established in practice. 

INTRAHEPATIC FAT MEASURED BY 
ULTRASOUND
US imaging has many advantages over MRI/MRS since 
it is simple, quick, less expensive and well tolerated. 
Moreover, the equipment is relatively widely available 
and, if needed, can be brought to the patient and 
conventional US is already widely used for diagnosis 
and management of liver pathologies. However, while 
US provides reliable qualitative diagnosis of liver 
steatosis when liver fat is above roughly 20%[60-62], 
its quantitative assessment is considered unreliable 
due to operator dependence. As described above, US 
can be used to measure shear wave propagation as 
an indicator of liver stiffness in fibrosis[58,59] and the 
Controlled Attenuation Parameter (CAP) score provided 
by Fibroscan (Echosens, Paris, France) was the first 
widely available quantitative US measure of intrahepatic 
fat in clinical practice[63,64]. It is based upon a single 
parameter, the US beam attenuation rate along a beam 
transmission line. 

There is now a trend to adopting multi-parametric 
strategies to better assess steatosis quantitatively. One 
such approach is based on the acquisition of common 
scan projections (both subcostal longitudinal and 
oblique views) available with commercial US systems[65]. 
Two recordings (clips of 5 s) allow the quantification 
of 5 different parameters associated with intrahepatic 
fat accumulation (Figure 1). These include the hepatic-
renal ratio (HRratio) and the hepatic-portal vein ratio 
(HPVratio)[60,61] that describe the echogenicity of the liver 
parenchyma in comparison with renal cortex and inner 
portal vein, respectively. In addition, the attenuation 
rate (AR) takes into account the reduction of US beam 
penetration[61], while grades are assigned to diaphragm 

US parameters
HRratio
HPVratio

AR
DV

PVWvisual

US acquisition

DICOM/AVI files

Post-processing algorithms

Steato-score

Figure 1  Quantitative multi-parametric assessment of intrahepatic fat by ultrasound. Workflow of the image acquisition, processing and data elaboration 
leading to a score provided by an algorithm (Steato-score)[65]. US: Ultrasound; AR: Attenuation rate; DV: Diaphragm visualization.
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visualization (DV, assessing the degree of diaphragm 
line visualization) and portal vein wall visualization 
(PVWvisual, assessing blurring of the portal vein walls). 
An algorithm (Steato-score) combining these five 
parameters showed good diagnostic performance 
discriminating presence (≥ 5%) or absence (< 5%) 
of steatosis relative to 1H-MRS with an area under the 
receiving operator characteristic (ROC) curve of 0.98 
and roughly 90% specificity and sensitivity[65]. 

In a further refinement, the five parameters (HRratio, 
HPVratio, AR, DV, PVWvisual) will be combined with texture 
analysis of the liver parenchyma in the images to 
discriminate multiple steatosis classes using machine 
learning approaches. Taking 1H-MRS values as ground-
truth, the diagnostic performance of advanced algori-
thms will extend the quantification of higher intrahepatic 
fat levels by ultrasound[65-67]. 

PET TO STUDY LIVER METABOLISM
Positron emission tomography (PET) is able to image 
in vivo biochemical processes quantitatively; molecules 
labeled with positron-emitting radioisotopes are used 
in trace quantities (i.e., without pharmacological 
effect) to visualize and measure rates of biochemical 
processes in vivo. Among the various PET-tracers, the 
fluorinated glucose analogue [18F]-2-fluoro-2-deoxy-D-
glucose (FDG), is the most widely used for metabolic, 
neurologic, and oncologic research as well as in clinical 
practice. Inflammatory and cancer cells are both 
metabolically active and show an increased uptake of 
FDG which is subsequently phosphorylated to FDG-6-
phosphate and trapped intracellularly because most 
of FDG-avid cells, including inflammatory cell, do not 
express glucose-6-phosphatase. Hepatocytes on the 
other hand, do express this enzyme, and release FDG 
back into the blood. 

Several studies have examined the potential of this 
difference in FDG kinetics in the study of fatty liver[68-70], 
comparing hepatic FDG uptake in NAFLD patients to 
controls using the semi-quantitative measurement of 
standardized uptake value (SUV). The results however, 
are mixed with some reporting a negative correlation 
between liver FDG uptake and NAFLD[69], others a 
positive[70] and others no association[69]. These conflicting 
results may be the consequence of the many factors, 
both physiological and technical that can affect SUV 
values[71,72]. Interestingly, FDG PET studies have none-
theless shown a link between vascular inflammation and 
NAFLD[73] as well as that liver SUV in patients with NAFLD 
may be a prognostic factor for cardio-cerebrovascular 
events[74,75]. 

From a metabolic point of view the options on PET 
tracers are manyfold providing a role to play in the study 
of NAFLD pathology. A first example is the study of 
hepatic metabolism in the pathogenesis of the metabolic 
syndrome and its clinic-pathologic correlates (e.g., 
diabetes, hypertension and obesity). A negative correlation 
between higher hepatic glucose uptake HGU and liver fat 

content was reported in overweight subjects with type 2 
diabetes[76]. These results support the notion that NAFLD 
is epiphenomenon of insulin resistance. The liver is an 
insulin sensitive organ[77] and thus, hepatic glucose uptake 
is reduced in subjects with insulin resistance. 

Other aspects of liver metabolism such as fatty acid 
uptake, oxidation, and perfusion are also amenable to 
study with PET techniques. In a recent study in morbidly 
obese subjects, Immonen and coworkers, using a 
palmitate analog, [18F]-fluoro-6-thiaheptadecanoic acid 
(18F-FTHA), found morbidly obese subjects to have 
elevated hepatic fatty acid uptake (HFU) before bariatric 
surgery that decreased after surgery, though it did not 
normalize relative to lean subjects. Intriguingly, HFU and 
liver fat content in these patients were not related[78]. 
Iozzo et al[79] using 11C-palmitate-PET scanning showed 
that obese subjects have higher rate of fatty acid oxidation 
than lean subjects. According to these authors, the 
assessment of fatty acid oxidation is of major importance 
in characterizing subjects with NAFLD, since fatty acid 
oxidation is a significant source of reactive oxygen 
species in obesity-related hepatic lipotoxicity. Finally, with 
appropriate modeling, PET like MRI can be used in the 
quantification of liver perfusion in humans[78,80]. 

In the oncologic field, FDG-PET scanning is the 
gold standard, due to the avidity of tumors for glucose. 
Moreover, as used in this context, serial SUV measure-
ments is a reliable tool, with the individual patient 
serving as their control before and after treatment. 
In hepatocellular carcinoma, FDG-PET has shown its 
usefulness both for identifying more aggressive tumors 
predictive of lower survival rates, and for capturing 
early signs of response to treatment. In pre-clinical 
models, FDG-PET scanning showed capacity to quantify 
tumor response[81] with potential usefulness in tumor 
monitoring. In the clinical setting, FDG-PET has proven 
useful as survival predictor: patients with lower tumor 
to liver ratio (TLR) at time 0 showed three times longer 
survival than patients with high TLR[82] and the SUVmax 
parameter was an independent predictor of survival 
in HCC patients undergoing Sorafenib treatment[83]. 
Most interestingly, the discriminating capacity of FDG-
PET associated with the clinic pathologic response to 
the anti-angiogenetic drug was shown to be detectable 
as soon as three weeks from the beginning of treat-
ment[84], thus an ealry FDG-PET scan after starting 
anti-angiogenetic treatment seem to be a promising 
technique for monitoring early response[85]. 

Undoubtedly, PET imaging in the liver has provided 
new insight in quantifying different metabolic pathways 
in humans. Whereas measuring inflammation in the 
liver until now has been proven challenging, FDG-PET 
has a clear role in patients affected from hepatocellular 
carcinoma. 

IMAGING MASS SPECTROMETRY
IMS combines the mass spectrometry with the Matrix-
assisted laser desorption/ionization (MALDI) technique, 
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and allows the visualization of the spatial distribution of 
metabolites, drugs, peptides, proteins and lipids, directly 
on tissue sections without the need for extraction 
(biochemical analysis) or the use of specific markers 
(enzyme- or immune-histochemistry). The advantage of 
this technique is in mapping the subcellular localization 
and morphology on tissue sections and, at the same 
time, providing qualitative and quantitative evaluation 
of thousands of analytes. This bi-dimensional technique 
can also be adapted to fathom below the tissue surface 
to produce a three-dimensional map of the molecules 
(having molecular weights between 1000 to 70000 
Da) present in the histological sections. The signals 
of ions obtained from the histological section/sample 
can be mapped in specific regions of the tissue and 
transformed into images on the basis of the density of 
the ions inside the tissue. 

As an example of the use of IMS, accumulation of 
C14:1 acylcarnetine in a steatotic liver has suggested a 
deficiency of very long-chain acyl-CoA dehydrogenase 
permitting molecular genetics analysis to be addressed 
towards the detection of the underlying mutations[86]. 

There are in fact a growing number of techniques 
similar to IMS, including synchrotron infrared and ToF-
SIMS (time of flight secondary ion mass spectrometry) 
micro-spectroscopies[87] capable of identifying molecular 
species of lipids concentrated in steatotic vacuoles 
or present in small lipid droplets that most probably 
correspond to the first step of lipid accretion. Likewise 
these techniques are of interest for tracking and under-
standing the effects (pharmacokinetics, toxicology, 
metabolomics) of drugs on cells in metabolic diseases 
and NAFLD. While not applicable in vivo they are likely 
to play an increasing role in the chemical imaging/
analysis of pathology samples to provide high resolution 
targets, in both spatial and biochemical terms for the 
understanding of radiological findings of NAFLD. 

RADIOMICS
The success of precision medicine requires a clear 
understanding of disease heterogeneity at the single 
patient level, yet despite the large radiological armamen-
tarium available, most imaging-based clinical decision-
making is still based solely on visual assessment. The 
combination of visual assessment and image-processing 
techniques that describe and quantify numerous image 
features, such as intensity-based and textural properties 
that are difficult to convey consistenty in verbal reports, 
can provide a comprehensive characterization of imaging 
data sets. This approach adds value to the individual 
quantitative measure or visual subjective report and 
the derived results can be combined with statistical 
modelling techniques to predict clinical end points. 
The field of research that examines the relationships 
between advanced quantitative imaging features from 
medical images and clincal data is called “Radiomics”, 
while “Imaging Genomics” (or radiogenomics) refers to 
the study of imaging features in association with high-

throughput genetic data[88] (Figure 2). 
Radiomic features are derived from the information 

contained in the voxels of a segmented structure of an 
image, and are typically grouped into families having 
similar derivational or statistical roots. First-order 
statistical features are reflected in the histogram of voxel 
intensities, and include: the mean value, dispersion 
(standard deviation, mean absolute deviation), central 
moments (skewness and kurtosis describing asymmetry 
and sharpness, respectively) and randomness (entropy, 
uniformity). Texture or greyscale variation features, 
refer to higher-order statistical measures that describe 
the local spatial arrangement of intensities. This 
typically reduces to expressing how different parent 
matrices capture the spatial intensity distribution of an 
image, and is widely used as a low-level step in pattern 
recognition. In contrast to the pre-defined features 
associated with texture analysis, the rapidly growing 
approach to radiomics represented by deep learning 
draws on advanced optimization of self-generated 
patterns to create networks for recognition analogous to 
neurons. While originally developed for planar images, 
intensity-based and textural features measures and 
deep learning can generally be calculated for volumetric 
datasets. 

Radiomics analysis, as a technique that objectively 
measures the structural and/or functional heterogeneity 
of the tissue by quantifying the spatial patterns of pixel 
intensities on cross-sectional imaging, can improve the 
clinical usefulness of multimodal biopsy data. Recent 
pilot studies employing radiomic approaches on mul-
timodal and hybrid imaging (CT, optical, PET/MRI, 
PET/CT) have shown the usefullness of quantifying 
the overall tissue spatial complexity in identifying the 
regions which drive disease transformation, progression, 
and drug resistance in a variety of pathologies[17,90-93]. 

Both radiomics and imaging genomics are at 
very early stages in hepatology and many problems 
remain to be solved. To date, the vast majority of liver-
related radiomic studies have focused on the analysis of 
malignant lesions for establishing prognostic or predictive 
models. For example, in 2007, Kuo et al[88] observed 
significant correlation between tumour margins in 
arterial phase images and doxorubicin-response gene 
expression. In 2015, Miura and coauthors[96] identified 
53 up-regulated and 71 down-regulated subsets of 
genes in the highly aggressive HCC group compared 
with the low-grade HCC group as distinguished by 
gadolinium ethoxybenzyl-DTPA magnetic resonance 
imaging hyperintensity. They have also shown that 
clinico-pathological and global gene expression analyses 
revealed low-grade malignancies within high-grade 
HCCs compared with low-grade HCCs. Recently, Zhou 
et al[97] have extracted radiomics features from arterial 
and portal venous phase using CT images, identifying 
twenty-one radiomics features from a panel of 300 
candidate features, to predict the early recurrence 
(≤ 1 year) of hepatocellular carcinoma. A further 
example of the scope for synergy formed by the three-
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dimensional vision of digital, liquid and phsyical biopsy, 
is the recognition of relationships between histologic and 
clinical phenotypes including microvascular invasion of 
hepatocellular carcinoma and prognosis of intrahepatic 
cholangiocarcinoma evidenced via MRI diffusion-weighted 
imaging and hepatobiliary phase after gadoxetic acid[94,95].

In one of the few reports applying the radiomic 
approach to the study of NAFLD, in 2015 Vanderbeck 
et al[90] developed an automated classifier that 
detected and quantified macrosteatosis with at least 
95% precision. They applied an automatic quantifier 
of lobular inflammation and ballooning to digital 
images of hematoxylin and eosin stained slides of liver 
biopsy samples from 59 individuals with normal liver 
histology and varying severity of NAFLD. Their results 
demonstrated that automatic quantification of cardinal 
NAFLD histologic lesions is possible, and offer promise 
for further development of automatic quantification of 
NAFLD biopsies in clinical practice. 

Genome-wide association studies of hepatic fat 
content as determined radiologically on the other hand, 
have already led to major breakthroughs in the field, with 
the identification of genetic variants influencing hepatic 
fat accumulation[98,99]. In addition, although fibrosis 
stage is considered the major prognostic determinant in 
patients with NAFLD/NASH[100], recent data suggest that 
the amount of hepatic fat accumulation plays a causal 
role in determining the development of NASH and its 
progression[101]. Thus, a reliable non-invasive measure 
of intrahepatic fat may represent an important outcome 
predictor in both clinical research and practice.

Radiogenomics findings in hepatic oncology illustrate 
the potential for further clinical insights and diagnostic 
pathways. For example, Banerjee et al[106] found an 
interesting correlation between a “Radiogenomic 
Venous Invasion” biomarker (a contrast-enhanced CT 
parameter) and a 91-gene HCC “venous invasion” gene 
expression signature. This biomarker may be able to 
predict histological microvascular venous invasion in 
HCC that may be useful for identifying patients less likely 
to a durable benefit from surgical treatment. Renzulli 
et al[107] also found a correlation between multiple 
imaging biomarkers, such as tumor dimension, non-
smooth tumor margins, peri-tumoral enhancement, and 
gene expression called “two-trait predictor of venous 
invasion”, as predictor of microvascular venous invasion.

Hepatology is a particularly interesting field of appli-
cation for the new radiogenomic approach; patient 
management already requires the combination of in-
formation coming from ex vivo analyses of circulating 
biomarkers (serum proteins, transaminases, etc.), 
histology and direct in vivo multimodal imaging data 
(ultrasound, CT, MR, etc.) (Figure 3). Nowadays however, 
all these data remain locked within the various depart-
ments and isolated between institutions, creating an 
obstacle to the creation of the coherent program of colla-
borative research.

BIO-BANKING FOR LIVER DISEASE
Institutional biobanks are service units dedicated to 
the collection, processing, storage and distribution of 
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Figure 2  Radiogenomic approach to liver disease. Radiogenomics integrates radiomic data (upper panel), produced from the in silico extraction of features from 
bio-images, with genomic data (lower panel), coming from the study of bio-specimens with next generation sequencing technologies. Radiogenomics represents a 
powerful strategy to improve and personalize diagnostic accuracy, as well as measure response to therapy, leading to an overall improvement of patient management 
affected by liver disease.
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biological materials and associated patient information. 
Biobanks are becoming more and more central to 
translational research in the fields of human health, 
biotechnologies and development in life science.

Generally, institutional biobanks can be classified in 
terms of the profile of material contained in the collection 
as: population-based, disease-specific or rare disease 
oriented. The biological material can be constituted of 
different types of samples such as solid tissues, plasma, 
serum, RBC, buffy coats, white cells, DNA, RNA, proteins, 
cell lines, saliva, urine and fecal samples. The widest 
European consortium of Biobanks is represented by the 
Bio-banking and Bio-Molecular Research Infrastructure 
(BBMRI-ERIC)[103]. Recently, an additional class of 
biobanks has emerged in the form of imaging biobanks. 
Specifically, the European Society of Radiology defines 
imaging biobanks as “organized databases of medical 
images and associated imaging biomarkers (radiology 
and beyond) shared among multiple researchers, and 
linked to other biorepositories”[104,105]. The primary 
role of imaging biobanks is the identification of novel 
imaging biomarkers to be used in research studies, as 
well as to support validation of novel biological or genetic 
biomarkers of disease. It is important to recognize the 
fundamental importance of integrating clinical, pathlogical 
and biological endpoint data (such as with genomic results 
coming from high-throughput sequence analysis of DNA 
or RNA) with in vivo imaging data derived from radiomic 
analysis of CT, MRI or PET images for the identification 
of biomarkers (both imaging and non-imaging) and 
their translation to clinical relevance. A major limitation 
of radiomics and radiogenomics research is that the 
large number of radiomic features and patholgical/
biological variables that may or may not be involved 
necessitate the use of large datasets and condivision 
of data across disciplines. Thus, imaging biobanks 
should be embedded in wider biobank networks. This 
may be the product of an explicit program of data 
collection (such as the German national Cohort, and the 
United Kingdom Imaging Biobank projects) or through 
consistent practice across a number of individual clinical 
entities that interact as nodes in a network dedicated to 
a given pathology/ies. As an example of a product of the 
former, in a prospective study of 4.949 participants in the 

United Kingdom Imaging Biobank[105] in whom liver fat 
was measured using the PDFF MRI technique, Wilman 
et al[105] showed an association of increased liver fat with 
greater age, BMI, weight gain, high blood pressure and 
type 2 diabetes. An example of an individual clinical node 
for the latter form of network is the SDN Biobank, that is 
the institutional biobank of the IRCCS SDN. This structure 
is devoted to the collection of biological material (blood, 
urine, feces) as well as images (deriving from CT, PET, 
MRI) from patients affected by oncological, cardiological, 
neurological and metabolic diseases[21]. 

Due to the non-invasive nature of medical imaging 
and its ubiquitous use in clinical practice, the field of 
radiogenomics is rapidly evolving and initial results are 
encouraging. Biobanks will surely have a critical role 
for the development of the innovative radiogenomics 
protocols. Indeed, their collaboration across centres 
and disciplines is likely the only feasible approach 
to assembling the large numbers of images and 
samples, along with the clinical data required for testing 
associations in identifying and validating imaging and 
genomic biomarkers. To facilitate this collaboration, in the 
future it will be necessary to bring together images and 
biological samples from the same patients in innovative 
biobanks adapted to collect both kinds of material. 
The data coming from this kind of biobanks will have 
a critical role for the development of personalized 
protocols for diagnosis and patients care (Figure 4). In 
the context of fatty liver, well defined and correlated 
histologic and imaging targets from MRI and US (Table 
1) already exist and they can form the basis of such a 
collection.

DIGITAL BIOPSY-THE ROAD AHEAD
Digital biopsies for NAFLD need to be fast and easy to 
obtain, and consistent among operators, technologies 
and methods, and most importantly provide clinically 
relevant results. To arrive at this level, there is a need 
for research, development and extensive collaboration. 
A number of imaging techniques are already available 
for evaluation of fibrosis and steatosis. Wider adoption 
of these techniques and continued work to overcome 
their limitations can provide the basis for multi-centric 
collaboration on the optimization of imaging for fatty 
liver. 

No individual centre has the breadth and depth 
of patients to go it alone in establishing a validated 
digital liver biopsy. Collaboration on imaging technique 
adoption should be performed in combination with 
establishing a cross-center imaging biobank linked to 
associated conventional biobanks. 

An open need lays in the attraction of expertise 
and interest to carry out radiomics and radiogenomic 
studies and this follows the generation of data and 
the establishment of the bio-repository resources 
described above. Only at this point we will see the fruits 
of the labour, in terms of possible imaging biomarker 
signatures and associations with clinical and biological 

Digital

LiquidHistology

Figure 3  A new three-dimensional view of the liver biopsy. Digital biopsy, 
direct in vivo imaging of the whole liver, adds important pathophysiological 
and morphological context to liquid and invasive (percutaneous or surgical) 
liver biopsies that provide focal ex vivo analysis of circulating biomarkers and 
specimens of the liver respectively contributing to a three dimensional view for 
diagnosis and prognosis of liver disease.
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endpoints. Prospective studies should then compare 
the results obtained using images acquired at different 
points in time by multiple technicians, and read by both 
radiologists and trained non-radiologists. The next step 
is studying and comparing quantitative image features 
to unravel the relationships between the digital biopsy 
features and histopathologic, metabolic and genetic 
characteristics and building models which link them to 
the disease outcomes. Validation studies with multiple 
users are required to show that intra- and inter-reader 
variations of the digital biopsy derived features are 
acceptable.

CONCLUSION
We foresee the combination of image-based digital 
liver biopsy with liver histology and liquid biopsy in 
a multimodal approach to the study of the fatty liver 
in clinical pathology as a key to personalizing patient 
care. To foster this approach in clinical and translational 
research there is a need to standardize the methods 
of acquisition, processing and storage of bio-images of 
the liver. A number of imaging techniques that offer a 
starting point for acquisition have been identified and 
their use in combination in prospective studies will 
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Figure 4  Modern vision of bio-banking. The collection of patient clinical data, tissue samples, liquid biopsies as well as bio-images, in organized datasets is defined 
as “bio-banking”. With the advent of omics sciences (i.e., proteomics and genomics) where a large number of biological specimens and associated data are needed 
for making a precision medicine approach to the patients collaborative studies across centers are essential to maximizing patient recruitment. Equally, accessible well-
structures data stores permit re-use and re-examination of data reducing the cost of subsequent studies. In this context, the field of bio-banking has the possibility to 
enhance research on liver disease as well as improve diagnostics and therapeutics.

Table 1  Intrahepatic fat measurement

Ref. Imaging modality Classification ROC-derived parameters

AUC Sensitivity (%) Specificity (%)

Mancini et al[60] 2009 US 1H-MRS fat content > 5%   0.996 100   95
Xia et al[61] 2012 US 1H-MRS fat content > 5.56% NA      95.1 100
Edens et al[62] 2009 US 1H-MRS fat content > 5.56% NA      66.7 100
Di Lascio et al[65] 2018 US 1H-MRS fat content > 5% 0.97   89   94
Sasso et al[108] 2012 CAP score (imaging derived) Liver biopsy S0 vs S1S2S3: 0.80 S0 vs S1S2S3: 76 S0 vs S1S2S3: 71

S0: < 10% of hepatocytes S0S1 vs S2S3: 0.86 S0S1 vs S2S3: 87 S0S1 vs S2S3: 74
S1: 11%-33% of hepatocytes S0S1S2 vs S3: 0.88 S0S1S2 vs S3: 78 S0S1S2 vs S3: 93
S2: 34%-66% of hepatocytes
S3: 67%-100% of hepatocytes

Both histologic and digital liver biopsy provided reliable measures of intrahepatic fat that are significantly correlated, but categorically different. Liver 
biopsy describes the histologic characteristics of the pathologic lesions and accounts for the percentage of hepatocytes with intracellular fat-derived 
vacuoles using categorical grading systems that are not directly representative of the hepatic triglyceride concentration[19-21]. On the other hand 1H-MRS 
measures protons in acyl groups of liver tissue triglycerides and provides continuous quantitative values expressed as mg/g of hepatic tissue[109]. Moreover, 
1H-MRS uses a much larger volume of liver tissue than biopsy reducing sampling error and representing the most accurate measure of the overall liver 
triglyceride content. US: Ultrasound; ROC: Receiving operator characteristic; CAP: Controlled attenuation parameter.
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open a new venue of translational and clinical research. 
However, many of these tools are still limited to selected 
Centres and it is important to increase their accessibility 
by reducing costs.
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