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Abstract. The diffusion tensor model is nonspecific in regions where micrometer structural patterns are incon-
sistent at the millimeter scale (i.e., brain regions with pathways that cross, bend, branch, fan, etc.). Numerous
models have been proposed to represent crossing fibers and complex intravoxel structure from in vivo diffusion
weighted magnetic resonance imaging (e.g., high angular resolution diffusion imaging—HARDI). Here, we
present an empirical comparison of two HARDI approaches—persistent angular structure MRI (PAS-MRI)
and Q-ball—using a newly acquired reproducibility dataset. Briefly, a single subject was scanned 11 times
with 96 diffusion weighted directions and 10 reference volumes for each of two b values (1000 and
3000 s∕mm2 for a total of 2144 volumes). Empirical reproducibility of intravoxel fiber fractions (number/strength
of peaks), angular orientation, and fractional anisotropy was compared with metrics from a traditional tensor
analysis approach, focusing on b values of 1000 and 3000 s∕mm2. PAS-MRI is shown to be more reproducible
than Q-ball and offers advantages at low b values. However, there are substantial and biologically meaningful
differences between the intravoxel structures estimated both in terms of analysis method as well as by b value.
The two methods suggest a fundamentally different microarchitecture of the human brain; therefore, it is pre-
mature to perform meta-analysis or combine results across HARDI studies using a different analysis model or
acquisition sequences. © 2018 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JMI.5.1.014005]
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1 Introduction
Diffusion weighted magnetic resonance imaging (MRI) enables
noninvasive millimetric mapping of local tissue orientation via
sensitivity to directional diffusion on the micrometer scale. The
tensor model in diffusion tensor imaging (DTI) has been wildly
successful for interpreting this signal in cerebral white matter
tracts and reconstructing major fiber pathways in the brain as
it is sensitive to fiber orientations.1 To address DTI’s shortcom-
ings in regions of complex intravoxel structure, high angular res-
olution diffusion imaging (HARDI) methods acquire and
analyze additional data to estimate multiple fiber population ori-
entations per voxel. These methods reveal more elaborate infor-
mation about the intravoxel structure, e.g., diffusion orientation
transform,2 spherical deconvolution (SD),3,4 persistent angular
structure (PAS-MRI),5 or Q-ball.6

Previous large-scale reproducibility studies with DTI have
been essential for understanding the empirical behavior of the
tensor estimator (e.g., Ref. 7). We perform an in-depth compari-
son of PAS-MRI and Q-ball as representative variants of
HARDI methods. PAS-MRI models the intravoxel diffusion
using a discrete number of fiber compartments,8 while Q-ball
estimates an orientation distribution function (ODF), which is
assumed to reflect the underlying fiber orientation distribution

through its impact on diffusivity.9 PAS has been shown to be
more consistent than Q-ball on synthetic data at lower or clinical
b values of about 1200 s∕mm2.8,10 Meanwhile, Q-ball is effec-
tive at higher b values (∼3000 s∕mm2 or greater).6 Previous
work on Q-ball has also shown that it resolves multiple fiber
orientations for fractional anisotropy (FA) regions <0.4.11

While a minimum angle of fiber orientations has not been estab-
lished for PAS yet, Q-ball has been known to resolve angles
down to 45 deg with diminishing accuracy depending on
adequate signal-to-noise ratio (SNR).12 Herein, we compare
the empirical reproducibility of PAS-MRI and Q-ball focusing
on b values of 1000 and 3000 s∕mm2. We have also compared
the models in terms of agreement between PAS and Q-ball.

In Ref. 13, the authors show that PAS can more consistently
resolve crossing fiber voxels compared to Q-ball. PAS has also
been shown capable of detecting up to two crossing fibers with
robustness in the method in the presence of noisy data.14 In
Ref. 15, improvement in probabilistic index of connectivity
(PICo) tractography was shown using a Bingham distribution
with compelling PAS results compared with Q-ball. A drawback
noted was that PAS-MRI showed a spurious perpendicular peak
for fanning structures based on bootstrap validation. In Ref. 16,
the authors stated that the fiber orientation distribution methods
have a high agreement with probabilistic tractography and
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PAS-MRI specifically having a sparse connectivity matrix. It
has been strongly suggested for further validation using more
complex biological phantoms techniques.17

Previously, the bias and variance of PAS and Q-ball methods
have been assessed using relatively small datasets.5,6,8,9 Region
of interest (ROI) analysis has shown that Q-ball retains angular
information when b value is brought down to the range of 2000
to 2500 s∕mm2.18 Average angular resolution of Q-ball has been
estimated to be between 15 deg and 30 deg based on analysis
presented in Ref. 19. While analyses of bias have been per-
formed using repeated phantom/synthetic data,12 verification
of these results is important with in vivo data. Q-ball can identify
crossing fibers, yet it fails in scenarios where there are fanning
or splitting of fibers. In Ref. 20, a comparative reproducibility
study of tractography between PAS-MRI and Q-ball was per-
formed for specific ROI’s. Both methods were shown to be
highly reproducible with PAS-MRI being slightly superior.
Phantom studies17 on Q-ball using tractography have suggested
the need for more reliable validation methods. Here, we offer an
extensive empirical scan–rescan validation set on a single sub-
ject acquired at multiple b values so the diffusion model fitting
methods can be studied on a range of acquisition sequences and
quantities of data following large-scale validation work done
with DTI.7

2 Methods
Briefly, the data were preprocessed for each scan session
individually and successively registered to the Montreal
Neurological Institute (MNI) space template (Fig. 1). Gold stan-
dard models were created for each method and b value by con-
catenating the 11 scans per b value and fitting with each method.
Comparisons were performed across repetitions to assess vari-
ance/reproducibility, while comparisons among the gold stan-
dard scans were performed to assess bias.

2.1 DW-MRI Data Measurements

A healthy volunteer was scanned in three different sessions on
successive days on a 3T Phillips Scanner with a 32-channel head
coil. The first and last scan sessions consisted of four repetitions
of 96 gradient directions per b values at each of 1000 and
3000 s∕mm2. The second session had three repetitions of the
protocol. For each b-value shell, 10 minimally weighted refer-
ence images (b0’s) were also acquired. Voxel resolution for the
data is 2.5 mm × 2.5 mm × 2.5 mm with a matrix of 96 × 96
and 38 slices. The scan parameters were multiband ¼ 2,
SENSE ¼ 2.2, TR ¼ 2650 ms, TE ¼ 94 ms, and partial
Fourier ¼ 0.7. Fold over direction was A-P with a P fat shift.
For each set of five shells, an additional diffusion scan was
acquired with reverse phase encoded volumes (i.e., fold over
direction A-P with A fat shift) with a minimally weighted vol-
ume and three diffusion weighting directions with a b value of
1000 s∕mm2 along the imaging frame cardinal directions, and
all other parameters were kept constant. All data were acquired
in accordance with the Vanderbilt University Institutional
Review Board (IRB) guidelines and with the signed consent
of the volunteer.

2.2 Data Preprocessing

Each session was corrected for eddy current motion, patient
head movement, and susceptibility distortion with FSL’s
topup and eddy.21,22 Every diffusion weighted shell was pre-
ceded by a nondiffusion weighted image (b0) averaged 10
times on the scanner, and each session had four reverse
phase encoded b0 volumes. All b0’s including reverse phase
encoded b0’s in a session were concatenated and fed as inputs
to topup. For eddy all scans in a session were concatenated and
then corrected together using the results from topup. Once topup
and eddy had been performed, the corrected b0’s from the first
session were registered to a 2.5-mm isotropic MNI T2, which

Fig. 1 Flowchart depicting the pipeline of data processing steps.
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was resampled from a 0.5-mm weighted template using six
degree of freedom registration.23 The volumes for the next ses-
sion were brought to the same space by averaging the b0’s
together and registering the combined image to the averaged
b0’s in the first session. The same procedure was subsequently
done to the last session to bring all three sessions into a common
subject-specific pose aligned with MNI space.

Thereafter, all the sessions were normalized by the b0 cor-
responding to the scan to account for amplitude drift (Fig. 1). A
weighted mean b0 was created from all b0 scans in MNI space
by a weighted average of all b0’s. The weight was taken as the
inverse of the median of all b0 scans in MNI space averaged
with the mean of b0’s from all sessions. The final normalization
scan was computed by multiplying the weighted mean b0 to the
ratio of diffusion weighted scan (in MNI space) to the b0 (in
MNI space).

2.3 Data Segmentation

Individual target images (T1 weighted scans) were affine regis-
tered to the MNI305 atlas24 and bias corrected with N425 using
advanced normalization tools (ANTs)26 on the atlas and the tar-
get images. Nonrigid registration was performed from atlas
images to the target image using ANTs and symmetric image
normalization algorithm.27 Image and label volumes for the
atlas were then deformed to the target space with bicubic and
nearest-neighbor interpolation and fused with nonlocal spatial
STAPLE28,29 and Adaboost correction.30 Each individual
voxel in the brain was labeled to one of the 133 labels obtained
from the multiatlas labeling using the BrainCOLOR protocol.31

T1 image labels were brought back to the original target space
with the ANTs inverse transformation. All WM labels were con-
catenated together to create a WM mask. The mask has been
used for all reported results with the only exception of the visual
glyphs where we have shown all data for the particular slice.

In order to avoid circularity of defining white matter by FA
and then examining FA in white matter, we defined the white
matter mask based on multiatlas segmentation of the T1-
weighted MRI (Figs. 2 and 3). As the histograms show, the
structural definition spans the full breadth of white matter con-
figurations [from homogeneous major tracks, to crossing fibers,
and even to some regions of partial volume (e.g., very low FA)].

2.4 Q-Ball Reconstruction

Q-ball’s ODF was originally calculated using a funk radon
transform6 using a sphere in q-space on raw diffusion data.
In Ref. 9, the authors showed that a faster and robust Q-ball
model can be formed and regularized using spherical harmonics.

The spherical harmonic Q-ball has exhibited different behav-
ior with spherical harmonic orders, which keep even orders to
retain symmetry. Previous results have revealed spherical har-
monic order shows dependence on the number of gradient direc-
tions and b value.32 Additionally, lower order harmonics lead to
less angular resolution. High spherical harmonic orders and high
b values yield decrease in angular error for high SNR sequences
for b values up till 6000 s∕mm2.9 Herein, the parameters chosen
were order 8 for the spherical harmonics and the default regu-
larization parameter, which is 0.006. Camino was used for the
implementation.33

Fig. 2 Histogram of FA values in the white mask for both b values of 1000 and 3000 s∕mm2.

Fig. 3 Spatial maps of middle axial slice: (a) WM mask, (b) FA in WM mask, and (c) where FA < 0.3 in
WM mask.
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2.5 RE-PASMRI Reconstruction

PAS is a special case of SD. The radius of sphere defined for
PAS is a constant parameter and set to 1.4 as was determined in
Ref. 5. Reduced encoding PAS was shown to have a good trade-
off between speed and accuracy,8 and reduced encoding was
used herein to improve computational efficiency. PAS was
reconstructed from maximum entropy SD34 with the reduced
encoding model8 with a reduction factor of 16. The gold stan-
dard sets of the PAS were computed in an “embarrassingly par-
allel” computation model (split across axis stacks) across
multiple CPU’s so as not to affect the algorithm but ensure com-
putation at reasonable speeds. Camino was used for the
implementation.33

2.6 Peak Reconstruction

Peak search was performed using sfpeaks from Camino.33 Local
maxima are determined within a fixed search radius using
Powell’s method. The radius was specifically set to 1.4 for
PAS as per Ref. 5 from the default 0.4, which was used for
Q-ball. The number of peaks being determined for both the
methods was set to 3. The pdthresh defines a ratio of peak
strength to mean of the basis function values was set to 1
for both the methods. In brief, the parameters chosen for the
two methods have been the suggested optimized parameters
for these methods given the acquisition parameters. Lowering
of the pdthresh could lead to detection of spurious/false peaks.

Note that the search radius of sfpeaks is not the same param-
eters as the radius constant in the PAS model. Peak finding algo-
rithms have a separate search radius parameter, however, it is set
as per the model. Maximum entropy models require a higher
radius because of the definition of the model as per Refs. 2,
3. While the default parameters of the sfpeaks have been
used for Q-ball. Usage of higher radius such as 1.4 for Q-
ball will lead to unstable or spurious results.

3 Metrics

3.1 Success Fraction

Success fraction (SF) has been effectively applied to character-
ize synthesized data on a small scale in vivo dataset,10 originally
termed as consistency fraction in the article. SF declares two

intravoxel measurements to be in agreement if (1) the number
of fiber populations is equivalent and (2) the peaks are within an
angular tolerance. In Ref. 10, 18 deg was used as the tolerance;
herein we use 20 deg.

All metrics have been binned at intervals of 0.1 by FA. The
binned values have been represented by the mean with standard
deviations across the bin.

3.2 Peak Fraction

The peak fraction is a representation of the function value
detected from the PAS or the ODF. We have restricted the analy-
sis to scenarios of ≤ 3 fiber populations per voxel and that had
been defined during the peak search algorithms as well. The
ODF/PAS values were normalized in cases where fiber popula-
tions detected were >1. It has been defined as a function of FA
and is also mapped to the number of voxels. We have chosen to
represent this for all the 11 single test models per b value for
both methods, where fni are the normalized peak fraction
(PAS/ODF) values of the peaks detected and fi is the function
value (PAS/ODF) of the peak detected

EQ-TARGET;temp:intralink-;e001;326;524fni ¼ fi∕ðf1 þ f2 þ f3Þ: (1)

3.3 Symmetric Angular Error

Symmetric angular error (SAE) presents an insight to bias of the
reproducibility of the fiber populations being detected from the
PAS and Q-ball functions and a different perspective from the
SF as it combines it with quantitative peak fractions. It informs
us about quantitative error presence even in cases where the gold
standard model detects two populations and the test model
detects three. Consider two vectors, a gold standard vector,
jn, and test model vectors, km, along with gold standard weights,
gn, and test weights, tm. The SAE is a representation of the ori-
entation error between all the peaks of the gold model and the
test model

EQ-TARGET;temp:intralink-;e002;326;349fargmin½∡ðjn; kmÞ · gn� þ argmin½∡ðjn; kmÞ · tm�g∕2: (2)

4 Results
With the one-fiber case, SF for PAS and Q-ball shows increasing
consistency as a function of FA [Fig. 4(a)]. It should be noted

Fig. 4 SF separated in fiber population cases from PAS and Q-ball at b values of 1000 and 3000 s∕mm2.
(a) Single fiber population detected by gold standard methods. (b) Two fiber population detected by gold
standard methods. (c) Three fiber population detected by gold standard methods. Error bars represent
standard deviation across each bin.
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that SF for PAS at a b value of 1000 s∕mm2 is significantly
lower. At the extremes of FA (0.8 to 0.9 or 0.1 to 0.2), limited
sample sizes lead to higher variance in the estimates (e.g., PAS
at a b value of 3000 s∕mm2). With the two-fiber case [Fig. 4(b)],
SF is maximal at intermediate FA (0.35 to 0.55 PAS and ∼0.55
for Q-ball). With the three-fiber case, SF is generally low for
both methods while Q-ball at a b value of 3000 s∕mm2 shows
the highest SF.

Figure 5 explores both the number of voxels identified along
with the FA and peak fraction. Q-ball shows more voxels with
single fiber populations than PAS at both b values [Fig. 5(a)]. As
the b values increase, PAS exhibits a slight increase in the single
fiber voxels while Q-ball finds a substantial decrease. With the
two-fiber case, PAS estimates a wide spread of peak fraction
(0.5 to 0.8) for a range of FA (0.2 to 0.8), but Q-ball finds
a very narrow, peak fraction of (0.5 to 0.6) for a more limited

range of FA (0.3 to 0.6) [Fig. 5(b)]. The number of two-fiber
voxels moderately increases with b value for PAS and Q-ball.
For the three-fiber case, there is substantial decrease in detected
fibers with PAS, but an increase with Q-ball. For a b value of
1000 s∕mm2, PAS finds three fibers for an FA of 0 to 0.6, but for
a b value of 3000 s∕mm2, PAS detects three fibers only
FA < 0.4. For Q-ball, the FA range remains the same (FA in
0 to 0.5) with a peak fraction of approximately one-third for
both b values [Figs. 5(c) and 5(d)].

The single fiber cases exhibit SAE less than multifiber cases
for both PAS and Q-ball (Fig. 6). SAE decreases with increased
FA for all scenarios. PAS shows lower SAE than Q-ball
[Figs. 6(a) versus 6(b) and 6(c) versus 6(d)]. Interestingly, SAEs
are lower for the three crossing fibers relative to the two crossing
fibers. Yet, note that 7836 and 661 voxels were detected with
three fibers for PAS and Q-ball at b value of 1000 s∕mm2

Fig. 5 Peak fraction of PAS and Q-ball across eleven single scans for b-values of 1000 s∕mm2 and
3000 s∕mm2. (a) Histogram depicting the number of voxels mapped as a function of FA. (b) f1 of
two fiber populations as function of FA with number of voxels as the third dimension. (c) f1 of three
fiber populations as function of FA with number of voxels as the third dimension. (b) f2 of three fiber
populations as function of FA with number of voxels as the third dimension.
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while they were 2941 and 816 at b value of 3000 s∕mm2,
respectively. Figure 5 presents a qualitative comparison.

Figure 8 compares the gold standard estimates from PAS to
the individual estimates from Q-ball and vice versa. SF follows
the same trend for all four scenarios for the single fiber popu-
lation. For the single fiber case, SF is higher when the PAS is
treated as the baseline [red curves: Figs. 8(a) versus 8(c) and
8(b) versus 8(d)]. Yet, for the two-fiber model, Q-ball ground
truth generally agrees with PAS at high b value (>0.5), but a
substantial fraction (∼80%) of PAS two-fiber cases are not
seen in Q-ball [black curves: Figs. 8(a) versus 8(c) and 8(b) ver-
sus 8(d)]. The three-fiber cases are not consistent for either the
baseline or b-value scenario (blue curves: Fig. 8). We can appre-
ciate these levels of agreement qualitatively in Fig. 9. The major
white matter tracts have single fiber detected and have high SF
with both approaches used as gold standards (Fig. 9, first col-
umn). The impact of the number of voxels shown with two
fibers on the overall SF is shown in the second column of Fig. 9.

5 Discussion
This study focuses on capturing the differences between PAS
and Q-ball interpretations of a single acquisition type using
the established best practices. We interpret the differences
observed in the results to be fundamentally attributed to algo-
rithms and hence discuss the relative sensitivity/reproducibility
of each approach. Note that the observed differences between
Q-ball and PAS may arise not only from the data model but also
from their dependencies on experimental factors (e.g., noise

level and angular sampling), on the selection of reconstruction/
model parameters (e.g., order/radius), peak determination algo-
rithm parameters. The data has been made freely available at the
official NITRC website.

In the literature, Q-ball has been shown to detect crossing
angles in multifiber regions down to 45 deg at b values of
8000 s∕mm2. Given sufficient SNR using high quality phantom
data, Q-ball improves in accuracy with b values> 4000 s∕mm2.12

Typically, these b values are not clinically feasible. Crossing
fiber angles have been detected with Q-ball for FA less than
0.4.11 Meanwhile, PAS resolves greater crossing fiber popula-
tions on sparse diffusion data and is able to resolve crossing
fibers at lower b values, which are clinically feasible.10

Herein, we find that both methods perform well when self-
comparing each single scan with concatenated multiple single
scans (gold standard model). Specifically, both methods work
well on single fiber population scenarios (however, this is not
the application for which the methods were designed to address)
(Fig. 4).1,7 However, Q-ball performs better than PAS for single
fiber scenarios, which is interesting because it is probable that
PAS is detecting false positives. Comparing Figs. 4 and 6, we
see that specifically for lower FA there is high standard
deviation, which is indicative of the false positives for PAS.
Q-ball performs consistently for this scenario.

With the evaluated imaging sequences, Q-ball and PAS reli-
ably detect multiple fibers only for crossing regions with no
more than two fiber populations (Fig. 4). Note that PAS and
Q-ball both show low reproducibility for extreme FA values,

Fig. 6 SAE is shown for (a) PAS at b value of 1000 s∕mm2, (b) Q-ball at b value of 1000 s∕mm2, (c) PAS
at b value of 3000 s∕mm2, and (d) Q-ball at b value of 3000 s∕mm2. Error bars represent standard
deviation across the bin.
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which is a likely an artifact. The inference is that the detection of
fiber population might not be accurate. At high values of FA, it
is more probable that single fiber populations would be expected
rather than two fiber populations, while the lower FA regions
show disagreement for two fiber populations, which is not as
extreme as for higher FA values. Suggestively, it could be
noise that is making the methods underperform in those regions.
It is also possible that the methods are not able to resolve more
complex architecture, which might be present in the lower aniso-
tropic regions as there is evidence of very low reproducibility in
three fiber population regions or more. Comparison with

histological validation may indicate which methods are more
accurate in regions of disagreement.36,37 It is likely that usage
of these voxels might lead to spurious tracts or false
continuations.

Comparing Figs. 4 and 6, we find an interesting difference.
The SAE (Fig. 6) shows that most of the errors detected for
three-fiber populations are less than the two-fiber population
scenario. Yet this is contradicted by the SF (Fig. 4), which
shows us that there is hardly any agreement for three-fiber sce-
narios. Though our analysis suggests that they are not reproduc-
ible, there might be a possibility to improve them and increase
their reproducibility. Robust fitting of HARDI methods with
removal of outlier volumes could lead to improvements.

The peak fractions of Q-ball show a self-consistent, but dis-
tinct, value in most scenarios (Fig. 5). While PAS shows them
consistently as well but across a wider range, it can be expected
from Q-ball that they will be consistent values because a smooth
function (ODF) has been normalized. While PAS is a spikier
function and hence the wider range of fiber fraction.
Characterization of the reconstruction of PAS and ODF may
lead to a better understanding but it is beyond the scope of
this article, which deals with fiber population and their angular
error. A deeper understanding of the differences between ODF
and FOD methods is needed, in particular peak fractions lead to
quite different interpretations for the different approaches. This
is not surprising as the ODF function is quite smooth and not
intended to directly model the fiber fraction. For clinical b val-
ues (∼1000 s∕mm2), PAS offers advantages for sensitivity and
reproducibility. Q-ball can achieve similar reproducibility per-
formance as PAS given moderate increases in SNR or
directions.12 For higher b values, Q-ball detects more detailed
microarchitecture in the brain (Fig. 5) at the higher b value,

Table 1 Mean SNR and the error observed per session for the
acquired dataset.

Session Mean SNR Std SNR Single b0 equivalent

Session 1 32.81 0.1091 10.3768

Session 2 27.84 0.0830 8.8065

Session 3 32.81 0.1091 10.3768

Table 2 Mean SNR and the error observed across all sessions for
the acquired dataset.

Session Mean SNR Std SNR Single b0 equivalent

All sessions 33.12 0.0945 10.47

Fig. 7 Enlarged ROI contains genu of corpus callosum and left prefrontal area: (a) Q-ball is shown for the
middle axial slice at b value of 3000 s∕mm2. Enlargements are presented for: (b) PAS at b value
1000 s∕mm2, (c) Q-ball at b value 1000 s∕mm2, (d) PAS at b value 3000 s∕mm2, and (e) Q-ball at
b value 3000 s∕mm2. (1) Structural differences between PAS and Q-ball. (2) Fanning fibers in Q-ball
while crossings detected by PAS. (3) Loss of structure for PAS. (4) Reduction in fanning for Q-ball.
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which implies more voxels detected with crossing fibers. This is
supported by the fact that SAE is lower for single and two fiber
populations for higher b values (Fig. 6). PAS appears to be a
more reasonable choice given higher reproducibility of crossing
fiber majorly of the two fiber populations (Figs. 4 and Fig. 6).
However, care should be taken in interpretation of both methods
as to which regions they are applied as both methods are unsta-
ble at the extreme of FA (Fig. 4).

Prior conference analysis of the data29 showed that PAS
resolves crossing fibers more consistently than Q-ball at mod-
erate and higher crossing angles. Accuracy and consistency for
both Q-ball and PAS have been shown to increase with increas-
ing SNR (our empirical data is low SNR),8,12 but the observed
methodological effects are not mitigated by large quantities of
data as indicated as at the comparison between gold standard
models computing using all available data (Figs. 4 and 6). In
Ref. 8, PAS was consistent in all cases with SNR > 16, but
for Q-ball to reach this level of consistent/accuracy SNR > 24

(which ours is not, and is not often seen in clinical scans). Note
that the SNR of the presented data were 11.828 in the centrum
semiovale (WM), in the peripheral white matter, and 5.838 in
the cortical gray matter in the b0 images. Also shown are
values of single b0 equivalent as our scanner provides with
an average of 10 b0’s for a b0 (Tables 1 and 2). Hence, single
b0 equivalent is (SNR calculated)/

ffiffiffiffiffi

10
p

. The SNR has been

calculated using Reeder’s difference method.38 PAS accuracy
and consistency is better than Q-ball for crossing fibers at
our low/clinically feasible SNR regime, Q-ball is more consis-
tent than PAS in single fiber regions at a lower SNR. This is
interesting to note, probably due to the false positives in PAS.

Q-ball shows fanning fiber voxels while PAS detects sharp
and narrow peaks as visually evident by the glyphs [see (1) in
Fig. 7]. A higher number of crossing fiber voxels is seen for PAS
when compared to Q-ball glyphs, which also reinforces the fact
that there are more 2 or more fiber voxels for PAS [see (2) in
Fig. 7]. Highlighting architectural differences between the two
methods. The effect of b value can be seen on both methods as it
increases from 1000 to 3000 s∕mm2. It is evident that fanning of
the fiber reduces and peaks become narrower for Q-ball and PAS
both [see (3, 4) in Fig. 7]. However, for Q-ball it is beneficial for
PAS it is detrimental. It is noticeable qualitatively that the fan-
ning structure being captured by PAS-MRI at b value of
1000 s∕mm2 is lost once the b value is increased [see (3) in
Fig. 7]. This loss of structure is also being quantified by the
SAE metric (Fig. 6). The crossing fiber voxels being detected
till FA of 0.8 to 0.9 at b value of 1000 s∕mm2 has dropped
to FA < 0.6.

At high values of FA (>0.6), there is noticeable disagreement
between Q-ball and PAS, which is evident even for the two-fiber
case (Fig. 8). PAS detects multiple fibers even when the tensor

Fig. 8 (a) SF gold standard model PAS and test models Q-ball at b value of 1000 s∕mm2. (b) SF gold
standard model PAS and test models Q-ball at b value of 3000 s∕mm2. (c) SF gold standardmodelQ ball
and test models PAS at b value of 1000 s∕mm2. (d) SF gold standard model Q-ball and test models PAS
at b value of 3000 s∕mm2. Error bars represent standard deviation across the bin.
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FA is high, which would appear to indicate false positives
[Fig. 9, see (1)]. Meanwhile, Q-ball consistently finds a single
fiber in cases where the tensor FA is high.

In summary, the analyses for single-fiber populations are in
good self-agreement with PAS; however, there is the possibility
of false positives. Q-ball performs qualitatively better with fair
intermodel agreement. For two-fiber populations, the methods
are in fair self-agreement except for extreme high or low FA

regions. Overall PAS shows more reproducibility and the inter-
model agreement is reasonable for midranges of white matter
FA (0.4 < FA < 0.6). The three-fiber population case shows
low self-agreement indicating model instability for both PAS
and Q-ball. There is little agreement between both methods
in terms of crossing fibers (Figs. 8 and 9). Visually also the
agreement is less than expected given crossing fiber regions
or two and more fiber population voxels.

Fig. 9 Middle-axial slice spatial map for intramodel comparison. (a) PAS gold standard model and Q-ball
test models at b value 1000 s∕mm2. (b) Q-ball gold standard model and PAS test models at b value
1000 s∕mm2. (c) PAS gold standard model and Q-ball test models at b value 3000 s∕mm2. (d) Q-
ball gold standardmodel and PAS test models at b value 3000 s∕mm2. (1) False positives being detected
by PAS.
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