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• Background and Aims Conifer embryos, unlike those of monocots or dicots, have variable numbers of 
cotyledons, even within the same species. Cotyledons form in a single whorl on a dome-shaped embryo. The 
closely spaced cotyledons are not found outside this ring, indicating a radial control on where they can form. Polar 
transport of the hormone auxin affects outgrowth of distinct cotyledons, but not the radial aspect of the whorl or 
the within-whorl spacing between cotyledons. A quantitative model of plant growth regulator patterning is needed 
to understand the dynamics of this complex morphogenetic process.
• Methods A two-stage reaction–diffusion model is developed for the spatial patterning of growth regulators 
on the embryo surface, with a radial pattern (P1) constraining the shorter-wavelength cotyledon pattern (P2) to a 
whorl. These patterns drive three-dimensional (3-D) morphogenesis by catalysing local surface growth.
• Key Results Growth driven by P2 generates single whorls across the experimentally observed range of two to 11 
cotyledons, as well as the circularly symmetric response to auxin transport interference. These computations are the 
first corroboration of earlier theoretical proposals for hierarchical control of whorl formation. The model generates 
the linear relationship between cotyledon number and embryo diameter observed experimentally. This accounts for 
normal integer cotyledon number selection, as well as the less common cotyledon fusings and splittings observed 
experimentally. Flattening of the embryo during development may affect the upward outgrowth angle of the cotyledons.
• Conclusions Cotyledon morphogenesis is more complex geometrically in conifers than in angiosperms, 
involving 2-D patterning which deforms a surface in three dimensions. This work develops a quantitative 
framework for understanding the growth and patterning dynamics involved in conifer cotyledon development, and 
applies more generally to the morphogenesis of whorls with many primordia.
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INTRODUCTION

Angiosperm monocots and dicots are tightly constrained 
to form one or two cotyledons, respectively. By contrast, 
Pinaceae conifers can have highly variable numbers of coty-
ledons (nc), both between and within species (von Aderkas, 
2002). Average nc for species are reported as low as 3 (in 
Tsuga) and as high as 9 (in Cedrus) (Butts and Buchholz, 
1940). Within species, nc typically ranges ±1 from these aver-
ages for zygotic embryos (Butts and Buchholz, 1940). For 
somatic cultures (of clonal lines), embryos with nc from 3 to 
10 are common in Larix, Pseudotsuga and Picea, which have 
species averages of 5 to 6 (Harrison and von Aderkas, 2004; 
Holloway et al., 2016).

The positioning of three or more cotyledons on an embryo is 
geometrically more complex than is the case for monocots or 
dicots, in which the most complex arrangement defines a one-
dimensional (1-D) line between two cotyledons. By contrast, 
three or more cotyledons can be arranged two-dimensionally 
(on the embryo surface), and patterned either regularly or 

irregularly. With this additional complexity, and without the 
rigid constraint on cotyledon number seen in angiosperms, 
conifer cotyledon formation can provide unique insights into 
the developmental mechanisms for the spatial positioning of 
organs.

Among the possibilities for 2-D patterning, conifer cotyle-
dons notably do not form all over the surface, but arise simultan-
eously in a single whorl (Fig. 1C). For the circular geometries 
involved – embryos go from a domed (Fig. 1A) to a flattened 
shape (Fig. 1B) during cotyledon development – formation of 
the whorl indicates pattern control along the radial dimension 
(Fig. 1E, ‘r’: distance on the surface from the embryo tip or 
centre, or ‘latitude’ on a hemisphere). Within this whorl, regu-
lar cotyledon-to-cotyledon spacing (Fig.  1C, ‘λ’) indicates 
pattern control in the circumferential dimension (Fig. 1E, ‘φ’: 
‘longitude’ on the hemisphere). The linear variation of nc with 
diameter expected for regular spacing in a ring (Fig. 1E, black 
spots) has been found experimentally in Larix (Harrison and 
von Aderkas, 2004), Pseudotsuga and Picea (Holloway et al., 
2016), indicating that nc variability reflects embryo-to-embryo 
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diameter variability. Without radial constraint, the short wave-
length cotyledon spacing (λ) would position cotyledons over 
the entire embryo, which is not observed: arrangement of pri-
mordia in a single whorl involves the combination of a longer 
spatial scale radial control with a shorter scale circumferential 
control.

In conifers, the radial and circumferential aspects of cotyle-
don outgrowth are experimentally separable: disrupting trans-
port of the hormone auxin with NPA (1-N-naphthylphthalamic 
acid) results in loss of circumferential patterning (Larsson 
et al., 2008; Hakman et al., 2009), producing circularly sym-
metric cup-shaped embryos which lack distinct, separated coty-
ledons (Fig. 1D).

In this paper, we develop a quantitative model for conifer 
cotyledon positioning, in order to create a framework for under-
standing the dynamics involved in normal development as well 
as in response to NPA treatment. The model is two-stage, with 
mechanisms for radial positioning (pattern 1, P1; red, Fig. 1E) 
and for the circumferential between-cotyledon positioning 
(pattern 2, P2; λ, Fig. 1E). The mechanisms are linked hierar-
chically: P1 control of where the short-wavelength P2 pattern 
occurs provides the radial constraint necessary for cotyledon 
whorl formation. NPA affects P2-patterned cotyledon out-
growth, not the circularly symmetric P1 component.

To couple the spatial patterning to embryo shape change, the 
surface is grown in proportion to the local P1/P2 concentrations; 
i.e., the P1/P2 mechanism models the dynamic distribution of 
plant growth regulators corresponding to whorl morphogenesis. 
As size and geometry changes of the surface in turn affect spa-
tial patterning, the model is ‘morphodynamic’ (Salazar-Ciudad 
et  al., 2003), encompassing the full feedback cycle between 
growth regulator patterning and surface deformations. The P1 
and P2 patterns are stable to this induced growth, as well as 
being stable over experimental ranges of embryo diameters 
and to the geometric flattening occurring during cotyledon 
formation.

Turing (1952) proposed the first mathematical model for 
chemical pattern formation, which he and subsequent research-
ers applied to spatial patterning in plant development. His reac-
tion–diffusion (RD) theory shows how reactions between two 
or more chemicals (morphogens) having unequal diffusivities 
can self-organize stable concentration waves with a characteris-
tic spacing or wavelength. RD patterns have been confirmed in 
the development of both animals (e.g. Sick et al., 2006; Sheth 
et al., 2012; Raspopovic et al., 2014) and plants (e.g. Digiuni 
et al., 2008). RD has been applied to many cases of plant devel-
opment, both for ‘morphostatic’ (Salazar-Ciudad et al., 2003) 
patterning on growing domains (e.g. Harrison et  al., 1981; 
Meinhardt, 1982; Jönsson et  al., 2005; Digiuni et  al., 2008; 
Fujita et  al., 2011) and for ‘morphodynamic’ patterning of 
growth regulators driving morphogenesis (Harrison and Kolář, 
1988; Holloway and Harrison, 1999, 2008). In RD, chemical 
transport is via simple diffusion down a concentration gradient.

More recently, it has been discovered that the growth regula-
tor auxin has unique intercellular transport properties (reviewed 
by Friml, 2003). In addition to simple diffusion, auxin has its 
own cellular efflux transporters, PIN proteins. Localization 
of PINs to subregions of the cell membrane produces a polar 
auxin transport (PAT). PAT, in conjunction with simple diffu-
sion, can self-organize auxin concentration patterns (shown 
analytically, for example, by Jönsson et  al., 2006; Draelants 
et al., 2013; Farcot and Yuan, 2013). PAT can include a with-
the-flux localization of PIN1 (a down-the-gradient facilitated 
diffusion), which has been applied to canalization and vena-
tion (e.g. Mitchison, 1981; Rolland-Lagan and Prusinkiewicz, 
2005; Feugier et al., 2005), or an up-the-gradient localization 
of PIN1, which has been applied to the sequential placement 
of organs in phyllotaxis (e.g. Jönsson, et al., 2006; de Reuille 
et al., 2006; Smith et al., 2006). Models of complex auxin pat-
terning, such as for phyllotaxis plus venation, can include terms 
for intracellular reactions, simple diffusion, up-the-gradient 
PAT and down-the-gradient PAT (e.g. Bayer et al., 2009). Such 
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Fig. 1. Cotyledon patterning in conifer development. (A) An early dome-shaped embryo. (B) At a later stage, embryos have flattened and cotyledons are just 
beginning to appear (red arrows). (C) Cotyledons subsequently grow out, in a whorled (ring) pattern, with a distinct inter-cotyledon spacing, λ. Scale bar = 200 µm. 
(D) Cup-shaped embryos, with no distinct cotyledons, can occur spontaneously or be induced by NPA treatment (blocking polar auxin transport). This indicates 
two linked patterning events (E): the first (pattern P1, red) controlling the radius (r coordinate) of the cotyledon ring (or its ‘latitude’ on the dome); the second 
(pattern P2, black spots) controlling the spacing, λ, between cotyledons in the ring (along φ, the circumferential coordinate, or ‘longitude’ on the dome). P2 pat-
terning is disrupted in cup-shaped embryos. γ denotes the flatness of the embryo (as defined in Nagata et al., 2013: γ = 1, hemisphere; γ = 0, flat disc). A–C and E 

are adapted from Holloway et al. (2016), D from Harrison and von Aderkas (2004), with permission. (A–D) Larch (Larix) embryos are shown.
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mechanisms can have very complex dynamics, because even 
subsets of the terms – such as reaction and diffusion (Turing, 
1952), or diffusion and up-the-gradient PAT (e.g. Jönsson, 
et al., 2006) – are capable of self-organization.

Previous models of whorled phyllotaxis have focused on the 
successive formation of whorls, and have defined organ initia-
tion at a fixed radius R0 from the centre of an apical or floral 
meristem (Douady and Couder, 1996; Kitazawa and Fujimoto, 
2015). In these models, the occurrence of whorls (as com-
pared to spirals) depends on R0 and on the timing and size of 
sequential primordia initiation. Initiation sites are affected by 
the positions of older primordia. In conifer embryos, however, 
a single whorl of cotyledons forms simultaneously, and the 
single whorl is robust to large changes in radius: experimental 
measurements show whorl radii increase by about 150 µm over 
the range of observed nc (Holloway et al., 2016; whorl radius 
is approx. 125 µm less than embryo radius). This indicates an 
adaptive self-organizing P1 mechanism (in the r coordinate) to 
position the single cotyledon whorl 150 µm closer to the centre 
in small embryos with low nc than in large embryos with high 
nc, and argues against a fixed radius R0 (for instance set by dif-
fusion of a morphogen from the embryo centre), which would 
not adapt to embryo size variation as observed.

The induction of cup-shaped embryos by NPA treatment 
indicates a PAT dependence for the circumferential P2 cotyle-
don pattern (along the φ coordinate), but not for the circularly 
symmetric P1 ring pattern. Turing dynamics in intracellular 
reactions and simple diffusion can self-organize pattern in the 
absence of PAT dynamics. RD is therefore used as a framework 
for quantitatively characterizing the PAT-independent P1 pat-
tern. This is similar to the recent application of RD dynamics 
to the radial control of shoot apical meristem size (Fujita et al., 
2011). Quantifying radial patterning in this way allows us to 
characterize the dynamics involved in forming a single whorl 
robust to the wide range of embryo sizes found in conifers.

For the circumferential P2 pattern, the NPA effect appears 
to be primarily on the outgrowth of cotyledons: while most 
embryos do not grow cotyledons at moderate NPA concentra-
tions, those that do tend to show normal circumferential spac-
ing (Holloway et al., 2016). This indicates that the outgrowth of 
distinct cotyledons from the ring is PAT-dependent (perhaps via 
supply of a critical factor), but that the spacing λ between coty-
ledons is PAT-independent. In wave terminology, PAT appears 
to affect P2 amplitude, not its wavelength. We therefore use a 
PAT-independent RD mechanism to model self-organization of 
the P2 cotyledon–cotyledon wavelength λ. The NPA effect on 
P2 amplitude is modelled as a PAT-dependent factor that affects 
whether the RD mechanism can actively form a pattern.

While RD can be used to study de novo pattern formation 
from an unpatterned state, the more common occurrence in 
development is for patterns to form on prior patterns, as with 
the P1/P2 stages studied here. Harrison et al. (1981) first pro-
posed such hierarchical patterning for whorl formation in the 
alga Acetabularia, with subsequent experiments indicating 
that RD was involved in circumferential spacing in the whorl 
(Harrison et al., 1988, 1997). Turing identified RD parameter 
conditions for spatial patterns to grow (amplify) from initially 
uniform concentration states (PAT models can be analysed 
similarly). We refer to this self-organizing generation of new 
pattern as active patterning. RD can also generate active pattern 

from a pre-patterned state (termed ‘Turing models of the 2nd 
kind’, Hunding, 1987); in these cases the pre-pattern limits 
where the RD pattern forms (by controlling where the Turing 
conditions are met for active patterning, although linear Turing 
analysis is an approximation with pre-patterns). For the conifer 
model, P1 controls where P2 can actively generate the circum-
ferential cotyledon pattern. However, when conditions do not 
support P2 active patterning (e.g. if a critical factor is affected 
by NPA reduction of PAT), P2 relaxes to a passive pattern: this 
is not a uniform concentration, but rather reflects the radial P1 
ring pattern.

The P1/P2 model for patterning and morphogenesis allows us 
to quantify the dynamic constraints involved in forming conifer 
cotyledon whorls. For patterning, these include constraints on 
reaction and transport kinetics, the response to NPA interfer-
ence with PAT, and how the P1 and P2 stages are coupled. For 
morphogenesis, these include constraints on P1/P2 catalysed 
surface growth, the effect of that growth on patterning and the 
effect of 3-D embryo geometry on morphogenesis. The model 
provides a framework for interpreting current data and guiding 
new experiments to understand conifer cotyledon development 
and the establishment of whorled structures in general.

MODEL AND METHODS

As discussed above, the P1 and P2 spatial patterns are each gen-
erated by an RD mechanism. The annular P1 pattern specifies 
the radial position at which cotyledons form. P1 affects a rate 
constant in the P2 mechanism, constraining the P2 circumfer-
ential patterning to this ring. P2 is morphogenetic, altering 3-D 
shape by locally catalysing surface growth.

The Brusselator RD mechanism (Prigogine and Lefever, 
1968) is used for the P1 pattern:
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where X1 and Y1 are the concentrations of the spatially patterned 
Turing morphogens (subscript 1 for P1). A and B are precursor 
concentrations; a, b, c and d are reaction rate constants; and 
the final terms are for diffusion of X1 and Y1 with diffusivities 
DX1 and DY1, respectively. X1 self-amplifies (cX2Y term), but this 
increase is limited by using up Y1. This depletion-type kinetics 
tends to form regular patterns in X1 and Y1 very close to predic-
tions from linear analysis (e.g. Lacalli, 1981; Harrison, 1993; 
Holloway and Harrison, 1995) and has been used extensively 
for regular branching processes in morphogenesis (Harrison 
and Kolář, 1988; Holloway and Harrison, 1999, 2008; Nagata 
et al., 2003, 2013; Jönsson et al., 2005; Rozada et al., 2013). 
Due to this regularity, the Brusselator was used to model forma-
tion of the P1 annulus (Fig. 2D, G).

The depletion kinetics of the Brusselator, however, make it 
unsuitable for a P2 pattern, which is controlled by P1. Without 
loss of generality, a, b, c and d can be set to unity, and the A 
and B concentrations become the only reaction parameters in 
the model (Nicolis and Prigogine, 1977). A feedforward from 
P1 to a P2 Brusselator could be made by identifying one of 
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the P1 morphogens (X1 or Y1) with the A2 or B2 precursors for 
P2. This P1-patterned feedforward must be into A2 to produce 
a passive P2 ring pattern when simulating NPA treatment, as 
the passive steady state of X2 is proportional to A2 and does not 
depend on B2. However, active patterning happens at low A in 
the Brusselator (Herschkowitz-Kaufman, 1975), which contra-
dicts forming P2 concentration peaks in the high A2 annulus 
specified by P1. That is, such a mechanism cannot form active 
normal cotyledon pattern in the same radial position as the pas-
sive NPA-treated ring, as is observed experimentally.

We therefore used an activator–inhibitor kinetic mechanism 
in which both active and passive P2 pattern are in-phase with 
the P1 annulus (Fig.  2E, H). This Gierer–Meinhardt (GM) 
mechanism (Gierer and Meinhardt, 1972) is given by:
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for the morphogens X2 and Y2, with subscript 2 for P2.
P1 to P2 feedforward is implemented by setting

 c nX2 1=  (3)

as gradients in c2 strongly affect GM pattern localization 
(Holloway and Harrison, 1995). Equations (1)–(3) establish the 
necessary chemical prepatterns for morphogenesis of a single 
simultaneously initiated whorl of primordia (Fig. 2D–F).

Equations (1)–(3) were solved by an implementation of the 
finite element method (FEM) in Python (version 2.7.3), using 
the Fenics 1.5 (https://fenicsproject.org/; Logg and Wells, 
2010; Logg et al., 2012; Alnaes et al., 2015), numpy (http://
www.numpy.org/) and scipy (https://www.scipy.org/) librar-
ies. Mayavi2 graphics were used for visualization (http://
mayavi.sourceforge.net/). The initial triangulated mesh speci-
fying the surface was generated by gmsh 2.5.1 (http://gmsh.
info/). Initial shapes were hemispherical caps, specified by 
flatness parameter γ between 1 (hemisphere) and 0 (flat disc) 
(see Fig.  1E). Initial surfaces were defined on between 793 
and 801 vertices (exact value depended on the radius speci-
fied). All surfaces had 65 boundary (equatorial) vertices, but 
surfaces with γ < 1 had fewer total vertices than γ = 1 at any 
given radius, in proportion to the decrease in pole height. 
Boundary conditions were fixed-value (Dirichlet), with X 
and Y concentrations (eqns 1 and 2)  specified as their pas-
sive steady-state values (X0, Y0) on the boundary (equatorial 
positions). (No-flux boundary conditions would create max-
ima at the pole or equator, which would not correspond to the 
observed whorls.)

A

I

H

G

F

E

D

C

B

P1 (Pattern 1) 

P2 (Pattern 2)

P2-catalysed 
growth

P1 actively patterned
P2 not actively patterned

NPA – treated

P1 actively patterned
P2 actively patterned
Normal development

P1 not actively patterned
P2 actively patterned

Not observed

Fig. 2. Two-stage model for conifer cotyledon morphogenesis. Top row, spatial pattern 1 (P1), colour-mapped for morphogen X1; middle row, spatial pattern 2 
(P2), colour-mapped for morphogen X2; bottom row, 3-D shape generated by X2-catalysed growth (colour-mapped for X2). The top two rows are hemispherical 
surfaces, while the shapes on the bottom row grow from initial hemispheres. Red outlines are in the x–y plane; white arrow, z-axis. P1 and P2 patterns are generated 
by reaction–diffusion (RD) mechanisms (eqns 1 and 2, respectively); X1 and X2 concentrations are shown colour-mapped from blue (lowest concentration) to red 
(highest concentration). The X1 concentration (top row) affects a production rate constant in P2 (eqn 3), constraining where P2 forms (middle row). (A–C) When 
P1 is not actively patterned, X1 (A) and Y1 revert to uniform steady-state concentrations. This allows the short-wavelength P2 pattern to form all over the domain 
(B), catalysing a ‘spots-all-over’ bumpy morphogenesis (C), which is not seen in conifer embryogenesis. (D–F) When P1 is actively patterned, X1 forms a ring 
defining the radial position of the cotyledon whorl (D). This (by eqn 3) constrains P2 to form only within the ring (E). Outgrowth of regularly spaced primordia 
corresponds to normal cotyledon morphogenesis (F). (G–I) If P2 is not actively patterning, it has a steady-state pattern (H) which follows that of P1 (G), and 

outgrowth is circularly symmetric (I), like NPA-treated cup-shaped morphogenesis.
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To couple this prepattern to morphogenesis, local growth of the 
surface was implemented as in Harrison et al. (2001) and Holloway 
and Harrison (2008): in each iteration, finite elements intersecting 
at a mesh vertex were increased in area proportional to the local X2 
concentration; mesh vertices were then moved along the local nor-
mal vector (averaged from the normals of the neighbouring finite 
elements) to accommodate this area change (e.g. Fig. 2C, F, I). 
Vertex positions were updated simultaneously for the whole sur-
face. Boundary (equatorial) vertices had fixed positions.

The spatial solutions of eqn (1) (or any pattern-forming 
mechanism) on a hemispherical geometry are composed of 
the surface spherical harmonics, Y(m,l), which are polynomi-
als with m repeated structures in the φ dimension (longitude) 
and l latitudes at which the solution passes through the passive 
steady-state value. Occurrence of the P1 ring depends on the 
fit between the domain (embryo) size and the spacing of the 
chemical patterning mechanism (wavelength). The parameters 
in Table 1 (reaction rate constants from Holloway and Harrison, 
2008) generate a P1 Y(0,3) ring pattern (e.g. Fig. 2D, G) which 
is stable over more than a doubling of domain radius, or, equiv-
alently, to a more than halving of pattern spacing. This repre-
sents robustness to at least a factor of two change in reaction or 
diffusion constants (since these have a less than linear effect on 
RD spacing; Harrison, 2011, chapter 5).

GM (eqn 2) reaction rate parameters are as in Holloway and 
Harrison (1995), except for initial c2 = 0.005 (for t > 0, c2 fol-
lows eqn 3), with diffusivities selected to give a wavelength 
λ = 0.52 (calculated from linear analysis), corresponding to 12 
P2 primordia at radius 1 (and γ  =  1). The feedforward con-
stant n (eqn 3)  scales X1 to keep P2 in the active patterning 
region of the linear parameter space. NPA treatment is simu-
lated by reduction of d2, which shuts off active P2 patterning 
without strongly affecting wavelength (Holloway and Harrison, 
1995). Linear analysis predicts this qualitative active-to-passive 
change for decreasing d2; numerical simulations were used to 
find this boundary value for the non-linear system of eqns (1) 
and (2). Local growth is proportional to X2 (parameter cg), and 
is calculated once for every 50 iterations (of size Δt) of the RD 
solver. Simulations were run for 30 000 iterations.

RESULTS

Whorl formation: P1 constraint of P2

Lack of constraint. An essential feature of single whorl for-
mation is that a relatively short wavelength spacing (the 

inter-cotyledon λ shown in Fig. 1) is constrained to a ring. In 
the absence of a radial (or latitudinal) constraint, a mechanism 
with such a short wavelength would generate pattern all over 
the domain. This is illustrated in Fig. 2A–C, in which active 
patterning is turned off in the P1 Brusselator (by setting diffu-
sivities DX1 and DY1 to zero), resulting in unpatterned, uniform 
X1 and Y1 concentrations (Fig. 2A). Active patterning in P2 is 
then spatially unconstrained, and concentration peaks form all 
over the surface (Fig. 2B). If this P2 pattern catalyses surface 
expansion, outgrowths occur over the whole domain (Fig. 2C): 
this is not observed in conifer cotyledon morphogenesis (or sin-
gle whorl morphogenesis in general).

Normal patterning and morphogenesis. With P1 actively pat-
terning and generating a relatively long-wavelength annular 
pattern (Fig.  2D), feedforward (eqn 3)  constrains the short-
wavelength P2 to form in a whorl and not over the centre of 
the domain (Fig.  2E). Growth catalysed by P2 generates the 
regularly spaced whorl of primordia associated with normal 
cotyledon morphogenesis (Fig. 2F). Equations (1)–(3) provide 
a framework for the dynamics needed for the morphogenesis of 
a single simultaneous whorl of primordia.

NPA effect on P2 patterning

Cup-shaped morphogenesis (spontaneous or due to NPA 
treatment) is associated with loss of P2 patterning (lack of 
distinct cotyledon outgrowth). With normal active P1 pattern-
ing (Fig. 2G), loss of active P2 patterning reverts to a passive 
steady state reflecting the P1 annular pattern (Fig.  2H). The 
PAT-dependent shut-off of P2 self-organization is modelled via 
reduction of the decay parameter d2, from 0.21 (normal) to 0.14 
(NPA-treated). Growth catalysed by the resulting annular pas-
sive P2 pattern generates the circularly symmetric morphogen-
esis of cup-shaped embryos (Fig. 2I). Partial reduction of d2, to 
0.18, produces active P2 pattern, but at lower amplitude than 
normal. This corresponds to the decreased amplitude outgrowth 
but relatively unaffected P2 spacing observed experimentally 
under moderate NPA treatments (Holloway et al., 2016).

Effect of geometry on morphogenesis

Cotyledons in vivo tend to point upwards (Fig. 1C), and this 
upwards tendency is retained even in cup-shaped embryos lack-
ing cotyledons (Fig. 1D). The radial location of the P1 ring on 
the dome could potentially affect this outgrowth angle, with 
higher latitude rings giving smaller angles between the out-
growth and the z-axis. The single-ring solution of the P1 eqn 
(1) on a hemispherical cap is the annular Y(0,3) surface spheri-
cal harmonic (Fig. 2D, G), which has a characteristic inset from 
the equator. Higher latitude rings could arise for higher-order 
harmonics (e.g. Y(0,7)), but this would also produce multiple 
rings, which are not seen in normal conifer development.

Geometry could also contribute to upward growth. Flattening 
of a hemispherical geometry, as seen during conifer embryo-
genesis (Fig. 1A to Fig. 1B), decreases the angles between the 
z-axis and normal vectors on the surface. Therefore, P1 pat-
terning on a flattened dome should direct more upwards growth 
than on a hemisphere. To test this geometric effect, we ran 

Table 1. Model parameters

Equation (1) Equation (2) Other

a1 = 0.01 a2 = 0.0006 n = 0.00125
b1 = 1.5 b2 = 0.025 cg = 0.001
c1 = 1.8 c2 = 0.005 (initial) Δt = 0.01
d1 = 0.07 d2 (normal)  =  0.21; d2 

(NPA) = 0.14
Number of vertices 

(γ = 1) ~ 800
e2 = 0.27

A1 = 10.0 A2 = 0.4
B1 = 1.0 B2 = 0.4
DX1 = 0.01 DX2 = 0.0004
DY1 = 0.1 DY2 = 0.008
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series of computations at different values of γ, the parameter 
specifying dome flatness (varying between 1 for a hemisphere 
and 0 for a flat disc; see Fig.  1E and Nagata et  al., 2013). 
Figure  3 compares morphogenesis from hemispherical initial 
shapes (Fig. 3A, B) to increasingly flat initial shapes (Fig. 3C, 
D to Fig. 3E, F). Decreasing γ decreases the outgrowth angle 
from the z-axis, producing closer fits to observations, both for 
cotyledon outgrowth and for NPA-induced cups. This indicates 
that establishment of the P1 pattern on geometries intermediate 
between a hemisphere (γ = 1) and a flattened disc (γ = 0), i.e. 
patterning after the dome stage (Fig. 1A), could contribute to 
the observed upwards growth.

Linear relation between primordia number and diameter

A characteristic wavelength, λ, for P2 spacing within the P1 
ring implies a linear relationship between domain diameter, d, 
and the number of primordia, nc:

 d n bc= +( )l p  (4)

where b/2 is the inset of the ring from the equator. This relation-
ship is seen experimentally (Harrison and von Aderkas, 2004; 
Holloway et al., 2016). For the P1/P2 RD simulations, Fig. 4 
shows this linear increase in radius with primordia number. The 
linear trend is observed at different γ values, and with or with-
out P2-catalysed growth (Table 2; P < 0.05 for all regressions).

The single ring of primordia is stable across the two to 11 
cotyledons observed experimentally. This stability of whorl for-
mation depends on P1 pattern stability with respect to radius 
increase. Spatial solutions of dynamic mechanisms such as eqn 
(1) depend on domain size, with a progression from lower to 
higher complexity patterns as size increases. At small radius, 
the domain size is too small for the annular Y(0,3) spherical 

harmonic: P1 forms a lower-order, pole-high Y(0,1) pattern 
in these cases. P2 can form nc = 2 to 4 on these small-radius 
P1 patterns (Table 2, yellow). This is consistent with previous 
results, in which we observed whorl patterns up to nc = 6 for a 
single Brusselator pattern-former on a Y(0,1) fixed pre-pattern 
(Holloway and Harrison, 2008). For larger radii, however, the 
Y(0,3) annular pattern generated by the dynamic P1 mechan-
ism (as in Fig. 2 D, G) is critical for stabilizing P2 whorl for-
mation (as compared to ‘spots all over’, e.g. Fig. 2B). The P1 
annulus stabilizes whorls to the upper end of the experimentally 
observed range: up to nc = 11 is shown in Table 2 (green and 
blue); nc = 12 and 13, of which single cases were observed in 
Holloway et al. (2016), can also be generated. At higher radii 

Normal

γ = 1.0 γ = 0.8 γ = 0.6

NPA-treated

A C E

B D F

Fig. 3. The effect of geometry on patterning and morphogenesis. Top row, normal morphogenesis (both P1 and P2 actively patterning); bottom row, NPA-treated 
cup morphogenesis (P1 actively patterning, P2 not actively patterning). Colour-map, red outline and white arrow as in Fig. 2. (A, B) Growth starting from hemi-
spherical initial shapes, γ = 1.0 (see Fig. 1E legend). (C–E) Progressively flattened domains: (C, D) γ = 0.8; (E, F) γ = 0.6, shown to scale. The radius increase as 
γ decreases keeps the number of primordia (6, here) constant. As the domain flattens, the angle between the z-axis (pole) and the P1 ring decreases, directing the 
primordia upwards, more closely matching the observed morphogenesis (Fig. 1C). This corresponds to cotyledons being positioned during tip flattening, after the 

dome stage (Fig. 1A) of embryogenesis.

Number of primordia, nc
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Fig. 4. Linear relationship between number of primordia (nc) and radius, as 
predicted from eqn (4) and corresponding to the trend seen experimentally 
(Harrison and von Aderkas, 2004; Holloway et al., 2016). Top-view shapes, 
colour-mapped for X2 concentration, shown to scale. The P1 ring stabilizes for-
mation of a single whorl of primordia over the observed range of two to 11 
cotyledons (Holloway et al, 2016). γ = 0.8 with X2-catalysed growth is shown; 

see Table 2 for the linear relationship at other geometries.
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than these, P1 begins to transition to a multiple ring Y(0,7) pat-
tern, which would correspond to radially nested P2 whorls, 
which are not seen in normal development. Simulation of NPA 
treatment, decreasing d2 to shut off active P2 patterning, gave 
circularly symmetric morphologies for all radii in Fig. 4.

Variations in patterning

Transitions between distinct patterns can be gradual for P1 
and P2. In Table 2, for instance, the P1 transition between the 
Y(0,1) pole-high and Y(0,3) annular patterns occurs over a range 
of radii (green cells), with the Y(0,3) polar minima becoming 
more distinct as radius increases. For P2, radii between those 
shown in Table 2 can give mixed patterns, resulting in either 
splittings (e.g. an initial nc  =  4 going to nc  =  5, Fig.  5A) or 

fusions (long circumferentially extended maxima which fail 
to resolve into distinct primordia, Fig. 5B). Splittings are seen 
experimentally, for example with an embryo showing four 
cotyledons on an initial measurement showing five cotyledons 
a week later. Fusions are also observed, where, for example, 
space for two cotyledons is occupied by a single broad struc-
ture (Fig. 5C). The simulations indicate that such indeterminate 
nc could be a natural consequence of the radial dependence of 
the P2 pattern, i.e. that these embryos are at a transitional size 
between radii with distinct integer nc.

NPA treatment tends to abolish outgrowth of distinct cotyle-
dons, but in rare cases vestigial ‘bumps’ can be observed along 
the rims of the cup-shaped embryos (Holloway et al., 2016). 
Since NPA treatment appears to reduce P2 amplitude without 
altering the P2 spacing λ, these bumps may be due to a remain-
ing very low-amplitude P2 pattern during their development. 

Table 2. Initial radii at particular number of primordia nc, for different tip flatness γ

nc

2 3 4 5 6 7 8 9 10 11

γ = 1
Growth 0.2 0.25 0.325 0.375 0.4 0.5 0.6 0.65 0.7 0.8
No growth 0.25 0.275 0.3 0.4 0.45 0.5 0.6 0.7 0.8 0.85
γ = 0.8
Growth 0.3 0.35 0.4 0.45 0.55 0.6 0.65 0.8 0.85 0.95
No growth 0.3 0.35 0.4 0.45 0.55 0.6 0.7 0.79 0.8 0.95
γ = 0.6
Growth 0.3 0.4 0.45 0.5 0.6 0.665 0.7 0.8 0.9 1.0
No growth 0.35 0.4 0.5 0.55 0.59 0.65 0.75 0.9 0.95 1.0

Yellow – Y(0,1) P1 pattern; green – faint Y(0,3) P1 pattern; blue – sharp Y(0,3) P1 pattern. No growth: fixed hemispherical cap geometry for all time ≥ 
0. Growth: same initial geometry, but with X2-catalysed surface growth for time > 0.

A

B C

D

Fig. 5. Variation in patterns. The model can generate some of the anomalous morphologies seen experimentally. (A) Concentration peak splitting, in this case 
from an earlier pattern of four peaks (left) to a later pattern of five peaks (right), corresponds to readjustments seen experimentally, where additional cotyledons are 
sometimes seen a week after the earliest count. (B) Peak fusions, where a ring with space for, in this case, between five and six peaks, has several peaks ‘smeared’ 
together, corresponding to fused or extra-width cotyledons sometimes observed experimentally (C; from Harrison and von Aderkas, 2004, with permission; scale 
bar = 250 µm). Such cases of indistinct peak number tend to occur at transitional radii between distinct integer peak numbers (i.e. between the shapes shown in 
Fig. 4). (D) Transient pattern in early stages of an ‘NPA-treatment’ simulation (at later stages, this passive P2 pattern is distributed in a smooth ring). Such transient 
pattern could correspond to the ‘bumpy cup’ morphology sometimes observed in NPA-treated embryos, where the cup rim is not smooth (Holloway et al., 2016).
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Figure 5D shows that in cases where P2 is not actively pattern-
ing, and has a steady state which will follow the P1 annular 
pattern, transient circumferential pattern can still be observed at 
early stages, which could contribute to vestigial bumps prior to 
the pattern fully relaxing to the annular steady state.

DISCUSSION

Cotyledon morphogenesis in conifers is complex, with posi-
tioning and outgrowth controlled in radial and circumferential 
directions on a flattening dome geometry. Fundamental ques-
tions in this process include: how are cotyledons constrained 
radially to form in a whorl; how are cotyledons evenly spaced 
circumferentially within that whorl; what is the role of auxin 
in cotyledon formation; and how do spatial patterning dynam-
ics affect the morphology of the cotyledon crown in early 
embryos? We developed a dynamic model of pattern formation 
and growth in three dimensions to investigate these questions.

Induction of cup-shaped morphogenesis by NPA treatment 
suggests that an underlying PAT-independent patterning mech-
anism, P1, sets the radial position of the cotyledon whorl. This 
ring pattern is robust – even in NPA-treated embryos show-
ing partial cotyledon growth or embryos with missing coty-
ledons (gaps), outgrowth occurs at a clear radius from the tip 
(Larsson et  al., 2008; Holloway et  al., 2016). The consistent 
formation of whorls in conifer cotyledon development depends 
on the stability of this single-ring pattern solution to changes 
in domain size, embryo geometry and mechanism parameters 
(e.g. reaction rates, transport rates, potentially mechanical 
properties). The size stability of the whorl pattern is notable in 
the broader developmental context, given that within-species 
conifer embryo sizes are far more variable (s.d./mean ≈ 30 % 
for diameters; Holloway et al., 2016) than those in Drosophila 
(s.d./mean ≈ 8 % for lengths; Holloway et al., 2006), a model 
organism intensively studied for such pattern scaling to vari-
able size (e.g. Houchmandzadeh et al., 2002; He et al., 2015). 
On flattening dome geometries, the single-ring whorl pattern 
corresponds to the Y(0,3) spherical harmonic. We have shown 
that an RD P1 mechanism (the Brusselator) can stabilize sin-
gle whorls across the range of two to 11 cotyledons observed 
experimentally. In particular, Y(0,3) P1 solutions are critical in 
maintaining single whorls at larger diameters. Our simulations 
indicate that P1 ring stabilization is important for diameters 
associated with nc > 4; this is highly applicable to many com-
mon conifers, in which species averages are nc = 5 and above 
(Butts and Buchholz, 1940).

To constrain cotyledon formation to the ring, P1 needs a 
feedforward control on the short-wavelength P2 pattern. The 
formation of P1 and P2 patterns in-phase in the whorl is con-
sistent with GM activator–inhibitor kinetics for P2, and not 
with Brusselator depletion kinetics. P1 is coupled to P2 via the 
X1 morphogen affecting the X2 self-reinforcement rate param-
eter c2. Active pattern formation by the GM P2 mechanism pro-
duces even spacing between primordia within the P1 ring. This 
is the first computed confirmation that a hierarchical double-
RD mechanism can generate single whorl morphogenesis on a 
dome, as first suggested by Harrison et al. (1981).

The loss of distinct cotyledon outgrowth with NPA treatment 
indicates a PAT effect on P2 pattern amplitude. This is modelled 

as an effect on active vs. passive patterning, with NPA treatment 
(decrease of PAT) decreasing parameter d2. At low d2, active cir-
cumferential patterning dies out and the resulting passive steady-
state of P2 reflects the underlying P1 ring pattern (Fig.  2H). 
Turing analysis shows how d2 decrease causes this loss of self-
organization; the decreased decay could also be associated with a 
pooling of unpatterned P2 morphogen in the P1 ring.

NPA-induced reversion of a distinct cotyledon pattern to a 
ring pattern supports the two-stage P1/P2 model over a one-
stage RD model. For a single Brusselator, Nagata et al. (2013) 
found the stability conditions for different pattern harmonics on 
spherical caps. Transitions from cotyledon-like patterns, Y(nc, 
1), to the annular Y(0,3) would require different specific vari-
ations in parameters for each nc. In comparison, loss of active 
patterning in P2 can be effected over a range of values for any 
of the parameters in eqn (2), more consistent with a systemic 
NPA treatment reliably converting all potential nc (or all diam-
eters, given eqn 4) to Y(0,3).

P1 control constrains a potentially 2-D P2 pattern (all over 
the surface) into a quasi-1-D pattern in a ring. This produces 
the linear dependence between inter-cotyledon spacing λ and 
embryo diameter (eqn 4)  observed experimentally (Harrison 
and von Aderkas, 2004; Holloway et al., 2016). In such a ring 
arrangement, each increment of the whorl circumference by 
the inter-cotyledon spacing allows another cotyledon to fit in. 
Table 2 shows radii for each integer nc in the experimentally 
observed range. Since radius can vary continuously, radii inter-
mediate to those shown in Table 2 can produce mixed nc: the 
cotyledon fusions or splittings observed experimentally could 
be due to the diameter–nc dependence contained in eqn (4).

Morphogenetically, P2-driven growth generates the evenly 
spaced primordia of normal cotyledon morphogenesis, as well 
as the circularly symmetric outgrowth of NPA-induced cup-
shaped morphogenesis. The pattern formation is stable to this 
induced growth. Computations on different embryo geometries 
(dome flatness γ) suggest that P1/P2 cotyledon positioning 
occurs during flattening, after the early dome stage: decreasing γ 
from 1 (hemispherical) decreases the angle between outgrowth 
and the z-axis, generating increasingly upward-pointing pri-
mordia which more closely match experimental observations.

Visualization of growth regulator patterning in conifer 
embryos is rudimentary compared to Arabidopsis; the model 
provides a quantitative framework for interpreting the data cur-
rently available and guiding new experiments. For instance, 
new experiments in auxin labelling could clarify whether auxin 
localizes to the P1 ring, indicating a localized PAT delivery of 
the P2 ‘amplitude factor’ and perhaps some dependence of PAT 
on P1; or whether auxin is more ubiquitous at these stages, and 
loss of PAT would produce a more generic loss of the P2 ‘amp-
litude factor’ across the embryo. While the molecular identity 
of the X2 growth catalyst is unknown at this point, the model 
indicates that it is patterned by activator–inhibitor kinetics, as 
found earlier in plants for trichome patterning (Digiuni et al., 
2008) and in shoot apical meristems (Fujita et al., 2011).

The dynamic mechanism developed here for conifer coty-
ledons may apply more generally to single whorl formation in 
development, or to successive simultaneously forming whorls 
(independent of earlier primordia position) such as vegeta-
tive growth in Acetabularia (Dumais and Harrison, 2000) or 
Equisetum. These phenomena are in contrast to phyllotactic 
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whorls formed by successively initiated primordia (e.g. Douady 
and Couder, 1996; Kitazawa and Fujimoto, 2015), and also to 
the PAT self-organization model of floral whorls, in which ear-
lier organs (sepals) affect the positioning of later organs (van 
Mourik et al., 2012). The stability of the P1/P2 system over a 
large size range is especially applicable to simultaneous whorls 
with large numbers of primordia. In these cases, the short spac-
ing between primordia relative to domain size requires a radial 
constraint to form in a whorl, and not have patterning all over 
the available space. While current data supports RD pattern-
ing for both P1 and P2 in conifer cotyledon whorls, the current 
model establishes more general constraints for whorl forma-
tion which could be realized with other pattern-forming mecha-
nisms, such as PAT. In particular, the current model establishes 
constraints on the linkage between the radial and circumfer-
ential patterning systems, the coupling to growth, and the sta-
bility of the patterns to embryo size variability and geometric 
changes during morphogenesis: these apply to any mechanism 
for regular spacing, RD or otherwise.

In this broader context, the current characterization of the two-
stage process in conifer cotyledon development shows parallels 
with previous findings of multi-component mechanisms with 
separable effects (and dependences on PAT) in different dimen-
sions. These include results in tomato and Arabidopsis, in which 
exogenous application of auxin could alter circumferential pat-
terning on the shoot, but not within a critical radial distance of 
the meristem (Reinhardt et al., 2000); the PIN1 dependence of 
floral initiation compared to the partial PIN1 independence of 
leaf initiation (Guenot et al., 2012); the separable surface and 
inward PAT flows found in the shoot apex (Furutani et al., 2014); 
and the PAT-dependent lateral and PAT-independent medial 
components of gynoecial development (Larsson et al., 2014).

Conifer polycotyledony offers a unique system for study-
ing developmental mechanisms for the positioning of organs. 
Development of a 3-D finite element model of conifer cotyledon 
whorl formation has allowed us to study the dynamics involved 
in this complex morphogenetic process. This clarifies the role 
of the radial patterning (P1) and its stability over the size ranges 
found experimentally; the constraint of cotyledons to this ring; 
the spacing of cotyledons within the ring (P2 pattern); and the 
loss of P2 patterning with NPA treatment. This quantitative 
model for the dynamics of growth regulator patterning and con-
sequent morphogenesis provides a synthesis of current data and 
can serve as a framework to guide future experiments into the 
molecules and mechanisms involved in conifer cotyledon devel-
opment, with implications for whorl formation in general.
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