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Abstract
Genome-wide association studies (GWAS) have identified and validated 200 risk loci for inflammatory bowel disease (IBD)
to date, including risk loci for both Crohn’s disease and ulcerative colitis. Previously studies mainly used single SNP testing
methods and only reported the most significant association within each locus. Advanced methods are needed to detect
additional joint effects of multiple SNPs and fine map causal variants in presence of strong linkage disequilibrium. In this
study, we applied a powerful Bayesian method to analyze an existing Immunochip data sets for IBD from the international
inflammatory bowel disease genetics consortium. The method jointly tested single and set-based SNPs in a unified
framework and filtered indirect associations due to linkage disequilibrium, thereby fine-mapping the most likely IBD
variants. Using an independent collection of individuals from 11 IBD GWAS as validation, our approach discovered and
validated 9 completely new IBD loci and 5 independent signals (excluding the major histocompatibility complex) near
known IBD loci reaching genome-wide significance. Several of the replicated new loci implicated functionally more
interpretable genes than previous reports. The epigenetic marks at our detected IBD signals demonstrated significant
activation signatures in blood cell types and correspondingly substantial repression in stem cells, suggesting regulatory links
between genetic variants and IBD. Our analysis of the currently largest IBD datasets therefore added new insights that will
be integral to the ongoing efforts in IBD genetics.

Introduction

Inflammatory bowel disease (IBD) in its two major forms,
Crohn’s disease (CD) and ulcerative colitis (UC), is a
complex disease significantly affecting people of European
origins and has increasing incidence in other populations
recently [1, 2]. Over the past decades, genome-wide asso-
ciation studies (GWAS) on CD and UC have led to major
discoveries of genes and loci in the human genome affect-
ing the disease risks [3–8]. There is a substantial overlap
between the genetic loci of CD and UC, suggesting that
both types of IBD share common biological pathways.
Genome-wide meta-analyzes and imputation methods have
therefore been used to combine samples from both subtypes
of IBD to increase power. Most recently, the International
Inflammatory Bowel Disease Genetics Consortium
(IIBDGC) combined more than 86,640 European indivi-
duals and 9846 non-European individuals to unravel a total
of 231 genome-wide significant IBD SNPs (including CD
and UC) [8]. Merging those SNPs within 100 kb together
yielded a total of 200 IBD loci.
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We reanalyzed the Immunochip data from IIBGDC. All
the samples have European ancestry and were obtained
from Jostins et al. [6]. The data we used has been pre-
processed, comprising 139,184 SNPs and small indels in
18,458 CD patients, 14,373 UC patients, and 464 patients
with undetermined IBD subtypes, and 33,948 controls. The
SNPs and small indels were selected primarily based on
GWAS analysis of 12 autoimmune and inflammatory dis-
eases, including CD and UC [6]. The Immunochip data
therefore could reveal many insights into the shared genetic
susceptibility across multiple immune-mediated diseases.
We applied a novel Bayesian method, BEAM3 [9, 10], to
detect both main effects of individual SNPs and joint effects
of multiple SNPs simultaneously. We adjusted for sample
stratification captured by the principal-component analysis
(PCA), and we obtained estimates of statistical significance
of our results by a permutation procedure that preserved the
sample stratification information, thereby accounting for
any residual inflation missed by PCA. After making dis-
coveries in the Immunochip data set, we then used inde-
pendent samples from 11 GWAS studies from IIBDGC and
additional individuals genotyped by HiSeq to validate the
findings.

Results

Detection and replication of new IBD loci

We first mapped IBD variants in the CD and UC combined
samples vs. controls and identified 374 lead SNPs reaching
Immunochip-wide significance at 0.02 level (Supporting
Information). We next analyzed CD and UC samples
separately and obtained 196 lead SNPs reaching
Immunochip-wide significance at 0.015 level for CD and
UC, respectively (Supporting Information). Combining the
results, we obtained a total of 504 lead SNPs for IBD, CD,
or UC at an overall Immunichip-wide significance of 0.05.
These lead SNPs were clustered into 186 loci by grouping
within 100 kb via minimum distance. We recaptured 442
lead SNPs in 155 loci that either lied within the most recent
compilation of known IBD loci [8] or newly confirmed by a
most recent report on chronic inflammatory diseases [11].
The remaining 62 lead SNPs in 31 loci were located outside
of any known regions (see Methods and Supporting
Information).

We used two independent data sets to replicate the 31
new IBD loci. The first data set included 13,240 indivi-
duals genotyped by HiSeq at the Children’s Hospital of
Philadelphia [12], and the second data set contained
24,350 individuals accumulated from 11 GWAS studies.
We used IMPUTE2 [13] to first infer missing SNPs in all
replication data sets, including the proxy SNPs within 100

kb and having LD r2 > 0.2 with the lead SNPs. We used
EUR samples in the 1000 Genomes release 3 [14] as the
reference. At each locus, we ran BEAM3 on the lead SNPs
and proxy SNPs in each replication data separately. We
used conditional permutation to obtain a locus-wise p-
value. Fisher’s method was used to combine the p-values
from the 11 GWAS data sets to generate a GWAS meta p-
value. We then applied Fisher’s method again to calculate
an overall locus-wise p-value combining the HiSeq and
GWAS meta p-values. We finally obtained false discovery
rates (FDR) from the overall locus-wise p-values for the 31
IBD loci.

At FDR 0.05, 21 out of 31 novel IBD loci were repli-
cated (Table 1). Among the 21 replicated loci, 9 loci
implicated entirely new risk regions (Table 1a), and 12 loci
suggested potentially new signals near known IBD loci (<1
Mb) showing some levels of LD (r2> 0.2) with known lead
SNPs (Table 1b). These latter loci may be implicating new
locations or genes, as they were at least 100 kb away from
the previous IBD loci and were indicated as new signals by
the BEAM3 method, which uses a joint probabilistic model
of all variants to identify direct IBD associations via con-
ditional test. On the other hand, we cannot completely rule
out the possibility that our new signals were still just tag-
ging the same (unobserved) risk variants that are also tag-
ged by known variants, for which additional investigation is
needed. For example, 7 out of the 12 loci in Table 1b lied in
the major histocompatibility complex (MHC), which have
extended and complex LD structures in the human popu-
lation. Interpretation of these MHC signals therefore must
be done with caution. Finally, there could be several reasons
for why we failed to replicate 10 out of the 31 novel loci in
the replication data. First, these loci may have genetic het-
erogeneity and/or are involved in epistasis, such that when
tested by a linear model used in BEAM3, their significance
could vary substantially. Secondly, there was substantial
genotyping heterogeneity among the data sets we analyzed,
for which we used imputation to match SNPs between data
sets, and hence lost power. Thirdly, there could be uncon-
trolled confounding factors in our analysis that have
affected the significance differently in different data sets.
Finally, we note that not all significant results are meant to
be replicated simply because of randomness in the sample.
Thus, the 10 unreplicated loci should not be simply taken as
all false positives.

We estimated and compared the relative risks of the
replicated new IBD signals between the discovery data
and the replication data. Figure 1a shows that, for those
lead SNPs with nominally significant effects in both
discovery data and replication data, their effects direc-
tions are always consistent. Of the 52 imputable lead
SNPs (in 21 loci), thirty (in 11 loci) had nominally sig-
nificant risks (p-value < 0.05) in the replication data, six
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(in 3 loci) had nominally significant risks in either CD or
UC replication data, but not for IBD (Fig. 1b), and the
remaining 16 lead SNPs (in 6 loci) had insignificant
relative risks in replication data, which may be due to
either epistasis or tagging some causal SNPs ungeno-
typed in the discovery data.

IBD variance better explained by our lead SNPs than
by known lead SNPs

Combining the known and replicated new loci, we identified
a total of 176 IBD loci containing 493 lead SNPs. Since
BEAM3 fine-mapped causative SNPs by removing LD

effects (without accounting for LD effects, there were 5438
SNPs with p-value< 1e−8), we were able to estimate the
number of independent IBD SNPs within each locus. We
estimated that 50.7% IBD lead SNPs (250 out of 493) in our
result might directly contribute to the IBD risks (Supporting
Information), which we referred to as “direct lead SNPs”. The
remaining 243 lead SNPs were alternative candidates, but we
could not exclude with certainty that their association with
IBD may be merely due to LD with the direct lead SNPs.

After removing sample stratification, the direct lead SNPs
in our IBD loci (250 lead SNPs in 176 loci) explained
16.40% IBD variance (Fig. 2a), greater than the 15.26%
explained by the 231 lead SNPs in 200 IBD loci from Liu

Table 1 Replicated new IBD loci

IDa IBD Loci (hg19) Lead SNPsb Rep_FDR Candidate genesc

a) Entirely new loci not reported by previous studies

1d chr2:181.95–181.96 rs10176421G> T, rs6759130G > T 1.94E−04 AC068196.1;ITGA4

2e chr3:57.77 rs7649133A >G 1.41E−03 SLMAP;FLNB

3 chr9:0.24 rs661356A>G 1.66E−03 DOCK8

4 chr9:102.37 rs12237953C> T 1.94E−04 RP11-554F20.1;NR4A3

5 chr11:23.28–23.28 rs10834005A>C, rs1564625A>G 1.66E−03 ;

6 chr13:42.84–42.88 rs927542A>G, rs746447A>G, rs9645984C> T, rs1449509A >G,
rs61959439C> T, rs59449023A> T, rs17521586C/T

1.45E−03 AKAP11;TNFSF11

7 chr14:35.39–35.4 rs712303C> T, rs1712349C> T 1.36E−02 RP11-85K15.2;Y_RNA;
BAZ1A

8 chr15:77.38 rs16968665C>G 3.43E−04 TSPAN3

9 chr20:39.91 rs6093462A >C 1.13E−04 ZHX3;PLCG1

b) New signals implicating known loci previously reported for CD, UC or IBD

10 chr1:155.13–155.21 rs4971079A >G, rs4072037A>G, rs3768566A >G, rs9628662G > T 1.94E−04 MUC1;GBA

11 chr2:25.5–25.5 rs201014116A> C, rs2006788G> T 3.43E−04 DNMT3A;POMC

12 chr2:43.46 rs13402621C> T 3.13E−04 AC010883.5;THADA;
ZFP36L2;

13 chr6:29.74–29.78 rs1737041G> T, rs885940A>G, rs1633009A>T, rs1610707G > T 1.01E−05 HLA-V

14f chr6:29.93–29.94 rs2517689A>G, rs2523946A>G 1.73E-03 HCG9

15 chr6:30.38–30.43 rs9261859G > T, rs11966619G> T 3.54E-03 ;

16 chr6:31.51–31.57 rs9368696A >G, rs2736191C/G, rs2515920A> T, rs9267512C> T 2.13E-03 NCR3;LST1;LTB

17 chr6:31.92 rs4151651A >G 3.38E-05 CFB;C2;NELFE

18e chr6:32.21–32.21 rs439303C> T, rs9267947A >G, rs411326A>G 5.94E-06 ;

19e chr6:33.05–33.07 rs1431403C>T, rs3128927C> T 1.21E-03 HLA-DPA1;HLA-DPB1

20 chr16:10.97–11.09 rs12928665A>G, rs4781026C>G, rs16957807A >G, rs3813754A > T,
rs56363812 A>G, rs4780343A >G, rs3881421C> T, rs8061306A >G

1.03E-03 CIITA;CLEC16A

21f chr17:38.82–38.83 rs7209404G > T, rs9896791A>C 1.94E-04 AC073508.1;KRT222

Lead SNPs reported by BEAM3 are grouped within 100 kb by minimum distance. Lead SNPs with the maximum posterior probability of
association within each loci are marked in bold. Threshold for replication FDR is 0.05
aParenthesis indicate loci where additional SNPs in a nearby known loci were also detected
bIf a locus involves multiple lead SNPs, the lead SNP with the strongest association is highlighted in bold
cCandidate genes are determined as either within 5 kb of the lead SNPs or implicated by GO enrichment analysis (latter shown in bold)
dLoci detected in CD only
eLoci detected in UC only
fLoci detected in both CD and UC, respectively, but not in the combined subtypes (IBD)
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et al. (2015), both on the same logistic scale. Comparing at
the same level of explained IBD variance, only top 127 loci
(200 direct lead SNPs) in our result were needed to explain
the total amount of IBD variance explained by the previous
IBD loci (Fig. 2a). In addition, using single best lead SNP per
locus only explained 12.86% IBD variance, confirming that
there could be multiple IBD variants in a locus contributing
to the risks. Also, loci carrying multiple lead SNPs generally
ranked higher in their contributions to IBD variance
(Fig. 1b). On the other hand, further including the 243
alternative lead SNPs in our result only explained 1.24%
more IBD variance (17.64% in total) than using the direct
lead SNPs alone. Taken together, the IBD loci inferred by
our method in this study better explained the disease variance
than the previously reported IBD loci and lead SNPs did.

Enrichment of biological functions and pathways

To understand the potential biological functions involved in
the 9 new IBD loci and the 12 independent IBD signals near

known IBD loci, we performed enrichment analysis of gene
functions and pathways via GREAT [15]. We removed loci
in the MHC region (chr6:29–34Mb) to avoid bias towards
MHC. We identified the terms that were more significant
after including our new loci than using the recaptured IBD
loci alone. At the level of FDR ≤ 0.05, fold enrichment ≥5,
and that including the new loci must reduce the FDR for the
enriched term by at least 1 order of magnitude, we identified
102 significantly enriched terms that highlighted the
potential function and pathway involvement of our new loci
in seven categories of gene ontology. Figure 3 shows the
top 15 most significant terms in each gene ontology cate-
gory. The most significantly enriched terms with gains of
significance by including our new loci were cytokine
receptor binding (p= 6.82e−08) in GO Molecular Func-
tions and cytokine-mediated signaling pathway (p= 4.68e
−13) in GO biological process, which implicated novel
genes PLCG1 and FLNB that were not indicated in previous
reports. There were also newly added significant terms in
GO biological process that were not enriched using the

a

b

Fig. 1 Replication of relative risks. a Scatter plots show the relative
risks of minor alleles of each lead SNP in the replicated new loci or
new SNPs near known loci. Colored dots denote SNPs with significant
marginal effects at 0.05 level in both discovery and replication data;
solid black dots denote SNPs with significant marginal effects in
discovery data but not in replication data; empty dots denote SNPs

with insignificant marginal effects in discovery data. b The same
relative risks of minor alleles of the lead SNPs in the replicated new
loci shown in heatmap, comparing between CD, UC and subtypes
combined (IBD). ‘+ ’ marks the significant marginal effects at 0.05
level. SNP ID in parenthesis indicates lead SNPs for either CD or UC,
but not for IBD, in the discovery data
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recaptured known IBD loci alone, including activation of
MAPKK activity (p= 1.85e−02) and negative regulation of
JAK-STAT cascade (p= 2.79e−02). In mouse phenotype,
the most significantly enriched terms with gains of sig-
nificance included abnormal cytokine secretion (p= 3.31e
−21), abnormal interleukin secretion (p= 1.32e−17),
abnormal T cell activation (p= 4.99e−17), and abnormal T
cell proliferation (p= 2.89e−16), which implicated addi-
tional new genes POMC, DOCK8. In disease ontology, the
most significantly enriched terms with grains of significance
included autoimmune disease of gastrointestinal tract (p=
4.65e−15), demyelinating disease of central nervous system
(p= 4.77e−12), multiple sclerosis (p= 5.00e−12), and
demyelinating disease (p= 8.33e−12), which implicated
genes ITGA4 and MUC1. Finally, in PANTHER pathway,
MSigDB pathway and MSigDB immulogic signaturs, the
most significant terms with gains of significance involved
JAK/STAT signaling pathway (p= 7.27e−06), genes
involved in regulation of IFNG signaling (p= 6.64e−08),
and genes down−regulated comparing unstimulated vs.
stimulated dendritic cells (p= 1.36e−07), respectively,
which implicated new genes BAZ1A, NR4A3.

Epigenetic enrichment patterns at IBD loci

We next evaluated the epigenetic signatures at the new
IBD SNPs. We obtained data for 34 epigenetic marks in

127 human cell types from the RoadMap Epigenomics
project [16]. Using non-IBD SNPs in the ImmunoChIP
data as a reference, we found that the lead SNPs in our new
loci tended to be associated with strong signals in most
epigenetic marks in non-developmental cell types, parti-
cularly in the cluster of differentiation surfaced cells such
as B lymphocytes and T lymphocytes. After removing
mark effects (averaged over all cell types) and cell type
effects (averaged over all marks), we observed a strong
enrichment pattern in the residual signals, which repre-
sented cell type and mark specific effects (Fig. 4a). One
group of cell types (group 1 in Fig. 4a) showed enriched
marks for transcription and enhancer activities (RNA-seq,
H3K4me1, H3K4me2, and H3K27ac) and depleted marks
for repression (H3K27me3, DNA Methylation, and
H3K9me3), and the group contained mostly B and T cells.
Another group (group 2 in Fig. 4a) showed complementary
patterns of depleted active marks and enriched repressive
marks, where the group contained mainly primary and
derived embryonic stem cells. These patterns were simi-
larly observed at the known IBD loci, suggesting a con-
sistent and unique cell type and mark specific epigenetic
signature that distinguishes between IBD and non-IBD
loci. The anatomy of cell types further revealed significant
enrichment of blood cells, stem cells, and brain tissues
(Fig. 4b).

a

b

Fig. 2 Proportion of disease variance explained by the lead IBD SNPs.
a Cumulative fractions (generalized r2) of IBD variance explained by
the lead SNPs after removing sample stratification. Solid blue line
shows the fraction explained by the 250 direct lead SNPs in 176 loci
detected by BEAM3. Upper dotted blue line shows the fraction
explained by including all 504 lead SNPs detected by BEAM3. Lower
dotted blue line shows the fraction explained by the single best lead
SNPs in 176 loci. Yellow circles mark the replicated new IBD loci or

IBD signals near known loci, and white circles mark the replicated new
loci or new signals near known loci for either CD or UC, but not
combined. Black solid line shows the fraction of IBD variance
explained by the 231 previously reported lead SNPs in 200 known IBD
loci. The corresponding r2s for each model were shown on the right
side. b Total number of lead SNPs and the estimated number of direct
lead SNPs in each of the 176 loci detected by BEAM3. Stars indicate
the replicated new loci or new signals near known loci
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Discussion

While we recaptured a large portion (77.4%) of known IBD
loci in this study, 55 (12.5%) lead SNPs that overlapped
with the known IBD loci were mapped to locations at least
100 kb away from the previously reported SNPs, and some
of them implicated different genes. For instance, Liu et al.
[8] reported rs12946510C> T at chr17:37.91 Mb in hg19 as
a lead SNP, whereas our method reported rs4795397A>G
at chr17:38.02 Mb in hg19, which was 110 kb away from
rs12946510. While rs12946510 is located near the tran-
scription end site of gene IKZF3, rs4795397 inferred by our
method is located at the transcription start site of IKZF3.
Liu et al. reported rs3197999C> T at chr3:49.72 Mb in
hg19 as a lead SNP near genes MST1 and APEH, whereas
our method reported rs35261698C>G at chr3:49.54 Mb in
hg19 near gene DAG1. GO enrichment analysis by GREAT
[15] showed that DAG1 appeared 93 times in the

significantly enriched terms at FDR 0.05. In contrast, both
MST1 and APEH did not appear in any significantly enri-
ched terms.

We further performed GO enrichment analysis using our
176 IBD loci and compared with the 200 known IBD loci.
At FDR 0.05 and fold enrichment ≥5, we identified
337 significant terms that had at least one magnitude
stronger significance at our loci than the known loci.
Among these, 183 terms were completely new (i.e., not
enriched in the known IBD loci). The most significant new
term was regulation of tyrosine phosphorylation of Stat3
protein in GO Biological Process, with FDR 1.40e−05. In
comparison, we obtained 210 significant terms that had at
least one magnitude stronger significance at the known IBD
loci than ours. Among these, 128 new terms were com-
pletely new, and the most significant term was decreased
IgG2a level in Mouse Phenotype, with FDR 5.46e−08.
While we found the distinctly enriched terms were relevant

cytokine receptor binding
cytokine−mediated signaling pathway
cellular response to cytokine stimulus
regulation of interferon−gamma−mediated signaling pathway
regulation of response to interferon−gamma
negative regulation of tyrosine phosphorylation of Stat3 protein
regulation of insulin receptor signaling pathway
negative regulation of tyrosine phosphorylation of STAT protein
positive regulation of osteoclast differentiation
regulation of cellular response to insulin stimulus
positive regulation of histone acetylation
negative regulation of insulin receptor signaling pathway
negative regulation of cellular response to insulin stimulus
activation of MAPKK activity
positive regulation of MHC class II biosynthetic process
negative regulation of JAK−STAT cascade
abnormal cytokine secretion
abnormal interleukin secretion
abnormal T cell activation
abnormal T cell proliferation
abnormal interleukin−6 secretion
abnormal mature B cell morphology
abnormal spleen white pulp morphology
abnormal lymph node morphology
enlarged lymph nodes
abnormal lymph node size
increased CD4−positive T cell number
decreased mature B cell number
abnormal CD4−positive T cell differentiation
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demyelinating disease of central nervous system
multiple sclerosis
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Genes involved in Cytokine Signaling in Immune system
Genes involved in Interferon Signaling
EPO Signaling Pathway
IL4−mediated signaling events
Growth Hormone Signaling Pathway
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Genes down−regulated comparing unstimulated dendritic cells (DC) 
at 0h versus DCs stimulated with LPS and R848 for 2h.
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to IBD in both sets of loci, our loci implicated more inter-
esting terms than those by the known loci.

Our replication study was locus based, that is, using
the implicated lead SNPs and its proxy SNPs within each
locus. Given that current statistical methods cannot
accurately pinpoint causal variants, and the potential
confounding effects from epistasis, genetic heterogeneity
and sample heterogeneity, our locus-based replication is
more appropriate and powerful than replicating the exact
SNPs. Particularly for epistasis, while they may be
detected in the discovery data, direct replication of their
effects in genetic data alone remains a challenging pro-
blem, which may require validation at the functional
level [17]. These difficulties highlight the importance
and usefulness of combining additional information,
such as epigenetic signals and functional annotations of
genetic variants, to improve the power for mapping
causal variants.

In summary, we have presented evidence of new IBD
loci following a powerful reanalysis of the Immunochip
IBD data from IIBDGC. The new loci consolidate evidence

for the cytokine-based pathways that were also prevalent
from previous reports. Our analysis implicated new loci
such as a DNA demethyl transferase that could have pro-
found effects at a number of distal genes and reveal new
pathways to target for IBD. The statistical methods used in
this study have played a pivotal role for detecting the new
IBD loci and locating the novel lead SNPs within known
IBD loci. Without using these advanced methods, only the
SNPs showing the strongest signal would be selected, while
missing potential epistasis and additional risk variants
buried in the same locus.

Materials and methods

Processing of the immunochip data

We obtained the Immunochip genotype data set from the
IIBDGC. The data set has already been cleaned (version 5)
by the IIBDGC including 68,427 individuals, of which
1184 individuals had no case control status and thus were

−0.3 −0.1 0.1 0.3

New IBD loci
M

us
cl

e 
S

at
el

lit
e 

C
ul

tu
re

d 
C

el
ls

P
rim

ar
y 

T
 C

D
8+

 n
ai

ve
 c

el
ls

 fr
om

 p
er

ip
he

ra
l b

lo
od

F
or

es
ki

n 
F

ib
ro

bl
as

t P
rim

ar
y 

C
el

ls
 s

ki
n0

1
M

on
oc

yt
es

−C
D

14
+

 R
O

01
74

6 
P

rim
ar

y 
C

el
ls

P
rim

ar
y 

T
 h

el
pe

r 
na

iv
e 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

P
rim

ar
y 

T
 h

el
pe

r 
ce

lls
 P

M
A

−I
 s

tim
ul

at
ed

B
on

e 
M

ar
ro

w
 D

er
iv

ed
 C

ul
tu

re
d 

M
es

en
ch

ym
al

 S
te

m
 C

el
ls

P
rim

ar
y 

T
 h

el
pe

r 
na

iv
e 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

P
rim

ar
y 

T
 C

D
8+

 m
em

or
y 

ce
lls

 fr
om

 p
er

ip
he

ra
l b

lo
od

G
M

12
87

8 
Ly

m
ph

ob
la

st
oi

d 
C

el
ls

P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls
 s

ho
rt

 te
rm

 c
ul

tu
re

H
1 

D
er

iv
ed

 M
es

en
ch

ym
al

 S
te

m
 C

el
ls

P
rim

ar
y 

he
m

at
op

oi
et

ic
 s

te
m

 c
el

ls
 G

−C
S

F
−m

ob
ili

ze
d 

F
em

al
e

P
rim

ar
y 

B
 c

el
ls

 fr
om

 c
or

d 
bl

oo
d

P
rim

ar
y 

T
 h

el
pe

r 
17

 c
el

ls
 P

M
A

−I
 s

tim
ul

at
ed

M
es

en
ch

ym
al

 S
te

m
 C

el
l D

er
iv

ed
 A

di
po

cy
te

 C
ul

tu
re

d 
C

el
ls

P
rim

ar
y 

ne
ut

ro
ph

ils
 fr

om
 p

er
ip

he
ra

l b
lo

od
A

di
po

se
 D

er
iv

ed
 M

es
en

ch
ym

al
 S

te
m

 C
el

l C
ul

tu
re

d 
C

el
ls

P
rim

ar
y 

T
 c

el
ls

 e
ffe

ct
or

/m
em

or
y 

en
ric

he
d 

fr
om

 p
er

ip
he

ra
l b

lo
od

P
rim

ar
y 

T
 h

el
pe

r 
ce

lls
 fr

om
 p

er
ip

he
ra

l b
lo

od
C

ol
on

ic
 M

uc
os

a
Le

ft 
V

en
tr

ic
le

D
nd

41
 T

C
el

l L
eu

ke
m

ia
 C

el
l L

in
e

F
or

es
ki

n 
F

ib
ro

bl
as

t P
rim

ar
y 

C
el

ls
 s

ki
n0

2
P

rim
ar

y 
he

m
at

op
oi

et
ic

 s
te

m
 c

el
ls

 G
−C

S
F

−m
ob

ili
ze

d 
M

al
e

P
rim

ar
y 

m
on

oc
yt

es
 fr

om
 p

er
ip

he
ra

l b
lo

od
P

rim
ar

y 
he

m
at

op
oi

et
ic

 s
te

m
 c

el
ls

M
es

en
ch

ym
al

 S
te

m
 C

el
l D

er
iv

ed
 C

ho
nd

ro
cy

te
 C

ul
tu

re
d 

C
el

ls
K

56
2 

Le
uk

em
ia

 C
el

ls
H

9 
C

el
ls

H
9 

D
er

iv
ed

 N
eu

ro
na

l P
ro

ge
ni

to
r 

C
ul

tu
re

d 
C

el
ls

H
1 

B
M

P
4 

D
er

iv
ed

 T
ro

ph
ob

la
st

 C
ul

tu
re

d 
C

el
ls

H
U

E
S

64
 C

el
ls

iP
S

−1
5b

 C
el

ls
H

1 
C

el
ls

iP
S

 D
F

 6
.9

 C
el

ls
iP

S
−1

8 
C

el
ls

IM
R

90
 fe

ta
l l

un
g 

fib
ro

bl
as

ts
 C

el
l L

in
e

E
S

−W
A

7 
C

el
ls

H
9 

D
er

iv
ed

 N
eu

ro
n 

C
ul

tu
re

d 
C

el
ls

hE
S

C
 D

er
iv

ed
 C

D
56

+
 E

ct
od

er
m

 C
ul

tu
re

d 
C

el
ls

E
S

−U
C

S
F

4 
 C

el
ls

hE
S

C
 D

er
iv

ed
 C

D
56

+
 M

es
od

er
m

 C
ul

tu
re

d 
C

el
ls

E
S

−I
3 

C
el

ls
C

or
te

x 
de

riv
ed

 p
rim

ar
y 

cu
ltu

re
d 

ne
ur

os
ph

er
es

H
1 

B
M

P
4 

D
er

iv
ed

 M
es

en
do

de
rm

 C
ul

tu
re

d 
C

el
ls

F
et

al
 T

hy
m

us
H

U
E

S
6 

C
el

ls
R

ig
ht

 A
tr

iu
m

B
re

as
t M

yo
ep

ith
el

ia
l P

rim
ar

y 
C

el
ls

F
or

es
ki

n 
K

er
at

in
oc

yt
e 

P
rim

ar
y 

C
el

ls
 s

ki
n0

2
S

to
m

ac
h 

S
m

oo
th

 M
us

cl
e

B
ra

in
_D

or
so

la
te

ra
l_

P
re

fr
on

ta
l_

C
or

te
x

hE
S

C
 D

er
iv

ed
 C

D
18

4+
 E

nd
od

er
m

 C
ul

tu
re

d 
C

el
ls

P
rim

ar
y 

m
on

on
uc

le
ar

 c
el

ls
 fr

om
 p

er
ip

he
ra

l b
lo

od

H3K27me3
H3K9me3
DNAMethylSBS
H4K12ac
H3K4me2
H3K27ac
H3K4me1
RNAseq

Known IBD loci

Group1
Group1

Group2
Group2

Group3
Group3

IPSC
ESC
ESC_DERIVED
BLOOD
FAT
STROMAL_CONNECTIVE
SKIN
GI_COLON
MUSCLE
GI_INTESTINE
GI_RECTUM
VASCULAR
PLACENTA
PANCREAS
GI_DUODENUM
LIVER
HEART
BREAST
THYMUS
BRAIN
LUNG
GI_STOMACH
SPLEEN
OVARY
MUSCLE_LEG
KIDNEY
GI_ESOPHAGUS
CERVIX
ADRENAL
BONE

5.88e−01 5.78e−02 6.52e−01
1.97e−01 5.07e−05 2.07e−02
6.83e−01 1.97e−04 1.01e−02
1.11e−09 1.45e−02 3.81e−04
1.30e−01 1.00e+00 5.78e−01
5.07e−02 1.00e+00 1.86e−01
1.00e+00 1.00e+00 1.00e+00
5.44e−01 1.00e+00 1.00e+00
1.00e+00 3.43e−01 1.38e−01
1.00e+00 1.00e+00 2.58e−01
1.00e+00 1.00e+00 2.58e−01
1.00e+00 1.00e+00 5.05e−01
1.00e+00 1.00e+00 5.05e−01
1.00e+00 1.00e+00 5.05e−01
1.00e+00 1.00e+00 5.05e−01
1.00e+00 1.00e+00 5.05e−01
1.00e+00 1.00e+00 1.00e+00
1.00e+00 5.00e−01 1.00e+00
1.00e+00 3.69e−01 1.00e+00
3.86e−02 1.00e+00 3.94e−02
5.88e−01 1.00e+00 3.88e−01
5.73e−01 1.00e+00 6.33e−01
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00
1.00e+00 1.00e+00 1.00e+00

0.5 1 1.5 2.52

Fold Enrichment

Epigenetic residual

a

b

Fig. 4 Enrichment pattern of epigenetic marks. Using 34 epigenetic
marks in 127 epigenomes from RoadMap Epigenomics, we calculated
mean signals (in log scale) of each mark in each cell type at our detected
IBD lead SNPs. We adjusted for SNP density and subtracted mean
signals of corresponding marks and cell types at all non-IBD SNPs (see
Methods). We further removed mark effects and cell type effects to
obtain residual signals. a Heatmap of the residual signals at the lead
SNPs in the 22 novel IBD loci or new signals near known loci. We

observed a clear enrichment pattern that separated the 127 epigenomes
into three groups, with the first two groups and a subset of epigenetic
marks showing in the zoomed view. Heatmap of the residual signals at
known IBD loci is shown in the boxed area for comparison. b Fold
enrichment of cell type anatomy in the three epigenome groups marked
in (a), with fisher’s exact p-values for enrichment showing in the
heatmap. Significant p-values for enrichment and depletion of cell type
anatomy are shown in red and white colors, respectively
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removed from the study. After removing non-polymorphic
SNPs, SNPs with ≥2% missing genotypes, and SNPs vio-
lating Hardy-Weinberg equilibrium (HWE) at p-value< 1e
−10, the data set had 139,184 SNPs. We imputed missing
genotypes (<2% missingness) by randomly sampling from
the observed genotypes at the same SNPs. We used the first
four PCs of the Immunochip samples from the IIBDGC to
adjust for sample stratification.

Processing of the HiSeq replication data

The HiSeq data set contained 535,931 SNPs genotyped in
2846 cases and 11,104 controls that were independent of the
Immunochip samples. We used PLINK [18] to identify
closely related individuals in this data set, as measured by
the proportion of identity-by-descent between pairs of
individuals. We removed 710 individuals whose proportion
of identity-by-descent was >0.4, which is the threshold used
by Jostins et al. [6]. We also performed PCA using all SNPs
and selected the first two PCs as covariates to remove
sample stratification.

Processing of the GWAS data

We obtained the GWAS data sets from 13 different studies
from the IIBDGC, including 6 studies for CD and 7 studies
for UC, genotyped at 11 genotyping centers. We removed
individuals who were related to the Immunochip samples
with estimated proportions of identity-be-descent >0.4 by
PLINK. We then performed PCA using all genotyped SNPs
and selected the first PC in each GWAS data set to adjust
for sample stratification.

Bayesian multi-locus association mapping

The BEAM3 method [9, 10] is a Bayesian partition method
that detects both single-locus and multi-locus association
for both common and rare variants. The BEAM3 method is
an extension of the original BEAM method [19] that
simultaneously achieves three goals. First, it detects multi-
locus joint association. Secondly, it removes LD effects
such that a set of SNPs will be identified only if it is directly
associated with the disease given all other disease SNPs.
Thirdly, it is computationally efficient for genome-wide
studies because it implicitly models the non-disease SNPs,
which includes most of the SNPs in a GWAS. BEAM3 can
adjust for sample stratification by including PCs of samples
as covariates.

Analysis of the immunochip data

We ran BEAM3 on the Immunochip data by first assigning
SNPs into SNP set. We assigned all SNPs whose minor

allele frequency (MAF)> 0.05% into its own set (i.e., a
single SNP set). For SNPs with MAF< 1%, we then created
multi-SNP sets containing five consecutive rare variants
per set. We further created multi-SNP sets containing 30
consecutive rare variants per set. As a result, the SNPs with
MAF between 0.05 and <1% were tested for both single
SNP effects and group effects jointly with other variants.
We ran BEAM3 for 100 iterations. The prior probability for
each SNP set to be associated with the disease was set at 1e
−4, and we identified significant IBD SNPs at a threshold
of posterior probability ≥0.1, which corresponded to
Immunochip-wide significance of 0.02, estimated by 1000
conditional permutations. The runtime of BEAM3 algo-
rithm is proportional to the product of the number of
detectable SNP sets associated with the disease and the total
number of SNP sets. In the Immunochip data, there were a
few hundreds of IBD associated SNP sets, for which
BEAM3 could take a long time to complete. To reduce
computing time, we ran BEAM3 on the SNP sets in each
chromosome separately, that is, not considering trans-
epistasis associations. As a result, BEAM3 finished the
analysis in 1 h on a single 2.4 GHz CPU.

Analysis of HiSeq data

For each locus to be replicated in the HiSeq data, we first
identified the proxy SNPs of all lead SNPs within the
locus. We used SNAP [20] to identify proxy SNPs within
100 kb and in LD (r2> 0.2) with each lead SNP. We
extracted all lead SNPs and their proxy SNPs in the locus,
and we imputed missing genotypes by IMPUTE2 [13]
using EUR individuals in 1000 Genomes release 3 [14] as
reference. We ran BEAM3 on the extracted and imputed
data and included the first two PCs for HiSeq samples as
covariates. We specified the prior probability of disease-
association at 0.03. We calculated the sum of posterior
probabilities over all lead and proxy SNPs in each locus
and obtained a locus-wise p-value by 1000 conditional
permutations.

Meta-analysis of 11 GWAS data sets

We excluded two GWAS for UC (nid3 and norw) from the
meta-analysis as they had less than 30 cases. For the
remaining 11 GWAS data sets, we identified the proxy
SNPs of all the lead SNPs within each locus using SNAP.
We extracted the lead SNPs and proxy SNPs and imputed
missing SNPs by IMPUTE2 using EUR samples in 1000
Genomes release 3 as reference. We ran BEAM3 in each
GWAS data set separately and used the first PC of each
GWAS as covariate. We obtained locus-wise p-values in the
same way as we did in HiSeq data, and we combined the
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locus-wise p-values of the 11 GWAS together using the
Fisher’s method.

Conditional permutation

To account for sample stratification in a permutation study,
we used logistic regression to predict and simulate disease
status from the PCs of samples. This created randomized
disease labels that were correlated with the PCs in the same
way as that of the original disease status. Conditioning on
the PCS, the randomized disease status was independent of
the genotypes.

Explaining IBD variance

We fitted logistic regression models for the IBD status using
both the lead SNPs and the PCs of samples as predictors.
We calculated generalized r2 by 1−(L1/L0)

2/n, where L1 and
L0 denote the likelihoods of the alternative and the null
model, respectively, and n denotes the sample size.

Estimating the number of independent IBD variants

We estimated the number of independent IBD variants in a
locus by the sum of posterior probabilities of association
over all SNPs within a locus and we rounded the number up
to its nearest integer if its decimal point was ≥0.1.

Estimating relative risks

The relative risks of SNPs were estimated by logistic
regression while using PCs as covariates. The relative risk
for a SNP is given by the exponential of the SNP coefficient
minus 1. We merged the 11 GWAS data sets and the HiSeq
data together using the “merge” function in PLINK. When
fitting logistic regression models on the merged data, we
added an indicator vector for each data set as covariates to
adjust for potential inconsistency between data sets.

Enrichment analysis of gene functions and
pathways

We generated three sets of loci: (1) our new and repli-
cated IBD loci; (2) the known IBD loci recaptured in this
study; and (3) all other loci in ImmunoChIP data that
were at least 100 kb away from the known and novel IBD
loci. A locus was defined by clustering SNPs within 100
kb using the minimum distance method. We removed loci
in MHC region (chr6:29–34 Mb). We ran GREAT in
default setting (version 3.0.0) twice: (1) we used the set2
loci against all three sets of loci combined to calculate
GO enrichment in the recaptured known IBD loci relative
to all loci in the Immunochip regions; and (2) we used

set1 and set2 loci combined against all three sets of loci
to calculate the GO enrichment in both new and known
IBD loci identified in this study, relative to all loci in the
Immunochip regions.

Analysis of RoadMap epigenomics data

We downloaded the uniformly processed chromatin marks
from the RoadMap Epigenomics project [16]. We used the
UCSC utility tool to obtain epigenetic signals at each SNP
position. We then took log(x+ 0.01) transformation to
reduce data skewness. To remove estimation bias due to
SNP density, we grouped SNPs in each set by the 100 kb
minimum distance method. We modeled the mean signal
of each mark i in each cell type j in each SNP set k (=1, 2,
3 defined above), denoted by Yijk, as Yijk= α+ β+ γj+ εijk.
That is, Yijk is the sum of an overall effect (αk) of the SNP
set, plus epigenetic mark effect (βik, with mean 0), plus cell
type effect (γjk, with mean 0), and a residual term (εijk, with
mean 0), where εijk were the residual epigenetic signals
shown in Fig. 4. We obtained the anatomy information of
each cell type from the RoadMap Epigenomics website,
and we performed Fisher’s exact test to evaluate the sig-
nificance of each anatomy enriched in each group of cell
type cluster.

Data availability

The immunochip data and the GWAS data that support the
findings of this study are obtained as described in Jostins
et al. [6]. The HiSeq data analyzed in this study are obtained
from Imielinski et al. [12], but restrictions apply to the
availability of these data, which were used under license for
the current study, and so are not publically available. The
HiSeq data are however available from its original authors
upon reasonable request and with permission of IIBDGC.
The epigenetics data analyzed in this study are available in
the Roadmap Epigenomics data portal, http://egg2.wustl.
edu/roadmap/web_portal/.

Acknowledgements Y.Z. is supported by National Institutes of Health
grant R01-HG004718.

Author contributions Y.Z., S.G., and H.H. conceived and designed
the study. Y.Z. carried out the analysis. T.L. and P.S. helped in the
data processing and analysis. Y.Z., S.G., and H.H. wrote the
manuscript.

Compliance with ethical standards

Conflict of interest The authors declare that they have no competing
interests.

Bayesian Mapping of Independent IBD Signals 273

http://egg2.wustl.edu/roadmap/web_portal/
http://egg2.wustl.edu/roadmap/web_portal/


References

1. Molodecky NA, Soon IS, Rabi DM, et al. Increasing incidence
and prevalence of the inflammatory bowel diseases with time,
based on systematic review. Gastroenterology 2012;142:46–54.

2. Ng SC, Tang W, Ching JY, et al. Incidence and phenotype of
inflammatory bowel disease based on results from the Asia-Pacific
Crohn’s and Colitis Epidemiology Study. Gastroenterology
2013;145:158–65.

3. Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide associa-
tion defines more than 30 distinct susceptibility loci for Crohn’s
disease. Nat Genet 2008;40:955–62.

4. Franke A, McGovern DP, Barrett JC, et al. Genome-wide meta-
analysis increases to 71 the number of confirmed Crohn’s disease
susceptibility loci. Nat Genet 2010;42:1118–25.

5. Anderson CA, Boucher G, Lees CW, et al. Meta-analysis identi-
fies 29 additional ulcerative colitis risk loci, increasing the number
of confirmed associations to 47. Nat Genet 2011;43:246–52.

6. Jostins L, Ripke S, Weersma RK, et al. Host-microbe interactions
have shaped the genetic architecture of inflammatory bowel dis-
ease. Nature 2012;491:119–24.

7. Goyette P, Boucher G, Mallon D, et al. High-density mapping of
the MHC identifies a shared role for HLA-DRB1*01:03 in
inflammatory bowel diseases and heterozygous advantage in
ulcerative colitis. Nat Genet 2015;47:172–79.

8. Liu JZ, van Sommeren S, Huang H, et al. Association analyzes
identify 38 susceptibility loci for inflammatory bowel disease and
highlight shared genetic risk across populations. Nat Genet
2015;47:979–86.

9. Zhang Y. A novel bayesian graphical model for genome-wide
multi-SNP association mapping. Genet Epidemiol 2012;36:36–47.

10. Zhang Y, Ghosh S, Hakonarson H. Dynamic Bayesian testing of
sets of variants in complex diseases. Genetics 2014;198:867–78.

11. Ellinghaus D, Jostins L, Spain SL, et al. Analysis of five chronic
inflammatory diseases identifies 27 new associations and high-
lights disease-specific patterns at shared loci. Nat Genet
2016;48:510–18.

12. Imielinski M, Baldassano RN, Griffiths A, et al. Common variants
at five new loci associated with early-onset inflammatory bowel
disease. Nat Genet 2009;41:1335–40.

13. Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis R.
Fast and accurate genotype imputation in genome-wide associa-
tion studies through pre-phasing. Nat Genet 2012;44:955–59.

14. 1000 Genomes Project Consortium, Auton A, Brooks LD, et al. A
global reference for human genetic variation. Nature
2015;526:68–74.

15. McLean CY, Bristor D, Hiller M, et al. GREAT improves func-
tional interpretation of cis-regulatory regions. Nat Biotechnol
2010;28:495–501.

16. Roadmap Epigenomics Consortium, Kundaje A, Meuleman W,
et al. Integrative analysis of 111 reference human epigenomes.
Nature 2015;518:317–30.

17. Hemani G, Shakhbazov K, Westra HJ, et al. Detection and
replication of epistasis influencing transcription in humans. Nature
2014;508:249–53.

18. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a toolset for
whole-genome association and population-based linkage analysis.
Am J Hum Genet 2007;81:559–75.

19. Zhang Y, Liu JS. Bayesian inference of epistatic interactions in
case–control studies. Nat Genet 2007;39:1167–73.

20. Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell
CJ, de Bakker PI. SNAP: a web-based tool for identification and
annotation of proxy SNPs using HapMap. Bioinformatics
2008;24:2938–39.

274 Y. Zhang et al.


	Bayesian analysis of genome-wide inflammatory bowel disease data sets reveals new risk loci
	Abstract
	Introduction
	Results
	Detection and replication of new IBD loci
	IBD variance better explained by our lead SNPs than by known lead SNPs
	Enrichment of biological functions and pathways
	Epigenetic enrichment patterns at IBD loci

	Discussion
	Materials and methods
	Processing of the immunochip data
	Processing of the HiSeq replication data
	Processing of the GWAS data
	Bayesian multi-locus association mapping
	Analysis of the immunochip data
	Analysis of HiSeq data
	Meta-analysis of 11 GWAS data sets
	Conditional permutation
	Explaining IBD variance
	Estimating the number of independent IBD variants
	Estimating relative risks
	Enrichment analysis of gene functions and pathways
	Analysis of RoadMap epigenomics data
	Data availability
	Compliance with ethical standards

	ACKNOWLEDGMENTS
	References




