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The IL-23/Th17 axis has been implicated in the development of autoimmune diseases,
such as rheumatoid arthritis (RA) and psoriatic arthritis (PsA). RA and PsA are heteroge-
neous diseases with substantial burden on patients. Increasing evidence suggests that the
IL-23 signaling pathway may be involved in the development of autoimmunity and ero-
sive joint damage. IL-23 can act either directly or indirectly on bone forming osteoblasts as
well as on bone resorbing osteoclasts. As IL-23 regulates the activity of cells of the bone,
it is conceivable that in addition to inflammation-mediated joint erosion, IL-23 may play
a role in physiological bone remodeling. In this review, we focus on the role of IL-23 in
autoimmune arthritis in patients and murine models, and provide an overview of IL-23
producing and responding cells in autoimmune arthritic joints. In addition, we discuss
the role of IL-23 on bone forming osteoblasts and bone resorbing osteoclasts regarding
inflammation-mediated joint damage and bone remodeling. At last, we briefly discuss
the clinical implications of targeting this pathway for joint damage and systemic bone
loss in autoimmune arthritis.
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Introduction

Interleukin-23 (IL-23), a member of the IL-12 cytokine fam-
ily, is a heterodimeric cytokine, which consists of an IL-12p40
subunit, shared with IL-12, and an IL-23 specific p19 subunit
[1]. The receptor for IL-23 consists of IL-23Ra in complex with
IL-12RB1, which also serves as a subunit for the IL-12 receptor [2].
Although structurally similar to IL-12, IL-23 has the unique ability
of amplifying and stabilizing the proliferation of IL-17 secreting
T helper-17 (Th17) cells [3]. In fact, exposure of Th17 cells to
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IL-23 drives their pathogenic phenotype [4, 5]. These pathogenic
Th17 cells are characterized by their master regulator RORyt and
production of pro-inflammatory cytokines such as IL-17A, IL-17F,
IL-22, GM-CSF and are able to promote their lineage commit-
ment through autocrine IL-21 production [6, 7]. Furthermore,
these cells express the chemokine receptor CCR6, which enables
them to migrate toward sites of inflammation in response to the
chemokine CCL20 [8, 9].

In recent years, it has become clear that the IL-23/Th17 path-
way plays a crucial role in many inflammatory autoimmune
diseases including psoriasis, psoriatic arthritis (PsA), rheuma-
toid arthritis (RA) and systemic lupus erythematosus [10-12].
Both RA and PsA are disorders with distinct clinical phenotypes,
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Table 1. An overview of studies on IL-23R polymorphisms in RA

HIGHLIGHTS

IL-23R SNP Association Study population Number of Number of Study reference

with RA patients controls
rs1004819 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]

No New Zealand 855 557 Hollis-Moffatt et al. [27]
rs7517847 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]

No New Zealand 855 557 Hollis-Moffatt et al. [27]
rs10489629 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]

No New Zealand 855 557 Hollis-Moffatt et al. [27]

No Algerian 343 323 Louahchi et al. [20]
rs11209026 No Spanish 322 342 Orozco et al. [26]

No New Zealand 855 557 Hollis-Moffatt et al. [27]

No North American 1136 1797 Chang et al. [21]

No Dutch 596 705 Chang et al. [21]

Yes Egyptian 120 120 Hamdy et al. [22]

No Polish 89 125 Bogunia-Kubik et al. [25]

No Algerian 343 323 Louahchi et al. [20]
rs1343151 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]

No New Zealand 855 557 Hollis-Moffatt et al. [27]

No Algerian 343 323 Louahchi et al. [20]
rs10889677 No Spanish 322 342 Orozco et al. [26]

Yes Hungarian 412 220 Farago et al. [23]

Yes Brazilian 127 134 Da Silva et al. [24]

No Egyptian 120 120 Hamdy et al. [22]
rs11209032 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]
rs1495965 No Spanish 322 342 Orozco et al. [26]

No Korean 1204 979 Park et al. [19]
12201841 No Korean 1204 979 Park et al. [19]

No New Zealand 855 557 Hollis-Moffatt et al. [27]

Yes Hungarian 412 220 Farago et al. [23]

No Egyptian 120 120 Hamdy et al. [22]
rs7530511 No North American 1136 1797 Chang et al. [21]

No Dutch 596 705 Chang et al. [21]
rs1884444 No Hungarian 412 220 Faragb et al. [23]

Meta-analyses are not included.

resulting from complex interactions between genetic and environ-
mental factors such as smoking or infections. Although there are
some similarities between RA and PsA including the occurrence of
erosive joint inflammation and systemic bone loss, there are also
important differences [13]. For instance, PsA displays features of
spondyloarthropathy such as new bone formation and enthesitis,
while RA does not. Furthermore, both diseases affect different
anatomical joints and in addition to the joint, PsA targets the skin,
eyes and the spine [13].

Another difference is the occurrence of autoantibodies such
as rheumatoid factor and anti-citrullinated protein antibodies
(ACPAs), which are specific to RA, but not to PsA. Although the
IL-23 signaling pathway is implicated in both RA and PsA, its
involvement in the pathogenesis of these disorders may be diverse

© 2017 The Authors. European Journal of Immunology published by
WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

as demonstrated by clinical studies where targeting IL-23 has dif-
ferent outcomes [14, 15]. In PsA, treatment with anti-IL-23 anti-
bodies have shown beneficial effects but not in RA so far. Another
finding supporting this hypothesis, is the notion that polymor-
phisms in the IL-23 receptor (IL-23R) have been linked to sus-
ceptibility for psoriasis and PsA [16-18], but are still a matter of
debate in RA (Table 1) [19-27].

In this review, we focus on the role of IL-23 in the development
of autoimmune arthritis and give an outline of IL.-23 producing and
responding cells in arthritic joints. In addition, we review on the
role of IL-23 on bone forming and bone resorbing cells in relation
to erosive joint damage and bone remodeling. At last, we discuss
the implications of targeting the IL-23 signaling pathway for joint
damage and systemic bone loss.
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Figure 1. An overview of the reported immune cells in the RA or
PsA joints which express IL-23 or IL-23R subunits. Both IL-23 subunits
(p19 and p40) are expressed by macrophages and dendritic cells, while
fibroblasts express only the p19-subunit of IL-23. Expression of both
subunits for the IL-23R is found so far on synovial Th17 cells, y8 T cells,
and fibroblasts.

IL-23 signaling pathway

The biologically active IL-23 is composed of IL-23p19 linked
through a disulphide-bond to IL-12p40 and signals through the
IL-23R in complex with IL-12RB1 [1, 2]. IL-23R associates consti-
tutively with Janus Kinase 2 (JAK2) and IL-12RB1 interacts with
Tyrosine kinase 2 (Tyk2) [2]. In a ligand dependent manner,
IL-23R associates with STAT3, resulting in STAT3 phosphoryla-
tion and activation [2, 28]. Activated STAT3 homodimerizes and
translocates into the nucleus and induces expression of the tran-
scription factor RORyt which can activate transcription of down-
stream cytokines such as IL-17A, IL-17F, IL-22, Csf2 [29]. In addi-
tion to these pro-inflammatory cytokines, the chemokine receptor
CCR®6, often used as an identification marker for Th17 cells [8],
and its ligand CCL20 are downstream of the IL-23 pathway [30].
Interestingly, the IL-23R is another downstream target of the IL-23
pathway, resulting in a positive feedback loop and further promot-
ing the pathogenic activity of this pathway [31].

IL-23 producing and responding cells
in autoimmune arthritic joints

Both RA and PsA are characterized by synovitis due to infiltration
of immune cells including T cells, B cells, dendritic cells, mono-
cytes, macrophages and hyper-proliferation of synovial fibroblasts.
These cells interact via direct cell-cell contact and/or by secretion
of inflammatory cytokines including IL-23 in the joint (Fig. 1).
The IL-23p19 protein is abundantly present in RA synovial fibrob-
lasts [32, 33]. However, these cells do not express functional
IL-23. This was demonstrated by the finding that heterodimeric
IL-23 protein is not detected in co-cultures of human Th17 cells
with RA synovial fibroblasts and neutralizing IL-23 has no effect
on IL-17 or IL-6 levels in these co-cultures [34]. On the other hand,
dendritic cells are a source of IL-23 in the joint as RA synovial den-
dritic cells co-express both p19 and p40 subunits [33]. This is in

© 2017 The Authors. European Journal of Immunology published by
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line with another study which demonstrated that CD1c™ myeloid
dendritic cells (mDCs) were abundantly present in synovial fluid
from RA patients and produce IL-23, IL-12, IL-33 and IL-1B in
vitro [35]. Other producers of IL-23 are synovial macrophages as
the expression of functional IL-23 by RA synovial macrophages is
induced upon TLR2 stimulation in vitro [32, 36].

In addition to IL-23 producing cells, the presence of IL-23
responding cells in the joints of autoimmune arthritis patients
is reported (Fig. 1). RA synovial fibroblasts express IL-23R as they
respond to IL-23 by increasing their receptor activator of NF-kB
ligand (RANKL) expression [37]. Furthermore, CCR6" Mucosal
associated invariant T cells (MAIT cells) have been detected in
the synovial fluid of RA patients [38]. However, it remains to be
elucidated whether these cells express the IL-23R. In addition,
IL-23R* Th17 cells are detected in PsA synovial fluid [39, 40] and
IFNy*, IL-17" y8 T cells are found enriched in the synovial fluid
compared to peripheral blood [41].

Inflammation and ossification of the entheseal tissue (the
region where tendon fibers or ligaments attach to the bone)
is characteristic for PsA. In a mouse model of spondyloarthri-
tis (SpA), IL-23 has been reported to be involved in the induc-
tion of entheseal inflammation through its actions on enthesis-
resident IL-23R*CD3*CD4~CD8~ lymphocytes [42]. These cells
are possibly tissue-resident IL-23R* y3 T cells and have been
shown to accumulate at inflammatory sites and to be the main
IL-17-producing cells in the enthesis of mice [43].

IL-23: a major player in early autoimmune
arthritis

Serum levels of IL-23 are increased in both RA and PsA patients
and correlate with their disease activity [44, 45]. Furthermore,
IL-23 and IL-17A producing cells are present in autoimmune
arthritic synovium [33, 46-49], while IL-17 producing y3 T cells
are elevated in the skin of PsA patients. In the skin, secretion of
IL-17 and IL-22 promotes keratinocyte differentiation and hyper-
proliferation which results in aggravation of psoriasis [50]. In
addition to induction of synovitis and psoriasis, animal studies
have suggested a role for IL-23 in supporting the development of
enthesitis [42, 51].

Experimental models have played a pivotal role in investigat-
ing the role of IL-23 in arthritis [52]. In vivo overexpression of
IL-23 results in systemic inflammation and chronic arthritis [53],
while depletion of this cytokine completely protects mice from
arthritis in the collagen-induced arthritis (CIA) model [54]. In this
model, IL-23 is required for the development of pathogenic Th17
cells [54]. This indicates that IL-23 is crucial for the development
of CIA. However, after onset of arthritis the requirement for IL-23
is limited. This was demonstrated by the finding that IL-23 inhi-
bition did not prevent full-blown disease after onset of CIA [55].
The mechanism behind the IL-23-mediated induction of autoim-
munity was reported in a recent study, which demonstrated that
IL-23 is essential for CIA onset through the reduction of sialylation
in autoantibodies [56]. IL-23 can thereby control the inflammatory
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activity of autoantibodies. Autoantibody sialylation is reduced by
cytokines of Th17 cells, IL-21 and IL-22, which may act on plasma
cells. Previous studies demonstrated that IL-23 is required for the
induction of IL-22 in Th17 cells [57]. In line with this, a role for
IL-22 in the regulation of autoantibody formation has been
reported showing less severe CIA in IL-227/~ mice with decreased
serum autoantibody titers, germinal centers and germinal center
B cell numbers [58]. Interestingly, reduced sialylation of anti-
bodies is also detected in asymptomatic ACPA™" individuals who
developed RA within 12 months compared to those who did not
develop RA within this period [56].

These findings suggest that IL-23 is essential in disease onset
through generation of pathogenic Th17 cells including Th17
cytokines, which are involved in regulation of autoantibody pro-
ducing cells. In this context, IL-23 may be a driver of RA onset by
mediating a shift toward a pro-inflammatory antibody repertoire.

In RA, relapses often occur in patients who have achieved
remission [59]. With the antigen-induced arthritis model, arthritic
flares can be mimicked. Interestingly, in the antigen-induced
arthritis (AIA) model, blockade of IL-23 reduced disease severity
after T-cell-mediated arthritic flare [55]. The mechanism behind
this is not fully understood. However, relapses occur as a con-
sequence of memory T cell reactivation and may resemble early
disease onset which is driven by pathogenic Th17 cells down-
stream of IL-23 [60]. This suggests that in addition to autoimmune
arthritis development, IL-23 may be important for driving disease
relapses.

IL-23, osteoclasts, and bone loss

Juxta-articular bone damage around inflamed joints starts dur-
ing the early phases of RA and is a radiological characteristic of
autoimmune arthritis. In fact, the most progression in bone dam-
age is detected during the first year of disease and bone erosions
are associated with more severe disease course and increased
disability [61]. Local and generalized bone loss during autoim-
mune arthritis may be accelerated as a result of increased pro-
inflammatory cytokine production, such as IL-23, and potentially
by autoantibodies including ACPAs, which contribute to increased
formation of bone resorbing cells. Bone resorbing osteoclasts play
a crucial role in the development and progression of bone loss and
are directly or indirectly under the influence of the immune sys-
tem [62, 63]. The finding that numerous osteoclasts are present in
the inflamed synovium [64], suggests that both the precursor cells
and the required stimulatory factors for osteoclast differentiation
may also be present in the joint itself.

Both animal and human studies have demonstrated pro-
osteoclastogenic roles for the IL-23 pathway. IL-23 induces the
formation of pathogenic autoantibodies during the early develop-
ment of CIA [56] and may thereby further promote bone erosion.
Pathogenic APCAs are involved in bone loss as ACPA positivity cor-
relates to reduced bone mineral density (BMD) in both the spine
and the hip in early RA patients [65]. This may be explained by
the notion that ACPAs directly activate osteoclasts by binding to

© 2017 The Authors. European Journal of Immunology published by
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Figure 2. Schematic overview of the role of IL-23 on osteoclast forma-
tion. IL-23 can stimulate osteoclastogenesis in several ways: (i) increase
of RANK expression on osteoclast precursor cells; (ii) increase of RANKL
expression on T-helper cells or fibroblasts; (iii) activation of DAP12
ITAMs. IL-23 may also induce pathogenic ACPAs which can stimulate
osteoclastogenesis. IL-23 indirectly inhibits osteoclasts through GM-
CSF. Pointed arrows indicate stimulatory actions of IL-23 and blunt
arrows show suppressive effects. Dashed lines indicate indirect effects
of IL-23.

citrullinated vimentin, which is present on osteoclasts and their
precursor cells [65-67].

Other indirect actions of IL-23 on osteoclasts are mediated
through T cells, synovial fibroblasts and osteoclast precursor
cells. Osteoclasts emerge from hematopoietic myeloid precursor
cells and require RANK signaling for their differentiation. In this
context, IL-23 stimulates osteoclastogenesis by enhancing RANK
expression in osteoclast precursor cells [68] and RANKL on T cells
and RA synovial fibroblasts (Fig. 2) [37, 69]. However, it should
be noted that IL-23 has also been reported to reduce osteoclas-
togenesis via the induction of GM-CSF in murine T cells, which
can inhibit osteoclast formation [70]. This indicates that although
IL-23 has mainly pro-osteoclastogenic roles, it can also suppress
osteoclast formation.

In addition to inducing the RANKL pathway, IL-23 acts on
osteoclast precursors through activation of DNAX activating pro-
tein of 12kDa- (DAP12) ITAMs to stimulate osteoclast formation
independent of RANKL [71]. Accordingly, bone marrow cells of
IL-23p19~/~ mice have reduced differentiating capacity toward
osteoclasts and less dentine resorptive activity in vitro [53].
In line with the in vitro studies, overexpression of IL-23 leads
to arthritis and systemic bone loss in mice [53, 72], whereas
inflammation-mediated bone destruction is less pronounced with
reduced osteoclast formation in mice lacking IL-17 or IL-23
[73-75].

Together these findings suggest that IL-23 has mainly pro-
osteoclastogenic capacity via both RANKL/RANK dependent and
independent pathways, thereby aggravating joint damage and sys-
temic bone loss.
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Figure 3. Schematic overview of the role of IL-23 on osteoblast pre-
cursor cells. IL-23 acts directly on osteoblast precursor cells to stimu-
late formation of osteoblasts. IL-23 can indirectly inhibit or stimulate
osteoblast formation via IL-17 or IL-22 respectively. Pointed arrows indi-
cate stimulatory actions of IL-23 and blunt arrows show suppressive
effects. Dashed lines indicate indirect effects of IL-23.

IL-23, osteoblasts, and bone formation

A distinguishing feature between RA and PsA is the occurrence of
new bone formation in the form of syndesmophytes (inside spinal
ligament) and enthesophytes (at the attachment of tendons or
ligaments to the bone) in PsA [76]. Although the role of IL-23
in osteoclasts has been studied extensively, studies on its role in
bone forming osteoblasts are limited and report mainly indirect
effects of IL-23 on these cells (Fig. 3). Messenger RNA expression
of IL-23Ra subunit is found on murine osteoblasts, but no pro-
tein expression could be detected [77]. Supporting this, no effect
of IL-23 stimulation on osteoblasts was shown and IL-23p19~/~
osteoblasts were not functionally impaired in vitro [70]. Never-
theless, IL-23 can exert indirect effects on osteoblasts through
downstream cytokines such as IL-17A or IL-22 [42, 78].

IL-17 can inhibit osteoblast formation by increasing antagonists
of the Wnt/B-catenin pathway. This pathway promotes Runx2,
which is the key transcription factor for osteoblast development.
An antagonist of the Wnt pathway, secreted frizzled related pro-
tein 1 (sFRP1), is induced in differentiating osteoblasts upon
in vitro IL-17A stimulation. This increase in sFPRP1 contributes
to impaired osteoblast formation [78]. Accordingly, arthritic
IL-17~/~ mice develop increased periosteal bone formation [78].
In line with the experimental study, sFRP1 is increased in RA syn-
ovial fluid compared to osteoarthritis and correlates with increased
synovial IL-17A [79]. Interestingly, in vitro stimulation of Th17
cells with sFRP1 results in increased IL-17A production and
IL-23R expression. This suggests that there may be a positive feed-
back loop between IL-17 and sFRP1.

Another Wnt antagonist, Dickkopf-1 (DKK-1), is also induced
by IL-17A together with TNF« in murine synovial fibroblasts [78].
DKK-1 is increased in RA joint compared to osteoarthritic joint and
correlates with disease activity [80] and decreased BMD [81]. The
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findings of dysregulated expression of Wnt antagonists may also
explain the absence of bone repair in RA joint.

In PsA patients, co-occurrence of joint erosion and new bone
formation is often observed. Interestingly, serum DKK-1 levels are
lower in PsA compared to RA and healthy controls, potentially
contributing to new bone formation [82]. This also suggests that
there may be a shift in the IL-17A/IL-22 balance in PsA compared
to RA.

Another cytokine which acts on osteoblasts downstream of the
IL-23 signaling pathway is IL-22. This cytokine is associated with
bone formation and is found to be elevated in synovial fluid of PsA
patients compared to patients with osteoarthritis. In this context,
systemic overexpression of IL-23 leads to new entheseal bone for-
mation and osteoblast expansion via upregulation of IL-22, which
induces osteoblast-related genes in the enthesis. Similar to IL-23,
overexpression of IL-22 leads to new periosteal bone formation
through STAT3 activation and increased expression of genes that
regulate bone formation, including the Wnt family members [42].
These findings are further supported by a recent study demonstrat-
ing that IL-22 stimulates human mesenchymal stem cell prolifer-
ation and migration and increases osteogenic genes such as ALPL
and Runx2 [83]. Interestingly, IL-23 has also been reported to
directly regulate osteoblast formation as its binding to the IL-23R
on human mesenchymal stem cells leads to increased expression
of osteoblast-related genes and formation of osteoblasts in vitro
(Fig. 3) [84].

To summarize, IL-23 has pleiotropic roles on bone forming
osteoblasts either by directly acting on the precursors of these
cells or through induction of IL-17 and IL-22.

A role for IL-23 in physiological bone
remodeling?

In healthy individuals, bone forming osteoblasts and bone resorb-
ing osteoclasts maintain bone homeostasis through balanced
activity. In vivo studies using IL-23p19~/~ mice have reported
contradictory findings about the role of IL-23 in bone homeosta-
sis. Illustrating this, Sato et al. reported no bone abnormalities
in 12 weeks old IL-17~/~ and IL-23p19~/~ mice [73]. In con-
trast, Quinn et al. did find bone defects in 12 and 26 weeks
old IL-23p19~/~ mice as shown by lower trabecular BMD [70].
Along this line, IL-23p19~/~ mice had shorter femurs and his-
tological analysis of the tibial growth plate region revealed that
IL-23p19~/~ mice had smaller hypertrophic zones. This is pos-
sibly due to increased resorption of the hypertrophic cartilage by
osteoclasts. This increased activity of osteoclasts may be explained
by the finding that under normal condition IL-23 can inhibit
osteoclast formation through induction of GM-CSF production in
T cells [70].

Similarly to the study by Quinn et al., data from Adamopoulos
et al. suggested that IL-23 might have a role in bone remodel-
ing. However, these authors observed a slight increase in bone
mass of 26 weeks old IL-23p19~/~ mice which may have resulted
from impaired osteoclastogenesis in the absence of IL-23 [53].
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Interestingly, bone defects of IL-23p19~/~ mice are not congenital
as no abnormalities were found in 4 and 8 weeks old mice [53, 70].

An explanation for these different findings may be the use of
different mouse strains, differences in gut microbiota of the mice
or the sensitivity of the equipment used for the analysis of the
bone. Nevertheless, despite the differences observed, these stud-
ies suggest that IL-23 signaling may play a role in bone homeosta-
sis. However, further studies are required to confirm this and to
unravel the potential mechanism.

Targeting the IL-17/23 pathway during
autoimmune arthritis: clinical implications

IL-23 is required for the maintenance, stability and pathogenicity
of Th17 cells, which are well known key effectors in inflamma-
tion and tissue damage in several autoimmune diseases. There-
fore, targeting this pathway through biologic disease modifying
anti-rheumatic drugs (bDMARDs) including antibodies against
IL-17A or IL-23 might be beneficial as they have strong anti-
inflammatory properties. Currently, treatment with anti-TNFa
biologicals for autoimmune arthritis has proven beneficial in
both dampening of the inflammation and reduction of bone
loss. Aggressive anti-inflammatory treatment of early RA patients
with synthetic and biologic DMARDs results in reduced rate of
annual bone loss in 2-10 years period of follow up compared to
0-2 years [85].

While TNF-a inhibitors have shown efficacy in treatment of
autoimmune arthritis, there is still a substantial proportion of
patients who remain unresponsive to these drugs or suffer from
loss of efficacy over time. Therefore in recent years, biologicals
targeting the IL-23/IL-17A pathway have emerged as alternative
therapy. IL-17A inhibition with Secukinumab showed moderate
clinical improvement in rheumatoid arthritis. In a phase II clinical
trial, Sekukinumab demonstrated improved efficacy in reducing
disease activity (DAS28) over placebo in patients with inadequate
response to methotrexate at week 12 [86]. However, the primary
endpoint, a 20% improvement in disease activity according to
the American College of Rheumatology (ACR20), was not met in
this study. In contrast to this, Secukinumab demonstrated ACR20
achievement at week 24 in a phase III study with RA patients who
responded inadequately to TNFa inhibitors [87]. Nevertheless, IL-
17A inhibition did not have an additional benefit over Abatacept
(a CTLA-4-Ig fusion protein that prevents CD80/86 interaction
with CD28 receptor) [87], which is already approved by the FDA
for RA treatment.

Treatment of RA patients with IL-23 inhibitors has so far not
shown clinical benefit. A recent randomized placebo controlled
phase II study showed no treatment benefit of ustekinumab, a
monoclonal anti-IL-12/23 p40 antibody, and Guselkumab, a mon-
oclonal anti-IL-23p19 antibody, over placebo treatment in patients
with active RA on methotrexate [14].

These findings suggest that the role of IL-23 in established RA is
limited. However, IL-23 may be essential in the early autoimmune
development including the production of pathogenic autoanti-
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bodies, which is demonstrated to be IL-23-dependent [56]. In
addition, IL-23 may be an important driver of disease relapse in
patients as suggested by experimental studies since IL-23 plays a
role in reactivation of memory T cells that are involved in arthritic
flares [55]. Therefore, future research should reveal whether tar-
geting the IL-23 signaling pathway in RA patients can prevent an
arthritic relapse.

In contrast to RA, both anti-IL-17A or anti-IL-23 treatment
(Secukinumab and Ustekinumab, respectively) have shown ben-
eficial effects in psoriasis and PsA and are currently approved
for treatment of both disorders [15, 88]. Ustekinumab treatment
resulted in sustained inhibition of radiographic progression of joint
damage in patients with active PsA [89]. Likewise, a phase III
clinical trial demonstrated less joint damage progression at week
24 and 52 in PsA patients treated with Secukinumab compared
to those receiving placebo [90]. Guselkumab is currently under
study with active PsA patients in a phase II trial and has so far
yielded improvement in joint symptoms, physical function, pso-
riasis, enthesitis and quality of life for patients undergoing this
clinical trial [91]. It would be of interest in future long-term stud-
ies to investigate if targeting IL-23/IL-17 also inhibits systemic loss
of BMD and how it would affect new bone formation in patients
with inflammatory arthritis.

The finding that anti-IL-23 biologicals are effective in estab-
lished PsA but not in RA, points toward a difference in the
immunopathology of both diseases. In established RA, the require-
ment for the IL-23/IL-17 pathway is limited compared to its role
in the early autoimmune phase of the disease and possibly also
during arthritic relapses.

In addition to targeting IL-23 and IL-17A for the treatment of
erosive inflammatory arthritis, an anti-RANKL monoclonal anti-
body (Denosumab) is approved for patients with osteoporosis,
and inhibited bone erosion and systemic bone loss at 12 months
compared with placebo in a phase II study with RA patients [92].

Conclusion

Increasing evidence suggests that the IL-23 pathway may act as
a checkpoint during autoimmune arthritis development, where
it can shift the balance of subclinical inflammation in favor of
autoimmunity. On the other hand, in established RA the role of this
pathway might be limited as indicated by clinical and experimental
studies which report lack of efficacy of anti-IL-23 treatment during
the effector phase of disease. However, few experimental studies
have suggested that this pathway is involved in the reactivation of
memory T cells which may drive disease relapses. This may offer
new possibilities of using anti-IL-23 biologicals to suppress or even
prevent relapses in these patients.

Chronic arthritis leads to joint damage due to increased acti-
vation of bone resorbing cells. Several studies have demonstrated
that IL-23 acts on bone resorbing osteoclasts and bone forming
osteoblasts by either directly targeting precursors of these cells or
through induction of downstream cytokines such as IL-17A and
IL-22. IL-23 can exert pro-osteoclastogenic effects via IL-17A,
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while it may play a role in bone formation by inducing IL-22.
The role of IL-23 in physiological bone remodeling together with
its underlying mechanism still remains to be fully elucidated.
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